mirror of
https://github.com/elastic/kibana.git
synced 2025-04-24 09:48:58 -04:00
[ML] Improve messaging and support for datafeed using aggregated and scripted fields (#84594)
This commit is contained in:
parent
1b5d43b2e2
commit
008a420f81
24 changed files with 822 additions and 185 deletions
|
@ -28,6 +28,7 @@ export interface MlSummaryJob {
|
|||
nodeName?: string;
|
||||
auditMessage?: Partial<AuditMessage>;
|
||||
isSingleMetricViewerJob: boolean;
|
||||
isNotSingleMetricViewerJobMessage?: string;
|
||||
deleting?: boolean;
|
||||
latestTimestampSortValue?: number;
|
||||
earliestStartTimestampMs?: number;
|
||||
|
@ -45,6 +46,8 @@ export interface AuditMessage {
|
|||
export type MlSummaryJobs = MlSummaryJob[];
|
||||
|
||||
export interface MlJobWithTimeRange extends CombinedJobWithStats {
|
||||
id: string;
|
||||
isNotSingleMetricViewerJobMessage?: string;
|
||||
timeRange: {
|
||||
from: number;
|
||||
to: number;
|
||||
|
|
|
@ -6,12 +6,16 @@
|
|||
|
||||
import { Aggregation, Datafeed } from '../types/anomaly_detection_jobs';
|
||||
|
||||
export function getAggregations<T>(obj: any): T | undefined {
|
||||
if (obj?.aggregations !== undefined) return obj.aggregations;
|
||||
if (obj?.aggs !== undefined) return obj.aggs;
|
||||
return undefined;
|
||||
}
|
||||
|
||||
export const getDatafeedAggregations = (
|
||||
datafeedConfig: Partial<Datafeed> | undefined
|
||||
): Aggregation | undefined => {
|
||||
if (datafeedConfig?.aggregations !== undefined) return datafeedConfig.aggregations;
|
||||
if (datafeedConfig?.aggs !== undefined) return datafeedConfig.aggs;
|
||||
return undefined;
|
||||
return getAggregations<Aggregation>(datafeedConfig);
|
||||
};
|
||||
|
||||
export const getAggregationBucketsName = (aggregations: any): string | undefined => {
|
||||
|
|
|
@ -10,6 +10,7 @@ import moment, { Duration } from 'moment';
|
|||
// @ts-ignore
|
||||
import numeral from '@elastic/numeral';
|
||||
|
||||
import { i18n } from '@kbn/i18n';
|
||||
import { ALLOWED_DATA_UNITS, JOB_ID_MAX_LENGTH } from '../constants/validation';
|
||||
import { parseInterval } from './parse_interval';
|
||||
import { maxLengthValidator } from './validators';
|
||||
|
@ -20,7 +21,12 @@ import { MlServerLimits } from '../types/ml_server_info';
|
|||
import { JobValidationMessage, JobValidationMessageId } from '../constants/messages';
|
||||
import { ES_AGGREGATION, ML_JOB_AGGREGATION } from '../constants/aggregation_types';
|
||||
import { MLCATEGORY } from '../constants/field_types';
|
||||
import { getDatafeedAggregations } from './datafeed_utils';
|
||||
import {
|
||||
getAggregationBucketsName,
|
||||
getAggregations,
|
||||
getDatafeedAggregations,
|
||||
} from './datafeed_utils';
|
||||
import { findAggField } from './validation_utils';
|
||||
|
||||
export interface ValidationResults {
|
||||
valid: boolean;
|
||||
|
@ -43,20 +49,8 @@ export function calculateDatafeedFrequencyDefaultSeconds(bucketSpanSeconds: numb
|
|||
return freq;
|
||||
}
|
||||
|
||||
// Returns a flag to indicate whether the job is suitable for viewing
|
||||
// in the Time Series dashboard.
|
||||
export function isTimeSeriesViewJob(job: CombinedJob): boolean {
|
||||
// only allow jobs with at least one detector whose function corresponds to
|
||||
// an ES aggregation which can be viewed in the single metric view and which
|
||||
// doesn't use a scripted field which can be very difficult or impossible to
|
||||
// invert to a reverse search, or when model plot has been enabled.
|
||||
for (let i = 0; i < job.analysis_config.detectors.length; i++) {
|
||||
if (isTimeSeriesViewDetector(job, i)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
return getSingleMetricViewerJobErrorMessage(job) === undefined;
|
||||
}
|
||||
|
||||
// Returns a flag to indicate whether the detector at the index in the specified job
|
||||
|
@ -99,6 +93,24 @@ export function isSourceDataChartableForDetector(job: CombinedJob, detectorIndex
|
|||
scriptFields.indexOf(dtr.by_field_name!) === -1 &&
|
||||
scriptFields.indexOf(dtr.over_field_name!) === -1;
|
||||
}
|
||||
|
||||
// We cannot plot the source data for some specific aggregation configurations
|
||||
const hasDatafeed =
|
||||
typeof job.datafeed_config === 'object' && Object.keys(job.datafeed_config).length > 0;
|
||||
if (hasDatafeed) {
|
||||
const aggs = getDatafeedAggregations(job.datafeed_config);
|
||||
if (aggs !== undefined) {
|
||||
const aggBucketsName = getAggregationBucketsName(aggs);
|
||||
if (aggBucketsName !== undefined) {
|
||||
// if fieldName is a aggregated field under nested terms using bucket_script
|
||||
const aggregations = getAggregations<{ [key: string]: any }>(aggs[aggBucketsName]) ?? {};
|
||||
const foundField = findAggField(aggregations, dtr.field_name, false);
|
||||
if (foundField?.bucket_script !== undefined) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return isSourceDataChartable;
|
||||
|
@ -134,6 +146,24 @@ export function isModelPlotChartableForDetector(job: Job, detectorIndex: number)
|
|||
return isModelPlotChartable;
|
||||
}
|
||||
|
||||
// Returns a reason to indicate why the job configuration is not supported
|
||||
// if the result is undefined, that means the single metric job should be viewable
|
||||
export function getSingleMetricViewerJobErrorMessage(job: CombinedJob): string | undefined {
|
||||
// only allow jobs with at least one detector whose function corresponds to
|
||||
// an ES aggregation which can be viewed in the single metric view and which
|
||||
// doesn't use a scripted field which can be very difficult or impossible to
|
||||
// invert to a reverse search, or when model plot has been enabled.
|
||||
const isChartableTimeSeriesViewJob = job.analysis_config.detectors.some((detector, idx) =>
|
||||
isTimeSeriesViewDetector(job, idx)
|
||||
);
|
||||
|
||||
if (isChartableTimeSeriesViewJob === false) {
|
||||
return i18n.translate('xpack.ml.timeSeriesJob.notViewableTimeSeriesJobMessage', {
|
||||
defaultMessage: 'not a viewable time series job',
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Returns the names of the partition, by, and over fields for the detector with the
|
||||
// specified index from the supplied ML job configuration.
