mirror of
https://github.com/elastic/kibana.git
synced 2025-04-24 09:48:58 -04:00
* enable analytics table view link for regression jobs * add results table component * can filter for training/testing * add search functionality to table * move shared types to analytics types file * anchor isTraining,predicted,actual columns to left. * ensure search string persists in search bar input * show jobStatus badge in results view * add jobType, status badge to outlier exploration page * update exploration tests
This commit is contained in:
parent
50ae400b4c
commit
0f18d39a49
17 changed files with 945 additions and 74 deletions
|
@ -1,4 +1,5 @@
|
|||
@import 'pages/analytics_exploration/components/exploration/index';
|
||||
@import 'pages/analytics_exploration/components/regression_exploration/index';
|
||||
@import 'pages/analytics_management/components/analytics_list/index';
|
||||
@import 'pages/analytics_management/components/create_analytics_form/index';
|
||||
@import 'pages/analytics_management/components/create_analytics_flyout/index';
|
||||
|
|
|
@ -29,6 +29,15 @@ interface RegressionAnalysis {
|
|||
};
|
||||
}
|
||||
|
||||
export const SEARCH_SIZE = 1000;
|
||||
|
||||
export enum INDEX_STATUS {
|
||||
UNUSED,
|
||||
LOADING,
|
||||
LOADED,
|
||||
ERROR,
|
||||
}
|
||||
|
||||
export interface Eval {
|
||||
meanSquaredError: number | '';
|
||||
rSquared: number | '';
|
||||
|
@ -91,6 +100,16 @@ export const getPredictionFieldName = (analysis: AnalysisConfig) => {
|
|||
return predictionFieldName;
|
||||
};
|
||||
|
||||
export const getPredictedFieldName = (resultsField: string, analysis: AnalysisConfig) => {
|
||||
// default is 'ml'
|
||||
const predictionFieldName = getPredictionFieldName(analysis);
|
||||
const defaultPredictionField = `${getDependentVar(analysis)}_prediction`;
|
||||
const predictedField = `${resultsField}.${
|
||||
predictionFieldName ? predictionFieldName : defaultPredictionField
|
||||
}`;
|
||||
return predictedField;
|
||||
};
|
||||
|
||||
export const isOutlierAnalysis = (arg: any): arg is OutlierAnalysis => {
|
||||
const keys = Object.keys(arg);
|
||||
return keys.length === 1 && keys[0] === ANALYSIS_CONFIG_TYPE.OUTLIER_DETECTION;
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
*/
|
||||
|
||||
import { getNestedProperty } from '../../util/object_utils';
|
||||
import { DataFrameAnalyticsConfig, getPredictedFieldName, getDependentVar } from './analytics';
|
||||
|
||||
export type EsId = string;
|
||||
export type EsDocSource = Record<string, any>;
|
||||
|
@ -16,6 +17,7 @@ export interface EsDoc extends Record<string, any> {
|
|||
}
|
||||
|
||||
export const MAX_COLUMNS = 20;
|
||||
export const DEFAULT_REGRESSION_COLUMNS = 8;
|
||||
|
||||
const ML__ID_COPY = 'ml__id_copy';
|
||||
|
||||
|
@ -68,6 +70,104 @@ export const sortColumns = (obj: EsDocSource, resultsField: string) => (a: strin
|
|||
return a.localeCompare(b);
|
||||
};
|
||||
|
||||
export const sortRegressionResultsFields = (
|
||||
a: string,
|
||||
b: string,
|
||||
jobConfig: DataFrameAnalyticsConfig
|
||||
) => {
|
||||
const dependentVariable = getDependentVar(jobConfig.analysis);
|
||||
const resultsField = jobConfig.dest.results_field;
|
||||
const predictedField = getPredictedFieldName(resultsField, jobConfig.analysis);
|
||||
if (a === `${resultsField}.is_training`) {
|
||||
return -1;
|
||||
}
|
||||
if (b === `${resultsField}.is_training`) {
|
||||
return 1;
|
||||
}
|
||||
if (a === predictedField) {
|
||||
return -1;
|
||||
}
|
||||
if (b === predictedField) {
|
||||
return 1;
|
||||
}
|
||||
if (a === dependentVariable) {
|
||||
return -1;
|
||||
}
|
||||
if (b === dependentVariable) {
|
||||
return 1;
|
||||
}
|
||||
return a.localeCompare(b);
|
||||
};
|
||||
|
||||
// Used to sort columns:
|
||||
// Anchor on the left ml.is_training, <predictedField>, <actual>
|
||||
export const sortRegressionResultsColumns = (
|
||||
obj: EsDocSource,
|
||||
jobConfig: DataFrameAnalyticsConfig
|
||||
) => (a: string, b: string) => {
|
||||
const dependentVariable = getDependentVar(jobConfig.analysis);
|
||||
const resultsField = jobConfig.dest.results_field;
|
||||
const predictedField = getPredictedFieldName(resultsField, jobConfig.analysis);
|
||||
|
||||
const typeofA = typeof obj[a];
|
||||
const typeofB = typeof obj[b];
|
||||
|
||||
if (a === `${resultsField}.is_training`) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (b === `${resultsField}.is_training`) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (a === predictedField) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (b === predictedField) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (a === dependentVariable) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (b === dependentVariable) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (typeofA !== 'string' && typeofB === 'string') {
|
||||
return 1;
|
||||
}
|
||||
if (typeofA === 'string' && typeofB !== 'string') {
|
||||
return -1;
|
||||
}
|
||||
if (typeofA === 'string' && typeofB === 'string') {
|
||||
return a.localeCompare(b);
|
||||
}
|
||||
|
||||
const tokensA = a.split('.');
|
||||
const prefixA = tokensA[0];
|
||||
const tokensB = b.split('.');
|
||||
const prefixB = tokensB[0];
|
||||
|
||||
if (prefixA === resultsField && tokensA.length > 1 && prefixB !== resultsField) {
|
||||
tokensA.shift();
|
||||
tokensA.shift();
|
||||
if (tokensA.join('.') === b) return 1;
|
||||
return tokensA.join('.').localeCompare(b);
|
||||
}
|
||||
|
||||
if (prefixB === resultsField && tokensB.length > 1 && prefixA !== resultsField) {
|
||||
tokensB.shift();
|
||||
tokensB.shift();
|
||||
if (tokensB.join('.') === a) return -1;
|
||||
return a.localeCompare(tokensB.join('.'));
|
||||
}
|
||||
|
||||
return a.localeCompare(b);
|
||||
};
|
||||
|
||||
export function getFlattenedFields(obj: EsDocSource, resultsField: string): EsFieldName[] {
|
||||
const flatDocFields: EsFieldName[] = [];
|
||||
const newDocFields = Object.keys(obj);
|
||||
|
@ -84,6 +184,46 @@ export function getFlattenedFields(obj: EsDocSource, resultsField: string): EsFi
|
|||
return flatDocFields.filter(f => f !== ML__ID_COPY);
|
||||
}
|
||||
|
||||
export const getDefaultRegressionFields = (
|
||||
docs: EsDoc[],
|
||||
jobConfig: DataFrameAnalyticsConfig
|
||||
): EsFieldName[] => {
|
||||
const resultsField = jobConfig.dest.results_field;
|
||||
if (docs.length === 0) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const newDocFields = getFlattenedFields(docs[0]._source, resultsField);
|
||||
return newDocFields
|
||||
.filter(k => {
|
||||
if (k === `${resultsField}.is_training`) {
|
||||
return true;
|
||||
}