|
||||
export function getPartitioningFieldNames(job: CombinedJob, detectorIndex: number): string[] {
|
||||
|
|
|
@ -32,15 +32,20 @@ export function isValidJson(json: string) {
|
|||
}
|
||||
}
|
||||
|
||||
export function findAggField(aggs: Record<string, any>, fieldName: string): any {
|
||||
export function findAggField(
|
||||
aggs: Record<string, any> | { [key: string]: any },
|
||||
fieldName: string | undefined,
|
||||
returnParent: boolean = false
|
||||
): any {
|
||||
if (fieldName === undefined) return;
|
||||
let value;
|
||||
Object.keys(aggs).some(function (k) {
|
||||
if (k === fieldName) {
|
||||
value = aggs[k];
|
||||
value = returnParent === true ? aggs : aggs[k];
|
||||
return true;
|
||||
}
|
||||
if (aggs.hasOwnProperty(k) && typeof aggs[k] === 'object') {
|
||||
value = findAggField(aggs[k], fieldName);
|
||||
value = findAggField(aggs[k], fieldName, returnParent);
|
||||
return value !== undefined;
|
||||
}
|
||||
});
|
||||
|
|
|
@ -22,13 +22,14 @@ export const useCreateADLinks = () => {
|
|||
const userTimeSettings = useUiSettings().get(ANOMALY_DETECTION_DEFAULT_TIME_RANGE);
|
||||
const createLinkWithUserDefaults = useCallback(
|
||||
(location, jobList) => {
|
||||
return mlJobService.createResultsUrlForJobs(
|
||||
const resultsUrl = mlJobService.createResultsUrlForJobs(
|
||||
jobList,
|
||||
location,
|
||||
useUserTimeSettings === true && userTimeSettings !== undefined
|
||||
? userTimeSettings
|
||||
: undefined
|
||||
);
|
||||
return `${basePath.get()}/app/ml/${resultsUrl}`;
|
||||
},
|
||||
[basePath]
|
||||
);
|
||||
|
|
|
@ -7,21 +7,13 @@
|
|||
import React, { FC, Fragment } from 'react';
|
||||
import { EuiCard, EuiIcon } from '@elastic/eui';
|
||||
import { i18n } from '@kbn/i18n';
|
||||
import { useMlKibana, useMlUrlGenerator } from '../../../../../contexts/kibana';
|
||||
import { useMlLink } from '../../../../../contexts/kibana';
|
||||
import { ML_PAGES } from '../../../../../../../common/constants/ml_url_generator';
|
||||
|
||||
export const BackToListPanel: FC = () => {
|
||||
const urlGenerator = useMlUrlGenerator();
|
||||
const {
|
||||
services: {
|
||||
application: { navigateToUrl },
|
||||
},
|
||||
} = useMlKibana();
|
||||
|
||||
const redirectToAnalyticsManagementPage = async () => {
|
||||
const url = await urlGenerator.createUrl({ page: ML_PAGES.DATA_FRAME_ANALYTICS_JOBS_MANAGE });
|
||||
await navigateToUrl(url);
|
||||
};
|
||||
const analyticsManagementPageLink = useMlLink({
|
||||
page: ML_PAGES.DATA_FRAME_ANALYTICS_JOBS_MANAGE,
|
||||
});
|
||||
|
||||
return (
|
||||
<Fragment>
|
||||
|
@ -37,7 +29,7 @@ export const BackToListPanel: FC = () => {
|
|||
defaultMessage: 'Return to the analytics management page.',
|
||||
}
|
||||
)}
|
||||
onClick={redirectToAnalyticsManagementPage}
|
||||
href={analyticsManagementPageLink}
|
||||
data-test-subj="analyticsWizardCardManagement"
|
||||
/>
|
||||
</Fragment>
|
||||
|
|
|
@ -7,9 +7,8 @@
|
|||
import React, { FC, Fragment } from 'react';
|
||||
import { EuiCard, EuiIcon } from '@elastic/eui';
|
||||
import { i18n } from '@kbn/i18n';
|
||||
import { useMlUrlGenerator } from '../../../../../contexts/kibana';
|
||||
import { useMlLink } from '../../../../../contexts/kibana';
|
||||
import { ML_PAGES } from '../../../../../../../common/constants/ml_url_generator';
|
||||
import { useNavigateToPath } from '../../../../../contexts/kibana';
|
||||
import { DataFrameAnalysisConfigType } from '../../../../../../../common/types/data_frame_analytics';
|
||||
interface Props {
|
||||
jobId: string;
|
||||
|
@ -17,19 +16,13 @@ interface Props {
|
|||
}
|
||||
|
||||
export const ViewResultsPanel: FC<Props> = ({ jobId, analysisType }) => {
|
||||
const urlGenerator = useMlUrlGenerator();
|
||||
const navigateToPath = useNavigateToPath();
|
||||
|
||||
const redirectToAnalyticsExplorationPage = async () => {
|
||||
const path = await urlGenerator.createUrl({
|
||||
page: ML_PAGES.DATA_FRAME_ANALYTICS_EXPLORATION,
|
||||
pageState: {
|
||||
jobId,
|
||||
analysisType,
|
||||
},
|
||||
});
|
||||
await navigateToPath(path);
|
||||
};
|
||||
const analyticsExplorationPageLink = useMlLink({
|
||||
page: ML_PAGES.DATA_FRAME_ANALYTICS_EXPLORATION,
|
||||
pageState: {
|
||||
jobId,
|
||||
analysisType,
|
||||
},
|
||||
});
|
||||
|
||||
return (
|
||||
<Fragment>
|
||||
|
@ -45,7 +38,7 @@ export const ViewResultsPanel: FC<Props> = ({ jobId, analysisType }) => {
|
|||
defaultMessage: 'View results for the analytics job.',
|
||||
}
|
||||
)}
|
||||
onClick={redirectToAnalyticsExplorationPage}
|
||||
href={analyticsExplorationPageLink}
|
||||
data-test-subj="analyticsWizardViewResultsCard"
|
||||
/>
|
||||
</Fragment>
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
exports[`explorerChartsContainerService call anomalyChangeListener with actual series config 1`] = `
|
||||
Object {
|
||||
"chartsPerRow": 1,
|
||||
"errorMessages": Object {},
|
||||
"seriesToPlot": Array [
|
||||
Object {
|
||||
"bucketSpanSeconds": 900,
|
||||
|
@ -63,6 +64,7 @@ Object {
|
|||
exports[`explorerChartsContainerService call anomalyChangeListener with actual series config 2`] = `
|
||||
Object {
|
||||
"chartsPerRow": 1,
|
||||
"errorMessages": Object {},
|
||||
"seriesToPlot": Array [
|
||||
Object {
|
||||
"bucketSpanSeconds": 900,
|
||||
|
|
|
@ -31,6 +31,7 @@ import { MlTooltipComponent } from '../../components/chart_tooltip';
|
|||
import { withKibana } from '../../../../../../../src/plugins/kibana_react/public';
|
||||
import { ML_APP_URL_GENERATOR } from '../../../../common/constants/ml_url_generator';
|
||||
import { addItemToRecentlyAccessed } from '../../util/recently_accessed';
|
||||
import { ExplorerChartsErrorCallOuts } from './explorer_charts_error_callouts';
|
||||
|
||||
const textTooManyBuckets = i18n.translate('xpack.ml.explorer.charts.tooManyBucketsDescription', {
|
||||
defaultMessage:
|
||||
|
@ -165,6 +166,7 @@ export const ExplorerChartsContainerUI = ({
|
|||
severity,
|
||||
tooManyBuckets,
|
||||
kibana,
|
||||
errorMessages,
|
||||
}) => {
|
||||
const {
|
||||
services: {
|
||||
|
@ -183,27 +185,29 @@ export const ExplorerChartsContainerUI = ({
|
|||
const chartsColumns = chartsPerRow === 1 ? 0 : chartsPerRow;
|
||||
|
||||
const wrapLabel = seriesToPlot.some((series) => isLabelLengthAboveThreshold(series));
|
||||
|
||||
return (
|
||||
<EuiFlexGrid columns={chartsColumns}>
|
||||
{seriesToPlot.length > 0 &&
|
||||
seriesToPlot.map((series) => (
|
||||
<EuiFlexItem
|
||||
key={getChartId(series)}
|
||||
className="ml-explorer-chart-container"
|
||||
style={{ minWidth: chartsWidth }}
|
||||
>
|
||||
<ExplorerChartContainer
|
||||
series={series}
|
||||
severity={severity}
|
||||
tooManyBuckets={tooManyBuckets}
|
||||
wrapLabel={wrapLabel}
|
||||
navigateToApp={navigateToApp}
|
||||
mlUrlGenerator={mlUrlGenerator}
|
||||
/>
|
||||
</EuiFlexItem>
|
||||
))}
|
||||
</EuiFlexGrid>
|
||||
<>
|
||||
<ExplorerChartsErrorCallOuts errorMessagesByType={errorMessages} />
|
||||
<EuiFlexGrid columns={chartsColumns}>
|
||||
{seriesToPlot.length > 0 &&
|
||||
seriesToPlot.map((series) => (
|
||||
<EuiFlexItem
|
||||
key={getChartId(series)}
|
||||
className="ml-explorer-chart-container"
|
||||
style={{ minWidth: chartsWidth }}
|
||||
>
|
||||
<ExplorerChartContainer
|
||||
series={series}
|
||||
severity={severity}
|
||||
tooManyBuckets={tooManyBuckets}
|
||||
wrapLabel={wrapLabel}
|
||||
navigateToApp={navigateToApp}
|
||||
mlUrlGenerator={mlUrlGenerator}
|
||||
/>
|
||||
</EuiFlexItem>
|
||||
))}
|
||||
</EuiFlexGrid>
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
||||
|
|
|
@ -4,11 +4,17 @@
|
|||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
import type { JobId } from '../../../../common/types/anomaly_detection_jobs';
|
||||
|
||||
export interface ExplorerChartSeriesErrorMessages {
|
||||
[key: string]: Set<JobId>;
|
||||
}
|
||||
export declare interface ExplorerChartsData {
|
||||
chartsPerRow: number;
|
||||
seriesToPlot: any[];
|
||||
tooManyBuckets: boolean;
|
||||
timeFieldName: string;
|
||||
errorMessages: ExplorerChartSeriesErrorMessages;
|
||||
}
|
||||
|
||||
export declare const getDefaultChartsData: () => ExplorerChartsData;
|
||||
|
|
|
@ -28,10 +28,12 @@ import { mlJobService } from '../../services/job_service';
|
|||
import { explorerService } from '../explorer_dashboard_service';
|
||||
|
||||
import { CHART_TYPE } from '../explorer_constants';
|
||||
import { i18n } from '@kbn/i18n';
|
||||
|
||||
export function getDefaultChartsData() {
|
||||
return {
|
||||
chartsPerRow: 1,
|
||||
errorMessages: undefined,
|
||||
seriesToPlot: [],
|
||||
// default values, will update on every re-render
|
||||
tooManyBuckets: false,
|
||||
|
@ -58,7 +60,7 @@ export const anomalyDataChange = function (
|
|||
const filteredRecords = anomalyRecords.filter((record) => {
|
||||
return Number(record.record_score) >= severity;
|
||||
});
|
||||
const allSeriesRecords = processRecordsForDisplay(filteredRecords);
|
||||
const [allSeriesRecords, errorMessages] = processRecordsForDisplay(filteredRecords);
|
||||
// Calculate the number of charts per row, depending on the width available, to a max of 4.
|
||||
let chartsPerRow = Math.min(
|
||||
Math.max(Math.floor(chartsContainerWidth / 550), 1),
|
||||
|
@ -97,10 +99,12 @@ export const anomalyDataChange = function (
|
|||
chartData: null,
|
||||
}));
|
||||
|
||||
data.errorMessages = errorMessages;
|
||||
|
||||
explorerService.setCharts({ ...data });
|
||||
|
||||
if (seriesConfigs.length === 0) {
|
||||
return;
|
||||
return data;
|
||||
}
|
||||
|
||||
// Query 1 - load the raw metric data.
|
||||
|
@ -109,7 +113,9 @@ export const anomalyDataChange = function (
|
|||
|
||||
const job = mlJobService.getJob(jobId);
|
||||
|
||||
// If source data can be plotted, use that, otherwise model plot will be available.
|
||||
// If the job uses aggregation or scripted fields, and if it's a config we don't support
|
||||
// use model plot data if model plot is enabled
|
||||
// else if source data can be plotted, use that, otherwise model plot will be available.
|
||||
const useSourceData = isSourceDataChartableForDetector(job, detectorIndex);
|
||||
if (useSourceData === true) {
|
||||
const datafeedQuery = get(config, 'datafeedConfig.query', null);
|
||||
|
@ -422,21 +428,50 @@ export const anomalyDataChange = function (
|
|||
function processRecordsForDisplay(anomalyRecords) {
|
||||
// Aggregate the anomaly data by detector, and entity (by/over/partition).
|
||||
if (anomalyRecords.length === 0) {
|
||||
return [];
|
||||
return [[], undefined];
|
||||
}
|
||||
|
||||
// Aggregate by job, detector, and analysis fields (partition, by, over).
|
||||
const aggregatedData = {};
|
||||
|
||||
const jobsErrorMessage = {};
|
||||
each(anomalyRecords, (record) => {
|
||||
// Check if we can plot a chart for this record, depending on whether the source data
|
||||
// is chartable, and if model plot is enabled for the job.
|
||||
const job = mlJobService.getJob(record.job_id);
|
||||
|
||||
// if we already know this job has datafeed aggregations we cannot support
|
||||
// no need to do more checks
|
||||
if (jobsErrorMessage[record.job_id] !== undefined) {
|
||||
return;
|
||||
}
|
||||
|
||||
let isChartable = isSourceDataChartableForDetector(job, record.detector_index);
|
||||
if (isChartable === false && isModelPlotChartableForDetector(job, record.detector_index)) {
|
||||
// Check if model plot is enabled for this job.
|
||||
// Need to check the entity fields for the record in case the model plot config has a terms list.
|
||||
const entityFields = getEntityFieldList(record);
|
||||
isChartable = isModelPlotEnabled(job, record.detector_index, entityFields);
|
||||
if (isChartable === false) {
|
||||
if (isModelPlotChartableForDetector(job, record.detector_index)) {
|
||||
// Check if model plot is enabled for this job.
|
||||
// Need to check the entity fields for the record in case the model plot config has a terms list.
|
||||
const entityFields = getEntityFieldList(record);
|
||||
if (isModelPlotEnabled(job, record.detector_index, entityFields)) {
|
||||
isChartable = true;
|
||||
} else {
|
||||
isChartable = false;
|
||||
jobsErrorMessage[record.job_id] = i18n.translate(
|
||||
'xpack.ml.timeSeriesJob.sourceDataNotChartableWithDisabledModelPlotMessage',
|
||||
{
|
||||
defaultMessage:
|
||||
'source data is not viewable for this detector and model plot is disabled',
|
||||
}
|
||||
);
|
||||
}
|
||||
} else {
|
||||
jobsErrorMessage[record.job_id] = i18n.translate(
|
||||
'xpack.ml.timeSeriesJob.sourceDataModelPlotNotChartableMessage',
|
||||
{
|
||||
defaultMessage: 'both source data and model plot are not chartable for this detector',
|
||||
}
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
if (isChartable === false) {
|
||||
|
@ -529,34 +564,48 @@ function processRecordsForDisplay(anomalyRecords) {
|
|||
}
|
||||
});
|
||||
|
||||
// Group job id by error message instead of by job:
|
||||
const errorMessages = {};
|
||||
Object.keys(jobsErrorMessage).forEach((jobId) => {
|
||||
const msg = jobsErrorMessage[jobId];
|
||||
if (errorMessages[msg] === undefined) {
|
||||
errorMessages[msg] = new Set([jobId]);
|
||||
} else {
|
||||
errorMessages[msg].add(jobId);
|
||||
}
|
||||
});
|
||||
let recordsForSeries = [];
|
||||
// Convert to an array of the records with the highest record_score per unique series.
|
||||
each(aggregatedData, (detectorsForJob) => {
|
||||
each(detectorsForJob, (groupsForDetector) => {
|
||||
if (groupsForDetector.maxScoreRecord !== undefined) {
|
||||
// Detector with no partition / by field.
|
||||
recordsForSeries.push(groupsForDetector.maxScoreRecord);
|
||||
if (groupsForDetector.errorMessage !== undefined) {
|
||||
recordsForSeries.push(groupsForDetector.errorMessage);
|
||||
} else {
|
||||
each(groupsForDetector, (valuesForGroup) => {
|
||||
each(valuesForGroup, (dataForGroupValue) => {
|
||||
if (dataForGroupValue.maxScoreRecord !== undefined) {
|
||||
recordsForSeries.push(dataForGroupValue.maxScoreRecord);
|
||||
} else {
|
||||
// Second level of aggregation for partition and by/over.