|
||||
// predicted value of dependent variable
|
||||
if (k === getPredictedFieldName(resultsField, jobConfig.analysis)) {
|
||||
return true;
|
||||
}
|
||||
// actual value of dependent variable
|
||||
if (k === getDependentVar(jobConfig.analysis)) {
|
||||
return true;
|
||||
}
|
||||
if (k.split('.')[0] === resultsField) {
|
||||
return false;
|
||||
}
|
||||
|
||||
let value = false;
|
||||
docs.forEach(row => {
|
||||
const source = row._source;
|
||||
if (source[k] !== null) {
|
||||
value = true;
|
||||
}
|
||||
});
|
||||
return value;
|
||||
})
|
||||
.sort((a, b) => sortRegressionResultsFields(a, b, jobConfig))
|
||||
.slice(0, DEFAULT_REGRESSION_COLUMNS);
|
||||
};
|
||||
|
||||
export const getDefaultSelectableFields = (docs: EsDoc[], resultsField: string): EsFieldName[] => {
|
||||
if (docs.length === 0) {
|
||||
return [];
|
||||
|
|
|
@ -21,12 +21,18 @@ export {
|
|||
getValuesFromResponse,
|
||||
loadEvalData,
|
||||
Eval,
|
||||
getPredictedFieldName,
|
||||
INDEX_STATUS,
|
||||
SEARCH_SIZE,
|
||||
} from './analytics';
|
||||
|
||||
export {
|
||||
getDefaultSelectableFields,
|
||||
getDefaultRegressionFields,
|
||||
getFlattenedFields,
|
||||
sortColumns,
|
||||
sortRegressionResultsColumns,
|
||||
sortRegressionResultsFields,
|
||||
toggleSelectedField,
|
||||
EsId,
|
||||
EsDoc,
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
import { shallow } from 'enzyme';
|
||||
import React from 'react';
|
||||
import { DATA_FRAME_TASK_STATE } from '../../../analytics_management/components/analytics_list/common';
|
||||
|
||||
jest.mock('../../../../../contexts/ui/use_ui_chrome_context');
|
||||
jest.mock('ui/new_platform');
|
||||
|
@ -20,7 +21,9 @@ jest.mock('react', () => {
|
|||
|
||||
describe('Data Frame Analytics: <Exploration />', () => {
|
||||
test('Minimal initialization', () => {
|
||||
const wrapper = shallow(<Exploration jobId="the-job-id" />);
|
||||
const wrapper = shallow(
|
||||
<Exploration jobId="the-job-id" jobStatus={DATA_FRAME_TASK_STATE.STOPPED} />
|
||||
);
|
||||
// Without the jobConfig being loaded, the component will just return empty.
|
||||
expect(wrapper.text()).toMatch('');
|
||||
// TODO Once React 16.9 is available we can write tests covering asynchronous hooks.
|
||||
|
|
|
@ -50,10 +50,13 @@ import {
|
|||
EsFieldName,
|
||||
EsDoc,
|
||||
MAX_COLUMNS,
|
||||
INDEX_STATUS,
|
||||
} from '../../../../common';
|
||||
|
||||
import { getOutlierScoreFieldName } from './common';
|
||||
import { INDEX_STATUS, useExploreData } from './use_explore_data';
|
||||
import { useExploreData } from './use_explore_data';
|
||||
import { DATA_FRAME_TASK_STATE } from '../../../analytics_management/components/analytics_list/common';
|
||||
import { getTaskStateBadge } from '../../../analytics_management/components/analytics_list/columns';
|
||||
|
||||
const customColorScaleFactory = (n: number) => (t: number) => {
|
||||
if (t < 1 / n) {
|
||||
|
@ -78,7 +81,7 @@ const ExplorationTitle: React.SFC<{ jobId: string }> = ({ jobId }) => (
|
|||
<EuiTitle size="xs">
|
||||
<span>
|
||||
{i18n.translate('xpack.ml.dataframe.analytics.exploration.jobIdTitle', {
|
||||
defaultMessage: 'Job ID {jobId}',
|
||||
defaultMessage: 'Outlier detection job ID {jobId}',
|
||||
values: { jobId },
|
||||
})}
|
||||
</span>
|
||||
|