|
||||
each(dataForGroupValue, (splitsForGroup) => {
|
||||
each(splitsForGroup, (dataForSplitValue) => {
|
||||
recordsForSeries.push(dataForSplitValue.maxScoreRecord);
|
||||
if (groupsForDetector.maxScoreRecord !== undefined) {
|
||||
// Detector with no partition / by field.
|
||||
recordsForSeries.push(groupsForDetector.maxScoreRecord);
|
||||
} else {
|
||||
each(groupsForDetector, (valuesForGroup) => {
|
||||
each(valuesForGroup, (dataForGroupValue) => {
|
||||
if (dataForGroupValue.maxScoreRecord !== undefined) {
|
||||
recordsForSeries.push(dataForGroupValue.maxScoreRecord);
|
||||
} else {
|
||||
// Second level of aggregation for partition and by/over.
|
||||
each(dataForGroupValue, (splitsForGroup) => {
|
||||
each(splitsForGroup, (dataForSplitValue) => {
|
||||
recordsForSeries.push(dataForSplitValue.maxScoreRecord);
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
});
|
||||
});
|
||||
recordsForSeries = sortBy(recordsForSeries, 'record_score').reverse();
|
||||
|
||||
return recordsForSeries;
|
||||
return [recordsForSeries, errorMessages];
|
||||
}
|
||||
|
||||
function calculateChartRange(
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License;
|
||||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
import { EuiCallOut, EuiSpacer } from '@elastic/eui';
|
||||
import { FormattedMessage } from '@kbn/i18n/react';
|
||||
import React, { FC } from 'react';
|
||||
import { ExplorerChartSeriesErrorMessages } from './explorer_charts_container_service';
|
||||
|
||||
interface ExplorerChartsErrorCalloutsProps {
|
||||
errorMessagesByType: ExplorerChartSeriesErrorMessages;
|
||||
}
|
||||
|
||||
export const ExplorerChartsErrorCallOuts: FC<ExplorerChartsErrorCalloutsProps> = ({
|
||||
errorMessagesByType,
|
||||
}) => {
|
||||
if (!errorMessagesByType || Object.keys(errorMessagesByType).length === 0) return null;
|
||||
const content = Object.keys(errorMessagesByType).map((errorType) => (
|
||||
<EuiCallOut color={'warning'} size="s" key={errorType}>
|
||||
<FormattedMessage
|
||||
id="xpack.ml.explorerCharts.errorCallOutMessage"
|
||||
defaultMessage="You can't view anomaly charts for {jobs} because {reason}."
|
||||
values={{ jobs: [...errorMessagesByType[errorType]].join(', '), reason: errorType }}
|
||||
/>
|
||||
</EuiCallOut>
|
||||
));
|
||||
return (
|
||||
<>
|
||||
{content}
|
||||
<EuiSpacer size={'m'} />
|
||||
</>
|
||||
);
|
||||
};
|
|
@ -61,6 +61,7 @@ export const explorerReducer = (state: ExplorerState, nextAction: Action): Explo
|
|||
seriesToPlot: payload.seriesToPlot,
|
||||
// convert truthy/falsy value to Boolean
|
||||
tooManyBuckets: !!payload.tooManyBuckets,
|
||||
errorMessages: payload.errorMessages,
|
||||
},
|
||||
};
|
||||
break;
|
||||
|
|
|
@ -10,15 +10,8 @@ import React, { useMemo } from 'react';
|
|||
import { EuiButtonIcon, EuiToolTip } from '@elastic/eui';
|
||||
import { i18n } from '@kbn/i18n';
|
||||
import { useCreateADLinks } from '../../../../components/custom_hooks/use_create_ad_links';
|
||||
import { Link } from 'react-router-dom';
|
||||
import { useMlKibana } from '../../../../contexts/kibana';
|
||||
|
||||
export function ResultLinks({ jobs, isManagementTable }) {
|
||||
const {
|
||||
services: {
|
||||
http: { basePath },
|
||||
},
|
||||
} = useMlKibana();
|
||||
export function ResultLinks({ jobs }) {
|
||||
const openJobsInSingleMetricViewerText = i18n.translate(
|
||||
'xpack.ml.jobsList.resultActions.openJobsInSingleMetricViewerText',
|
||||
{
|
||||
|
@ -42,6 +35,19 @@ export function ResultLinks({ jobs, isManagementTable }) {
|
|||
);
|
||||
const singleMetricVisible = jobs.length < 2;
|
||||
const singleMetricEnabled = jobs.length === 1 && jobs[0].isSingleMetricViewerJob;
|
||||
const singleMetricDisabledMessage =
|
||||
jobs.length === 1 && jobs[0].isNotSingleMetricViewerJobMessage;
|
||||
|
||||
const singleMetricDisabledMessageText =
|
||||
singleMetricDisabledMessage !== undefined
|
||||
? i18n.translate('xpack.ml.jobsList.resultActions.singleMetricDisabledMessageText', {
|
||||
defaultMessage: 'Disabled because {reason}.',
|
||||
values: {
|
||||
reason: singleMetricDisabledMessage,
|
||||
},
|
||||
})
|
||||
: undefined;
|
||||
|
||||
const jobActionsDisabled = jobs.length === 1 && jobs[0].deleting === true;
|
||||
const { createLinkWithUserDefaults } = useCreateADLinks();
|
||||
const timeSeriesExplorerLink = useMemo(
|
||||
|
@ -53,50 +59,29 @@ export function ResultLinks({ jobs, isManagementTable }) {
|
|||
return (
|
||||
<React.Fragment>
|
||||
{singleMetricVisible && (
|
||||
<EuiToolTip position="bottom" content={openJobsInSingleMetricViewerText}>
|
||||
{isManagementTable ? (
|
||||
<EuiButtonIcon
|
||||
href={`${basePath.get()}/app/ml/${timeSeriesExplorerLink}`}
|
||||
iconType="visLine"
|
||||
aria-label={openJobsInSingleMetricViewerText}
|
||||
className="results-button"
|
||||
isDisabled={singleMetricEnabled === false || jobActionsDisabled === true}
|
||||
data-test-subj="mlOpenJobsInSingleMetricViewerFromManagementButton"
|
||||
/>
|
||||
) : (
|
||||
<Link to={timeSeriesExplorerLink}>
|
||||
<EuiButtonIcon
|
||||
iconType="visLine"
|
||||
aria-label={openJobsInSingleMetricViewerText}
|
||||
className="results-button"
|
||||
isDisabled={singleMetricEnabled === false || jobActionsDisabled === true}
|
||||
data-test-subj="mlOpenJobsInSingleMetricViewerButton"
|
||||
/>
|
||||
</Link>
|
||||
)}
|
||||
</EuiToolTip>
|
||||
)}
|
||||
<EuiToolTip position="bottom" content={openJobsInAnomalyExplorerText}>
|
||||
{isManagementTable ? (
|
||||
<EuiToolTip
|
||||
position="bottom"
|
||||
content={singleMetricDisabledMessageText ?? openJobsInSingleMetricViewerText}
|
||||
>
|
||||
<EuiButtonIcon
|
||||
href={`${basePath.get()}/app/ml/${anomalyExplorerLink}`}
|
||||
iconType="visTable"
|
||||
href={timeSeriesExplorerLink}
|
||||
iconType="visLine"
|
||||
aria-label={openJobsInSingleMetricViewerText}
|
||||
className="results-button"
|
||||
isDisabled={singleMetricEnabled === false || jobActionsDisabled === true}
|
||||
data-test-subj="mlOpenJobsInSingleMetricViewerFromManagementButton"
|
||||
data-test-subj="mlOpenJobsInSingleMetricViewerButton"
|
||||
/>
|
||||
) : (
|
||||
<Link to={anomalyExplorerLink}>
|
||||
<EuiButtonIcon
|
||||
iconType="visTable"
|
||||
aria-label={openJobsInAnomalyExplorerText}
|
||||
className="results-button"
|
||||
isDisabled={jobActionsDisabled === true}
|
||||
data-test-subj="mlOpenJobsInAnomalyExplorerButton"
|
||||
/>
|
||||
</Link>
|
||||
)}
|
||||
</EuiToolTip>
|
||||
)}
|
||||
<EuiToolTip position="bottom" content={openJobsInAnomalyExplorerText}>
|
||||
<EuiButtonIcon
|
||||
href={anomalyExplorerLink}
|
||||
iconType="visTable"
|
||||
aria-label={openJobsInAnomalyExplorerText}
|
||||
className="results-button"
|
||||
isDisabled={jobActionsDisabled === true}
|
||||
data-test-subj="mlOpenJobsInAnomalyExplorerButton"
|
||||
/>
|
||||
</EuiToolTip>
|
||||
<div className="actions-border" />
|
||||
</React.Fragment>
|
||||
|
|
|
@ -237,7 +237,7 @@ export class JobsList extends Component {
|
|||
name: i18n.translate('xpack.ml.jobsList.actionsLabel', {
|
||||
defaultMessage: 'Actions',
|
||||
}),
|
||||
render: (item) => <ResultLinks jobs={[item]} isManagementTable={isManagementTable} />,
|
||||
render: (item) => <ResultLinks jobs={[item]} />,
|
||||
},
|
||||
];
|
||||
|
||||
|
|
|
@ -33,6 +33,10 @@ import { parseInterval } from '../../../../../../common/util/parse_interval';
|
|||
import { Calendar } from '../../../../../../common/types/calendars';
|
||||
import { mlCalendarService } from '../../../../services/calendar_service';
|
||||
import { IndexPattern } from '../../../../../../../../../src/plugins/data/public';
|
||||
import {
|
||||
getAggregationBucketsName,
|
||||
getDatafeedAggregations,
|
||||
} from '../../../../../../common/util/datafeed_utils';
|
||||
|
||||
export class JobCreator {
|
||||
protected _type: JOB_TYPE = JOB_TYPE.SINGLE_METRIC;
|
||||
|
@ -685,10 +689,13 @@ export class JobCreator {
|
|||
}
|
||||
|
||||
this._aggregationFields = [];
|
||||
const buckets =
|
||||
this._datafeed_config.aggregations?.buckets || this._datafeed_config.aggs?.buckets;
|
||||
if (buckets !== undefined) {
|
||||
collectAggs(buckets, this._aggregationFields);
|
||||
const aggs = getDatafeedAggregations(this._datafeed_config);
|
||||
if (aggs !== undefined) {
|
||||
const aggBucketsName = getAggregationBucketsName(aggs);
|
||||
if (aggBucketsName !== undefined && aggs[aggBucketsName] !== undefined) {
|
||||
const buckets = aggs[aggBucketsName];
|
||||
collectAggs(buckets, this._aggregationFields);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -7,8 +7,6 @@
|
|||
import React, { FC, useMemo } from 'react';
|
||||
import { EuiToolTip, EuiButtonEmpty } from '@elastic/eui';
|
||||
import { i18n } from '@kbn/i18n';
|
||||
|
||||
import { Link } from 'react-router-dom';
|
||||
import { useMlLink } from '../../../contexts/kibana';
|
||||
import { getAnalysisType } from '../../../data_frame_analytics/common/analytics';
|
||||
import { DataFrameAnalyticsListRow } from '../../../data_frame_analytics/pages/analytics_management/components/analytics_list/common';
|
||||
|
@ -39,26 +37,24 @@ export const ViewLink: FC<Props> = ({ item }) => {
|
|||
jobId: item.id,
|
||||
analysisType: analysisType as DataFrameAnalysisConfigType,
|
||||
},
|
||||
excludeBasePath: true,
|
||||
});
|
||||
|
||||
return (
|
||||
<EuiToolTip position="bottom" content={tooltipText}>
|
||||
<Link to={viewAnalyticsResultsLink}>
|
||||
<EuiButtonEmpty
|
||||
color="text"
|
||||
size="xs"
|
||||
iconType="visTable"
|
||||
aria-label={viewJobResultsButtonText}
|
||||
className="results-button"
|
||||
data-test-subj="mlOverviewAnalyticsJobViewButton"
|
||||
isDisabled={disabled}
|
||||
>
|
||||
{i18n.translate('xpack.ml.overview.analytics.viewActionName', {
|
||||
defaultMessage: 'View',
|
||||
})}
|
||||
</EuiButtonEmpty>
|
||||
</Link>
|
||||
<EuiButtonEmpty
|
||||
href={viewAnalyticsResultsLink}
|
||||
color="text"
|
||||
size="xs"
|
||||
iconType="visTable"
|
||||
aria-label={viewJobResultsButtonText}
|
||||
className="results-button"
|
||||
data-test-subj="mlOverviewAnalyticsJobViewButton"
|
||||
isDisabled={disabled}
|
||||
>
|
||||
{i18n.translate('xpack.ml.overview.analytics.viewActionName', {
|
||||
defaultMessage: 'View',
|
||||
})}
|
||||
</EuiButtonEmpty>
|
||||
</EuiToolTip>
|
||||
);
|
||||
};
|
||||
|
|
|
@ -7,7 +7,6 @@
|
|||
import React, { FC } from 'react';
|
||||
import { EuiToolTip, EuiButtonEmpty } from '@elastic/eui';
|
||||
import { i18n } from '@kbn/i18n';
|
||||
import { Link } from 'react-router-dom';
|
||||
import { MlSummaryJobs } from '../../../../../common/types/anomaly_detection_jobs';
|
||||
import { useCreateADLinks } from '../../../components/custom_hooks/use_create_ad_links';
|
||||
|
||||
|
@ -27,20 +26,19 @@ export const ExplorerLink: FC<Props> = ({ jobsList }) => {
|
|||
|
||||
return (
|
||||
<EuiToolTip position="bottom" content={openJobsInAnomalyExplorerText}>
|
||||
<Link to={createLinkWithUserDefaults('explorer', jobsList)}>
|
||||
<EuiButtonEmpty
|
||||
color="text"
|
||||
size="xs"
|
||||
iconType="visTable"
|
||||
aria-label={openJobsInAnomalyExplorerText}
|
||||
className="results-button"
|
||||
data-test-subj={`openOverviewJobsInAnomalyExplorer`}
|
||||
>
|
||||
{i18n.translate('xpack.ml.overview.anomalyDetection.viewActionName', {
|
||||
defaultMessage: 'View',
|
||||
})}
|
||||
</EuiButtonEmpty>
|
||||
</Link>
|
||||
<EuiButtonEmpty
|
||||
href={createLinkWithUserDefaults('explorer', jobsList)}
|
||||
color="text"
|
||||
size="xs"
|
||||
iconType="visTable"
|
||||
aria-label={openJobsInAnomalyExplorerText}
|
||||
className="results-button"
|
||||
data-test-subj={`openOverviewJobsInAnomalyExplorer`}
|
||||
>
|
||||
{i18n.translate('xpack.ml.overview.anomalyDetection.viewActionName', {
|
||||
defaultMessage: 'View',
|
||||
})}
|
||||
</EuiButtonEmpty>
|
||||
</EuiToolTip>
|
||||
);
|
||||
};
|
||||
|
|
|
@ -34,7 +34,30 @@ export function validateJobSelection(
|
|||
// (e.g. if switching to this view straight from the Anomaly Explorer).