@ -87,9 +90,10 @@ const ExplorationTitle: React.SFC<{ jobId: string }> = ({ jobId }) => (
|
|||
|
||||
interface Props {
|
||||
jobId: string;
|
||||
jobStatus: DATA_FRAME_TASK_STATE;
|
||||
}
|
||||
|
||||
export const Exploration: FC<Props> = React.memo(({ jobId }) => {
|
||||
export const Exploration: FC<Props> = React.memo(({ jobId, jobStatus }) => {
|
||||
const [jobConfig, setJobConfig] = useState<DataFrameAnalyticsConfig | undefined>(undefined);
|
||||
|
||||
const [pageIndex, setPageIndex] = useState(0);
|
||||
|
@ -378,7 +382,14 @@ export const Exploration: FC<Props> = React.memo(({ jobId }) => {
|
|||
if (status === INDEX_STATUS.LOADED && tableItems.length === 0) {
|
||||
return (
|
||||
<EuiPanel grow={false}>
|
||||
<ExplorationTitle jobId={jobConfig.id} />
|
||||
<EuiFlexGroup gutterSize="s">
|
||||
<EuiFlexItem grow={false}>
|
||||
<ExplorationTitle jobId={jobConfig.id} />
|
||||
</EuiFlexItem>
|
||||
<EuiFlexItem grow={false}>
|
||||
<span>{getTaskStateBadge(jobStatus)}</span>
|
||||
</EuiFlexItem>
|
||||
</EuiFlexGroup>
|
||||
<EuiCallOut
|
||||
title={i18n.translate('xpack.ml.dataframe.analytics.exploration.noDataCalloutTitle', {
|
||||
defaultMessage: 'Empty index query result.',
|
||||
|
@ -400,7 +411,14 @@ export const Exploration: FC<Props> = React.memo(({ jobId }) => {
|
|||
<EuiPanel grow={false}>
|
||||
<EuiFlexGroup alignItems="center" justifyContent="spaceBetween" responsive={false}>
|
||||
<EuiFlexItem grow={false}>
|
||||
<ExplorationTitle jobId={jobConfig.id} />
|
||||
<EuiFlexGroup gutterSize="s">
|
||||
<EuiFlexItem grow={false}>
|
||||
<ExplorationTitle jobId={jobConfig.id} />
|
||||
</EuiFlexItem>
|
||||
<EuiFlexItem grow={false}>
|
||||
<span>{getTaskStateBadge(jobStatus)}</span>
|
||||
</EuiFlexItem>
|
||||
</EuiFlexGroup>
|
||||
</EuiFlexItem>
|
||||
<EuiFlexItem>
|
||||
<EuiFlexGroup alignItems="center" gutterSize="xs" responsive={false}>
|
||||
|
|
|
@ -18,19 +18,12 @@ import {
|
|||
getFlattenedFields,
|
||||
DataFrameAnalyticsConfig,
|
||||
EsFieldName,
|
||||
INDEX_STATUS,
|
||||
SEARCH_SIZE,
|
||||
} from '../../../../common';
|
||||
|
||||
import { getOutlierScoreFieldName } from './common';
|
||||
|
||||
const SEARCH_SIZE = 1000;
|
||||
|
||||
export enum INDEX_STATUS {
|
||||
UNUSED,
|
||||
LOADING,
|
||||
LOADED,
|
||||
ERROR,
|
||||
}
|
||||
|
||||
type TableItem = Record<string, any>;
|
||||
|
||||
interface LoadExploreDataArg {
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
@import 'regression_exploration';
|
|
@ -0,0 +1,3 @@
|
|||
.mlRegressionExploration__evaluateLoadingSpinner {
|
||||
display: inline-block;
|
||||
}
|
|
@ -7,13 +7,22 @@
|
|||
import React, { FC, Fragment, useEffect, useState } from 'react';
|
||||
import { i18n } from '@kbn/i18n';
|
||||
import { EuiFlexGroup, EuiFlexItem, EuiPanel, EuiSpacer, EuiStat, EuiTitle } from '@elastic/eui';
|
||||
import { idx } from '@kbn/elastic-idx';
|
||||
import { ErrorCallout } from './error_callout';
|
||||
import { getValuesFromResponse, loadEvalData, Eval } from '../../../../common';
|
||||
import {
|
||||
getValuesFromResponse,
|
||||
getDependentVar,
|
||||
getPredictionFieldName,
|
||||
loadEvalData,
|
||||
Eval,
|
||||
DataFrameAnalyticsConfig,
|
||||
} from '../../../../common';
|
||||
import { getTaskStateBadge } from '../../../analytics_management/components/analytics_list/columns';
|
||||
import { DATA_FRAME_TASK_STATE } from '../../../analytics_management/components/analytics_list/common';
|
||||
|
||||
interface Props {
|
||||
jobId: string;
|
||||
index: string;
|
||||
dependentVariable: string;
|
||||
jobConfig: DataFrameAnalyticsConfig;
|
||||
jobStatus: DATA_FRAME_TASK_STATE;
|
||||
}
|
||||
|
||||
const meanSquaredErrorText = i18n.translate(
|
||||
|
@ -30,23 +39,28 @@ const rSquaredText = i18n.translate(
|
|||
);
|
||||
const defaultEval: Eval = { meanSquaredError: '', rSquared: '', error: null };
|
||||
|
||||
export const EvaluatePanel: FC<Props> = ({ jobId, index, dependentVariable }) => {
|
||||
export const EvaluatePanel: FC<Props> = ({ jobConfig, jobStatus }) => {
|
||||
const [trainingEval, setTrainingEval] = useState<Eval>(defaultEval);
|
||||
const [generalizationEval, setGeneralizationEval] = useState<Eval>(defaultEval);
|
||||
const [isLoadingTraining, setIsLoadingTraining] = useState<boolean>(false);
|
||||
const [isLoadingGeneralization, setIsLoadingGeneralization] = useState<boolean>(false);
|
||||
|
||||
const index = idx(jobConfig, _ => _.dest.index) as string;
|
||||
const dependentVariable = getDependentVar(jobConfig.analysis);
|
||||
const predictionFieldName = getPredictionFieldName(jobConfig.analysis);
|
||||
// default is 'ml'
|
||||
const resultsField = jobConfig.dest.results_field;
|
||||
|
||||
const loadData = async () => {
|
||||
setIsLoadingGeneralization(true);
|
||||
setIsLoadingTraining(true);
|
||||
// TODO: resultsField and predictionFieldName will need to be properly passed to this function
|
||||
// once the results view is in use.
|
||||
|
||||
const genErrorEval = await loadEvalData({
|
||||
isTraining: false,
|
||||
index,
|
||||
dependentVariable,
|
||||
resultsField: 'ml',
|
||||
predictionFieldName: undefined,
|
||||
resultsField,
|
||||
predictionFieldName,
|
||||
});
|
||||
|
||||
if (genErrorEval.success === true && genErrorEval.eval) {
|
||||
|
@ -65,14 +79,13 @@ export const EvaluatePanel: FC<Props> = ({ jobId, index, dependentVariable }) =>
|
|||
error: genErrorEval.error,
|
||||
});
|
||||
}
|
||||
// TODO: resultsField and predictionFieldName will need to be properly passed to this function
|
||||
// once the results view is in use.
|
||||
|
||||
const trainingErrorEval = await loadEvalData({
|
||||
isTraining: true,
|
||||
index,
|
||||
dependentVariable,
|
||||
resultsField: 'ml',
|
||||
predictionFieldName: undefined,
|
||||
resultsField,
|
||||
predictionFieldName,
|
||||
});
|
||||
|
||||
if (trainingErrorEval.success === true && trainingErrorEval.eval) {
|
||||
|
@ -99,14 +112,21 @@ export const EvaluatePanel: FC<Props> = ({ jobId, index, dependentVariable }) =>
|
|||
|
||||
return (
|
||||
<EuiPanel>
|
||||
<EuiTitle size="xs">
|
||||
<span>
|
||||
{i18n.translate('xpack.ml.dataframe.analytics.regressionExploration.jobIdTitle', {
|
||||
defaultMessage: 'Job ID {jobId}',
|
||||
values: { jobId },
|
||||
})}
|
||||
</span>
|
||||
</EuiTitle>
|
||||
<EuiFlexGroup gutterSize="s">
|
||||
<EuiFlexItem grow={false}>
|
||||
<EuiTitle size="xs">
|
||||
<span>
|
||||
{i18n.translate('xpack.ml.dataframe.analytics.regressionExploration.jobIdTitle', {
|
||||
defaultMessage: 'Regression job ID {jobId}',
|
||||
values: { jobId: jobConfig.id },
|
||||
})}
|
||||
</span>
|
||||