|
||||
const invalidIds: string[] = difference(selectedJobIds, timeSeriesJobIds);
|
||||
const validSelectedJobIds = without(selectedJobIds, ...invalidIds);
|
||||
if (invalidIds.length > 0) {
|
||||
|
||||
// show specific reason why we can't show the single metric viewer
|
||||
if (invalidIds.length === 1) {
|
||||
const selectedJobId = invalidIds[0];
|
||||
const selectedJob = jobsWithTimeRange.find((j) => j.id === selectedJobId);
|
||||
if (selectedJob !== undefined && selectedJob.isNotSingleMetricViewerJobMessage !== undefined) {
|
||||
const warningText = i18n.translate(
|
||||
'xpack.ml.timeSeriesExplorer.canNotViewRequestedJobsWarningWithReasonMessage',
|
||||
{
|
||||
defaultMessage: `You can't view {selectedJobId} in this dashboard because {reason}.`,
|
||||
values: {
|
||||
selectedJobId,
|
||||
reason: selectedJob.isNotSingleMetricViewerJobMessage,
|
||||
},
|
||||
}
|
||||
);
|
||||
toastNotifications.addWarning({
|
||||
title: warningText,
|
||||
'data-test-subj': 'mlTimeSeriesExplorerDisabledJobReasonWarningToast',
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
if (invalidIds.length > 1) {
|
||||
let warningText = i18n.translate(
|
||||
'xpack.ml.timeSeriesExplorer.canNotViewRequestedJobsWarningMessage',
|
||||
{
|
||||
|
@ -45,6 +68,7 @@ export function validateJobSelection(
|
|||
},
|
||||
}
|
||||
);
|
||||
|
||||
if (validSelectedJobIds.length === 0 && timeSeriesJobIds.length > 0) {
|
||||
warningText += i18n.translate('xpack.ml.timeSeriesExplorer.autoSelectingFirstJobText', {
|
||||
defaultMessage: ', auto selecting first job',
|
||||
|
|
|
@ -8,7 +8,10 @@ import { i18n } from '@kbn/i18n';
|
|||
import { uniq } from 'lodash';
|
||||
import Boom from '@hapi/boom';
|
||||
import { IScopedClusterClient } from 'kibana/server';
|
||||
import { parseTimeIntervalForJob } from '../../../common/util/job_utils';
|
||||
import {
|
||||
getSingleMetricViewerJobErrorMessage,
|
||||
parseTimeIntervalForJob,
|
||||
} from '../../../common/util/job_utils';
|
||||
import { JOB_STATE, DATAFEED_STATE } from '../../../common/constants/states';
|
||||
import {
|
||||
MlSummaryJob,
|
||||
|
@ -27,7 +30,6 @@ import { fillResultsWithTimeouts, isRequestTimeout } from './error_utils';
|
|||
import {
|
||||
getEarliestDatafeedStartTime,
|
||||
getLatestDataOrBucketTimestamp,
|
||||
isTimeSeriesViewJob,
|
||||
} from '../../../common/util/job_utils';
|
||||
import { groupsProvider } from './groups';
|
||||
import type { MlClient } from '../../lib/ml_client';
|
||||
|
@ -175,6 +177,7 @@ export function jobsProvider(client: IScopedClusterClient, mlClient: MlClient) {
|
|||
const hasDatafeed =
|
||||
typeof job.datafeed_config === 'object' && Object.keys(job.datafeed_config).length > 0;
|
||||
const dataCounts = job.data_counts;
|
||||
const errorMessage = getSingleMetricViewerJobErrorMessage(job);
|
||||
|
||||
const tempJob: MlSummaryJob = {
|
||||
id: job.job_id,
|
||||
|
@ -200,7 +203,8 @@ export function jobsProvider(client: IScopedClusterClient, mlClient: MlClient) {
|
|||
dataCounts?.latest_record_timestamp,
|
||||
dataCounts?.latest_bucket_timestamp
|
||||
),
|
||||
isSingleMetricViewerJob: isTimeSeriesViewJob(job),
|
||||
isSingleMetricViewerJob: errorMessage === undefined,
|
||||
isNotSingleMetricViewerJobMessage: errorMessage,
|
||||
nodeName: job.node ? job.node.name : undefined,
|
||||
deleting: job.deleting || undefined,
|
||||
};
|
||||
|
@ -242,13 +246,15 @@ export function jobsProvider(client: IScopedClusterClient, mlClient: MlClient) {
|
|||
);
|
||||
timeRange.from = dataCounts.earliest_record_timestamp;
|
||||
}
|
||||
const errorMessage = getSingleMetricViewerJobErrorMessage(job);
|
||||
|
||||
const tempJob = {
|
||||
id: job.job_id,
|
||||
job_id: job.job_id,
|
||||
groups: Array.isArray(job.groups) ? job.groups.sort() : [],
|
||||
isRunning: hasDatafeed && job.datafeed_config.state === 'started',
|
||||
isSingleMetricViewerJob: isTimeSeriesViewJob(job),
|
||||
isSingleMetricViewerJob: errorMessage === undefined,
|
||||
isNotSingleMetricViewerJobMessage: errorMessage,
|
||||
timeRange,
|
||||
};
|
||||
|
||||
|
|
|
@ -0,0 +1,474 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License;
|
||||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
import { FtrProviderContext } from '../../../ftr_provider_context';
|
||||
import { Datafeed, Job } from '../../../../../plugins/ml/common/types/anomaly_detection_jobs';
|
||||
|
||||
export default function ({ getService }: FtrProviderContext) {
|
||||
const esArchiver = getService('esArchiver');
|
||||
const ml = getService('ml');
|
||||
|
||||
const ts = Date.now();
|
||||
const supportedTestSuites = [
|
||||
{
|
||||
suiteTitle: 'supported job with aggregation field',
|
||||
jobConfig: {
|
||||
job_id: `fq_supported_aggs_${ts}`,
|
||||
job_type: 'anomaly_detector',
|
||||
description: '',
|
||||
analysis_config: {
|
||||
bucket_span: '30m',
|
||||
summary_count_field_name: 'doc_count',
|
||||
detectors: [
|
||||
{
|
||||
function: 'mean',
|
||||
field_name: 'responsetime_avg',
|
||||
detector_description: 'mean(responsetime_avg)',
|
||||
},
|
||||
],
|
||||
influencers: ['airline'],
|
||||
},
|
||||
|
||||
analysis_limits: {
|
||||
model_memory_limit: '11MB',
|
||||
},
|
||||
data_description: {
|
||||
time_field: '@timestamp',
|
||||
time_format: 'epoch_ms',
|
||||
},
|
||||
model_plot_config: {
|
||||
enabled: false,
|
||||
annotations_enabled: false,
|
||||
},
|
||||
model_snapshot_retention_days: 1,
|
||||
results_index_name: 'shared',
|
||||
allow_lazy_open: false,
|
||||
groups: [],
|
||||
} as Job,
|
||||
datafeedConfig: ({
|
||||
datafeed_id: `datafeed-fq_supported_aggs_${ts}`,
|
||||
job_id: `fq_supported_aggs_${ts}`,
|
||||
chunking_config: {
|
||||
mode: 'manual',
|
||||
time_span: '900000000ms',
|
||||
},
|
||||
indices_options: {
|
||||
expand_wildcards: ['open'],
|
||||
ignore_unavailable: false,
|
||||
allow_no_indices: true,
|
||||
ignore_throttled: true,
|
||||
},
|
||||
query: {
|
||||
match_all: {},
|
||||
},
|
||||
indices: ['ft_farequote'],
|
||||
aggregations: {
|
||||
buckets: {
|
||||
date_histogram: {
|
||||
field: '@timestamp',
|
||||
fixed_interval: '15m',
|
||||
},
|
||||
aggregations: {
|
||||
'@timestamp': {
|
||||
max: {
|
||||
field: '@timestamp',
|
||||
},
|
||||
},
|
||||
airline: {
|
||||
terms: {
|
||||
field: 'airline',
|
||||
size: 100,
|
||||
},
|
||||
aggregations: {
|
||||
responsetime_avg: {
|
||||
avg: {
|
||||
field: 'responsetime',
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