</EuiTitle>
|
||||
</EuiFlexItem>
|
||||
<EuiFlexItem grow={false}>
|
||||
<span>{getTaskStateBadge(jobStatus)}</span>
|
||||
</EuiFlexItem>
|
||||
</EuiFlexGroup>
|
||||
<EuiSpacer size="m" />
|
||||
<EuiFlexGroup justifyContent="spaceBetween">
|
||||
<EuiFlexItem>
|
||||
|
|
|
@ -4,25 +4,61 @@
|
|||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
import React, { FC, Fragment } from 'react';
|
||||
// import { i18n } from '@kbn/i18n';
|
||||
import { EuiSpacer } from '@elastic/eui';
|
||||
|
||||
import React, { FC, Fragment, useState, useEffect } from 'react';
|
||||
import { EuiSpacer, EuiLoadingSpinner, EuiPanel } from '@elastic/eui';
|
||||
import { ml } from '../../../../../services/ml_api_service';
|
||||
import { DataFrameAnalyticsConfig } from '../../../../common';
|
||||
import { EvaluatePanel } from './evaluate_panel';
|
||||
// import { ResultsTable } from './results_table';
|
||||
import { ResultsTable } from './results_table';
|
||||
import { DATA_FRAME_TASK_STATE } from '../../../analytics_management/components/analytics_list/common';
|
||||
|
||||
interface GetDataFrameAnalyticsResponse {
|
||||
count: number;
|
||||
data_frame_analytics: DataFrameAnalyticsConfig[];
|
||||
}
|
||||
|
||||
const LoadingPanel: FC = () => (
|
||||
<EuiPanel>
|
||||
<EuiLoadingSpinner className="mlRegressionExploration__evaluateLoadingSpinner" size="xl" />
|
||||
</EuiPanel>
|
||||
);
|
||||
|
||||
interface Props {
|
||||
jobId: string;
|
||||
destIndex: string;
|
||||
dependentVariable: string;
|
||||
jobStatus: DATA_FRAME_TASK_STATE;
|
||||
}
|
||||
|
||||
export const RegressionExploration: FC<Props> = ({ jobId, destIndex, dependentVariable }) => {
|
||||
export const RegressionExploration: FC<Props> = ({ jobId, jobStatus }) => {
|
||||
const [jobConfig, setJobConfig] = useState<DataFrameAnalyticsConfig | undefined>(undefined);
|
||||
const [isLoadingJobConfig, setIsLoadingJobConfig] = useState<boolean>(false);
|
||||
|
||||
useEffect(() => {
|
||||
(async function() {
|
||||
setIsLoadingJobConfig(true);
|
||||
const analyticsConfigs: GetDataFrameAnalyticsResponse = await ml.dataFrameAnalytics.getDataFrameAnalytics(
|
||||
jobId
|
||||
);
|
||||
if (
|
||||
Array.isArray(analyticsConfigs.data_frame_analytics) &&
|
||||
analyticsConfigs.data_frame_analytics.length > 0
|
||||
) {
|
||||
setJobConfig(analyticsConfigs.data_frame_analytics[0]);
|
||||
setIsLoadingJobConfig(false);
|
||||
}
|
||||
})();
|
||||
}, []);
|
||||
|
||||
return (
|
||||
<Fragment>
|
||||
<EvaluatePanel jobId={jobId} index={destIndex} dependentVariable={dependentVariable} />
|
||||
{isLoadingJobConfig === true && jobConfig === undefined && <LoadingPanel />}
|
||||
{isLoadingJobConfig === false && jobConfig !== undefined && (
|
||||
<EvaluatePanel jobConfig={jobConfig} jobStatus={jobStatus} />
|
||||
)}
|
||||
<EuiSpacer />
|
||||
{/* <ResultsTable jobId={jobId} /> */}
|
||||
{isLoadingJobConfig === true && jobConfig === undefined && <LoadingPanel />}
|
||||
{isLoadingJobConfig === false && jobConfig !== undefined && (
|
||||
<ResultsTable jobConfig={jobConfig} jobStatus={jobStatus} />
|
||||
)}
|
||||
</Fragment>
|
||||
);
|
||||
};
|
||||
|
|
|
@ -0,0 +1,482 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License;
|
||||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
import React, { Fragment, FC, useEffect, useState } from 'react';
|
||||
import moment from 'moment-timezone';
|
||||
|
||||
import { i18n } from '@kbn/i18n';
|
||||
import {
|
||||
EuiBadge,
|
||||
EuiButtonIcon,
|
||||
EuiCallOut,
|
||||
EuiCheckbox,
|
||||
EuiFlexGroup,
|
||||
EuiFlexItem,
|
||||
EuiPanel,
|
||||
EuiPopover,
|
||||
EuiPopoverTitle,
|
||||
EuiProgress,
|
||||
EuiSpacer,
|
||||
EuiText,
|
||||
EuiTitle,
|
||||
EuiToolTip,
|
||||
Query,
|
||||
} from '@elastic/eui';
|
||||
|
||||
import { Query as QueryType } from '../../../analytics_management/components/analytics_list/common';
|
||||
|
||||
import {
|
||||
ColumnType,
|
||||
MlInMemoryTableBasic,
|
||||
OnTableChangeArg,
|
||||
SortingPropType,
|
||||
SORT_DIRECTION,
|
||||
} from '../../../../../components/ml_in_memory_table';
|
||||
|
||||
import { formatHumanReadableDateTimeSeconds } from '../../../../../util/date_utils';
|
||||
import { SavedSearchQuery } from '../../../../../contexts/kibana';
|
||||
|
||||
import {
|
||||
sortRegressionResultsColumns,
|
||||
sortRegressionResultsFields,
|
||||
toggleSelectedField,
|
||||
DataFrameAnalyticsConfig,
|
||||
EsFieldName,
|
||||
EsDoc,
|
||||
MAX_COLUMNS,
|
||||
getPredictedFieldName,
|
||||
INDEX_STATUS,
|
||||
} from '../../../../common';
|
||||
import { getTaskStateBadge } from '../../../analytics_management/components/analytics_list/columns';
|
||||
import { DATA_FRAME_TASK_STATE } from '../../../analytics_management/components/analytics_list/common';
|
||||
|
||||
import { useExploreData, defaultSearchQuery } from './use_explore_data';
|
||||
|
||||
const PAGE_SIZE_OPTIONS = [5, 10, 25, 50];
|
||||
|
||||
const ExplorationTitle: React.SFC<{ jobId: string }> = ({ jobId }) => (
|
||||
<EuiTitle size="xs">
|
||||
<span>
|
||||
{i18n.translate('xpack.ml.dataframe.analytics.regressionExploration.jobIdTitle', {
|
||||
defaultMessage: 'Regression job ID {jobId}',
|
||||
values: { jobId },
|
||||
})}
|
||||
</span>
|
||||
</EuiTitle>
|
||||
);
|
||||
|
||||
interface Props {
|
||||
jobConfig: DataFrameAnalyticsConfig;
|
||||
jobStatus: DATA_FRAME_TASK_STATE;
|
||||
}
|
||||
|
||||
export const ResultsTable: FC<Props> = React.memo(({ jobConfig, jobStatus }) => {
|
||||
const [pageIndex, setPageIndex] = useState(0);
|
||||
const [pageSize, setPageSize] = useState(25);
|
||||
const [clearTable, setClearTable] = useState(false);
|
||||
const [selectedFields, setSelectedFields] = useState([] as EsFieldName[]);
|
||||
const [isColumnsPopoverVisible, setColumnsPopoverVisible] = useState(false);
|
||||
const [searchQuery, setSearchQuery] = useState<SavedSearchQuery>(defaultSearchQuery);
|
||||
const [searchError, setSearchError] = useState<any>(undefined);
|
||||
const [searchString, setSearchString] = useState<string | undefined>(undefined);
|
||||
|
||||
// EuiInMemoryTable has an issue with dynamic sortable columns
|
||||
// and will trigger a full page Kibana error in such a case.
|
||||
// The following is a workaround until this is solved upstream:
|
||||
// - If the sortable/columns config changes,
|
||||
// the table will be unmounted/not rendered.
|
||||
// This is what setClearTable(true) in toggleColumn() does.
|
||||
// - After that on next render it gets re-enabled. To make sure React
|
||||
// doesn't consolidate the state updates, setTimeout is used.