scroll_size: 1000,
|
||||
delayed_data_check_config: {
|
||||
enabled: true,
|
||||
},
|
||||
} as unknown) as Datafeed,
|
||||
},
|
||||
{
|
||||
suiteTitle: 'supported job with scripted field',
|
||||
jobConfig: {
|
||||
job_id: `fq_supported_script_${ts}`,
|
||||
job_type: 'anomaly_detector',
|
||||
description: '',
|
||||
analysis_config: {
|
||||
bucket_span: '15m',
|
||||
detectors: [
|
||||
{
|
||||
function: 'mean',
|
||||
field_name: 'actual_taxed',
|
||||
detector_description: 'mean(actual_taxed) by gender_currency',
|
||||
},
|
||||
],
|
||||
influencers: [],
|
||||
},
|
||||
analysis_limits: {
|
||||
model_memory_limit: '11MB',
|
||||
},
|
||||
data_description: {
|
||||
time_field: 'order_date',
|
||||
time_format: 'epoch_ms',
|
||||
},
|
||||
model_plot_config: {
|
||||
enabled: true,
|
||||
annotations_enabled: false,
|
||||
},
|
||||
model_snapshot_retention_days: 10,
|
||||
daily_model_snapshot_retention_after_days: 1,
|
||||
results_index_name: 'shared',
|
||||
allow_lazy_open: false,
|
||||
groups: [],
|
||||
} as Job,
|
||||
datafeedConfig: ({
|
||||
chunking_config: {
|
||||
mode: 'auto',
|
||||
},
|
||||
indices_options: {
|
||||
expand_wildcards: ['open'],
|
||||
ignore_unavailable: false,
|
||||
allow_no_indices: true,
|
||||
ignore_throttled: true,
|
||||
},
|
||||
query: {
|
||||
bool: {
|
||||
must: [
|
||||
{
|
||||
match_all: {},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
indices: ['ft_ecommerce'],
|
||||
script_fields: {
|
||||
actual_taxed: {
|
||||
script: {
|
||||
source: "doc['taxful_total_price'].value * 1.825",
|
||||
lang: 'painless',
|
||||
},
|
||||
ignore_failure: false,
|
||||
},
|
||||
},
|
||||
scroll_size: 1000,
|
||||
delayed_data_check_config: {
|
||||
enabled: true,
|
||||
},
|
||||
job_id: `fq_supported_script_${ts}`,
|
||||
datafeed_id: `datafeed-fq_supported_script_${ts}`,
|
||||
} as unknown) as Datafeed,
|
||||
},
|
||||
];
|
||||
|
||||
const unsupportedTestSuites = [
|
||||
{
|
||||
suiteTitle: 'unsupported job with bucket_script aggregation field',
|
||||
jobConfig: {
|
||||
job_id: `fq_unsupported_aggs_${ts}`,
|
||||
job_type: 'anomaly_detector',
|
||||
description: '',
|
||||
analysis_config: {
|
||||
bucket_span: '15m',
|
||||
summary_count_field_name: 'doc_count',
|
||||
detectors: [
|
||||
{
|
||||
function: 'mean',
|
||||
field_name: 'max_delta',
|
||||
partition_field_name: 'airlines',
|
||||
detector_description: 'mean(max_delta) partition airline',
|
||||
},
|
||||
],
|
||||
influencers: ['airlines'],
|
||||
},
|
||||
analysis_limits: {
|
||||
model_memory_limit: '11MB',
|
||||
},
|
||||
data_description: {
|
||||
time_field: '@timestamp',
|
||||
time_format: 'epoch_ms',
|
||||
},
|
||||
model_plot_config: {
|
||||
enabled: false,
|
||||
annotations_enabled: false,
|
||||
},
|
||||
model_snapshot_retention_days: 1,
|
||||
results_index_name: 'shared',
|
||||
allow_lazy_open: false,
|
||||
groups: [],
|
||||
} as Job,
|
||||
datafeedConfig: ({
|
||||
datafeed_id: `datafeed-fq_unsupported_aggs_${ts}`,
|
||||
job_id: `fq_unsupported_aggs_${ts}`,
|
||||
chunking_config: {
|
||||
mode: 'manual',
|
||||
time_span: '900000000ms',
|
||||
},
|
||||
indices_options: {
|
||||
expand_wildcards: ['open'],
|
||||
ignore_unavailable: false,
|
||||
allow_no_indices: true,
|
||||
ignore_throttled: true,
|
||||
},
|
||||
query: {
|
||||
match_all: {},
|
||||
},
|
||||
indices: ['ft_farequote'],
|
||||
aggregations: {
|
||||
buckets: {
|
||||
date_histogram: {
|
||||
field: '@timestamp',
|
||||
fixed_interval: '15m',
|
||||
time_zone: 'UTC',
|
||||
},
|
||||
aggregations: {
|
||||
'@timestamp': {
|
||||
max: {
|
||||
field: '@timestamp',
|
||||
},
|
||||
},
|
||||
airlines: {
|
||||
terms: {
|
||||
field: 'airline',
|
||||
size: 200,
|
||||
order: {
|
||||
_count: 'desc',
|
||||
},
|
||||
},
|
||||
aggregations: {
|
||||
max: {
|
||||
max: {
|
||||
field: 'responsetime',
|
||||
},
|
||||
},
|
||||
min: {
|
||||
min: {
|
||||
field: 'responsetime',
|
||||
},
|
||||
},
|
||||
max_delta: {
|
||||
bucket_script: {
|
||||
buckets_path: {
|
||||
maxval: 'max',
|
||||
minval: 'min',
|
||||
},
|
||||
script: 'params.maxval - params.minval',
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
scroll_size: 1000,
|
||||
delayed_data_check_config: {
|
||||
enabled: true,
|
||||
},
|
||||
} as unknown) as Datafeed,
|
||||
},
|
||||
{
|
||||
suiteTitle: 'unsupported job with partition by of a scripted field',
|
||||
jobConfig: {
|
||||
job_id: `fq_unsupported_script_${ts}`,
|
||||
job_type: 'anomaly_detector',
|
||||
description: '',
|
||||
analysis_config: {
|
||||
bucket_span: '15m',
|
||||
detectors: [
|
||||
{
|
||||
function: 'mean',
|
||||
field_name: 'actual_taxed',
|
||||
by_field_name: 'gender_currency',
|
||||
detector_description: 'mean(actual_taxed) by gender_currency',
|
||||
},
|
||||
],
|
||||
influencers: ['gender_currency'],
|
||||
},
|
||||
analysis_limits: {
|
||||
model_memory_limit: '11MB',
|
||||
},
|
||||
data_description: {
|
||||
time_field: 'order_date',
|
||||
time_format: 'epoch_ms',
|
||||
},
|
||||
model_plot_config: {
|
||||
enabled: false,
|
||||
annotations_enabled: false,
|
||||
},
|
||||
model_snapshot_retention_days: 10,
|
||||
daily_model_snapshot_retention_after_days: 1,
|
||||
results_index_name: 'shared',
|
||||
allow_lazy_open: false,
|
||||
groups: [],
|
||||
} as Job,
|
||||
datafeedConfig: ({
|
||||
chunking_config: {
|
||||
mode: 'auto',
|
||||
},
|
||||
indices_options: {
|
||||
expand_wildcards: ['open'],
|
||||
ignore_unavailable: false,
|
||||
allow_no_indices: true,
|
||||
ignore_throttled: true,
|
||||
},
|
||||
query: {
|
||||
bool: {
|
||||
must: [
|
||||
{
|
||||
match_all: {},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
indices: ['ft_ecommerce'],
|
||||
script_fields: {
|
||||
actual_taxed: {
|
||||
script: {
|
||||
source: "doc['taxful_total_price'].value * 1.825",
|
||||
lang: 'painless',
|
||||
},
|
||||
ignore_failure: false,
|
||||
},
|
||||
gender_currency: {
|
||||
script: {
|
||||
source: "doc['customer_gender'].value + '_' + doc['currency'].value",
|
||||
lang: 'painless',
|
||||
},
|
||||
ignore_failure: false,
|
||||
},
|
||||
},
|
||||
scroll_size: 1000,
|
||||
delayed_data_check_config: {
|
||||
enabled: true,
|
||||
},
|
||||
job_id: `fq_unsupported_script_${ts}`,
|
||||
datafeed_id: `datafeed-fq_unsupported_script_${ts}`,
|
||||
} as unknown) as Datafeed,
|
||||
},
|
||||
];
|
||||
|
||||
describe('aggregated or scripted job', function () {