|
||||
if (clearTable) {
|
||||
setTimeout(() => setClearTable(false), 0);
|
||||
}
|
||||
|
||||
function toggleColumnsPopover() {
|
||||
setColumnsPopoverVisible(!isColumnsPopoverVisible);
|
||||
}
|
||||
|
||||
function closeColumnsPopover() {
|
||||
setColumnsPopoverVisible(false);
|
||||
}
|
||||
|
||||
function toggleColumn(column: EsFieldName) {
|
||||
if (tableItems.length > 0 && jobConfig !== undefined) {
|
||||
setClearTable(true);
|
||||
// spread to a new array otherwise the component wouldn't re-render
|
||||
setSelectedFields([...toggleSelectedField(selectedFields, column)]);
|
||||
}
|
||||
}
|
||||
|
||||
const {
|
||||
errorMessage,
|
||||
loadExploreData,
|
||||
sortField,
|
||||
sortDirection,
|
||||
status,
|
||||
tableItems,
|
||||
} = useExploreData(jobConfig, selectedFields, setSelectedFields);
|
||||
|
||||
let docFields: EsFieldName[] = [];
|
||||
let docFieldsCount = 0;
|
||||
if (tableItems.length > 0) {
|
||||
docFields = Object.keys(tableItems[0]);
|
||||
docFields.sort((a, b) => sortRegressionResultsFields(a, b, jobConfig));
|
||||
docFieldsCount = docFields.length;
|
||||
}
|
||||
|
||||
const columns: ColumnType[] = [];
|
||||
|
||||
if (jobConfig !== undefined && selectedFields.length > 0 && tableItems.length > 0) {
|
||||
columns.push(
|
||||
...selectedFields.sort(sortRegressionResultsColumns(tableItems[0], jobConfig)).map(k => {
|
||||
const column: ColumnType = {
|
||||
field: k,
|
||||
name: k,
|
||||
sortable: true,
|
||||
truncateText: true,
|
||||
};
|
||||
|
||||
const render = (d: any, fullItem: EsDoc) => {
|
||||
if (Array.isArray(d) && d.every(item => typeof item === 'string')) {
|
||||
// If the cells data is an array of strings, return as a comma separated list.
|
||||
// The list will get limited to 5 items with `…` at the end if there's more in the original array.
|
||||
return `${d.slice(0, 5).join(', ')}${d.length > 5 ? ', …' : ''}`;
|
||||
} else if (Array.isArray(d)) {
|
||||
// If the cells data is an array of e.g. objects, display a 'array' badge with a
|
||||
// tooltip that explains that this type of field is not supported in this table.
|
||||
return (
|
||||
<EuiToolTip
|
||||
content={i18n.translate(
|
||||
'xpack.ml.dataframe.analytics.regressionExploration.indexArrayToolTipContent',
|
||||
{
|
||||
defaultMessage:
|
||||
'The full content of this array based column cannot be displayed.',
|
||||
}
|
||||
)}
|
||||
>
|
||||
<EuiBadge>
|
||||
{i18n.translate(
|
||||
'xpack.ml.dataframe.analytics.regressionExploration.indexArrayBadgeContent',
|
||||
{
|
||||
defaultMessage: 'array',
|
||||
}
|
||||
)}
|
||||
</EuiBadge>
|
||||
</EuiToolTip>
|
||||
);
|
||||
} else if (typeof d === 'object' && d !== null) {
|
||||
// If the cells data is an object, display a 'object' badge with a
|
||||
// tooltip that explains that this type of field is not supported in this table.
|
||||
return (
|
||||
<EuiToolTip
|
||||
content={i18n.translate(
|
||||
'xpack.ml.dataframe.analytics.regressionExploration.indexObjectToolTipContent',
|
||||
{
|
||||
defaultMessage:
|
||||
'The full content of this object based column cannot be displayed.',
|
||||
}
|
||||
)}
|
||||
>
|
||||
<EuiBadge>
|
||||
{i18n.translate(
|
||||
'xpack.ml.dataframe.analytics.regressionExploration.indexObjectBadgeContent',
|
||||
{
|