|
||||
this.tags(['mlqa']);
|
||||
before(async () => {
|
||||
await esArchiver.loadIfNeeded('ml/farequote');
|
||||
await esArchiver.loadIfNeeded('ml/ecommerce');
|
||||
await ml.testResources.createIndexPatternIfNeeded('ft_farequote', '@timestamp');
|
||||
await ml.testResources.createIndexPatternIfNeeded('ft_ecommerce', 'order_date');
|
||||
await ml.testResources.setKibanaTimeZoneToUTC();
|
||||
await ml.securityUI.loginAsMlPowerUser();
|
||||
});
|
||||
|
||||
after(async () => {
|
||||
await ml.api.cleanMlIndices();
|
||||
});
|
||||
for (const testData of supportedTestSuites) {
|
||||
describe(testData.suiteTitle, function () {
|
||||
before(async () => {
|
||||
await ml.api.createAndRunAnomalyDetectionLookbackJob(
|
||||
testData.jobConfig,
|
||||
testData.datafeedConfig
|
||||
);
|
||||
});
|
||||
|
||||
it('opens a job from job list link', async () => {
|
||||
await ml.testExecution.logTestStep('navigate to job list');
|
||||
await ml.navigation.navigateToMl();
|
||||
await ml.navigation.navigateToJobManagement();
|
||||
|
||||
await ml.testExecution.logTestStep(
|
||||
'check that the single metric viewer button is enabled'
|
||||
);
|
||||
await ml.jobTable.waitForJobsToLoad();
|
||||
await ml.jobTable.filterWithSearchString(testData.jobConfig.job_id, 1);
|
||||
|
||||
await ml.jobTable.assertJobActionSingleMetricViewerButtonEnabled(
|
||||
testData.jobConfig.job_id,
|
||||
true
|
||||
);
|
||||
await ml.testExecution.logTestStep('opens job in single metric viewer');
|
||||
await ml.jobTable.clickOpenJobInSingleMetricViewerButton(testData.jobConfig.job_id);
|
||||
await ml.commonUI.waitForMlLoadingIndicatorToDisappear();
|
||||
});
|
||||
|
||||
it('displays job results correctly in both anomaly explorer and single metric viewer', async () => {
|
||||
await ml.testExecution.logTestStep('should display the chart');
|
||||
await ml.singleMetricViewer.assertChartExist();
|
||||
|
||||
await ml.testExecution.logTestStep('should navigate to anomaly explorer');
|
||||
await ml.navigation.navigateToAnomalyExplorerViaSingleMetricViewer();
|
||||
|
||||
await ml.testExecution.logTestStep('pre-fills the job selection');
|
||||
await ml.jobSelection.assertJobSelection([testData.jobConfig.job_id]);
|
||||
|
||||
await ml.testExecution.logTestStep('displays the swimlanes');
|
||||
await ml.anomalyExplorer.assertOverallSwimlaneExists();
|
||||
await ml.anomalyExplorer.assertSwimlaneViewByExists();
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
for (const testData of unsupportedTestSuites) {
|
||||
describe(testData.suiteTitle, function () {
|
||||
before(async () => {
|
||||
await ml.api.createAndRunAnomalyDetectionLookbackJob(
|
||||
testData.jobConfig,
|
||||
testData.datafeedConfig
|
||||
);
|
||||
});
|
||||
|
||||
it('opens a job from job list link', async () => {
|
||||
await ml.testExecution.logTestStep('navigate to job list');
|
||||
await ml.navigation.navigateToMl();
|
||||
await ml.navigation.navigateToJobManagement();
|
||||
|
||||
await ml.testExecution.logTestStep(
|
||||
'check that the single metric viewer button is disabled'
|
||||
);
|
||||
await ml.jobTable.waitForJobsToLoad();
|
||||
await ml.jobTable.filterWithSearchString(testData.jobConfig.job_id, 1);
|
||||
|
||||
await ml.jobTable.assertJobActionSingleMetricViewerButtonEnabled(
|
||||
testData.jobConfig.job_id,
|
||||
false
|
||||
);
|
||||
|
||||
await ml.testExecution.logTestStep('open job in anomaly explorer');
|
||||
await ml.jobTable.clickOpenJobInAnomalyExplorerButton(testData.jobConfig.job_id);
|
||||
await ml.commonUI.waitForMlLoadingIndicatorToDisappear();
|
||||
});
|
||||
|
||||
it('displays job results', async () => {
|
||||
await ml.testExecution.logTestStep('pre-fills the job selection');
|
||||
await ml.jobSelection.assertJobSelection([testData.jobConfig.job_id]);
|
||||
|
||||
await ml.testExecution.logTestStep('displays the swimlanes');
|
||||
await ml.anomalyExplorer.assertOverallSwimlaneExists();
|
||||
await ml.anomalyExplorer.assertSwimlaneViewByExists();
|
||||
|
||||
// TODO: click on swimlane cells to trigger warning callouts
|
||||
// when we figure out a way to click inside canvas renderings
|
||||
|
||||
await ml.testExecution.logTestStep('should navigate to single metric viewer');
|
||||
await ml.navigation.navigateToSingleMetricViewerViaAnomalyExplorer();
|
||||
|
||||
await ml.testExecution.logTestStep(
|
||||
'should show warning message and redirect single metric viewer to another job'
|
||||
);
|
||||
await ml.singleMetricViewer.assertDisabledJobReasonWarningToastExist();
|
||||
await ml.jobSelection.assertJobSelectionNotContains(testData.jobConfig.job_id);
|
||||
});
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
|
@ -20,5 +20,6 @@ export default function ({ loadTestFile }: FtrProviderContext) {
|
|||
loadTestFile(require.resolve('./categorization_job'));
|
||||
loadTestFile(require.resolve('./date_nanos_job'));
|
||||
loadTestFile(require.resolve('./annotations'));
|
||||
loadTestFile(require.resolve('./aggregated_scripted_job'));
|
||||
});
|
||||
}
|
||||
|
|
|
@ -23,5 +23,18 @@ export function MachineLearningJobSelectionProvider({ getService }: FtrProviderC
|
|||
`Job selection should display jobs or groups '${jobOrGroupIds}' (got '${actualJobOrGroupLabels}')`
|
||||
);
|
||||
},
|
||||
|
||||
async assertJobSelectionNotContains(jobOrGroupId: string) {
|
||||
const selectedJobsOrGroups = await testSubjects.findAll(
|
||||
'mlJobSelectionBadges > ~mlJobSelectionBadge'
|
||||
);
|
||||
const actualJobOrGroupLabels = await Promise.all(
|
||||
selectedJobsOrGroups.map(async (badge) => await badge.getVisibleText())
|
||||
);
|
||||
expect(actualJobOrGroupLabels).to.not.contain(
|
||||
jobOrGroupId,
|
||||
`Job selection should not contain job or group '${jobOrGroupId}' (got '${actualJobOrGroupLabels}')`
|
||||
);
|
||||
},
|
||||
};
|
||||
}
|
||||
|
|
|
@ -187,5 +187,13 @@ export function MachineLearningSingleMetricViewerProvider(
|
|||
);
|
||||
await this.assertEntityConfig(entityFieldName, anomalousOnly, sortBy, order);
|
||||
},
|
||||
|
||||
async assertToastMessageExists(dataTestSubj: string) {
|
||||
const toast = await testSubjects.find(dataTestSubj);
|
||||
expect(toast).not.to.be(undefined);
|
||||
},
|
||||
async assertDisabledJobReasonWarningToastExist() {
|
||||
await this.assertToastMessageExists('mlTimeSeriesExplorerDisabledJobReasonWarningToast');
|
||||
},
|
||||
};
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue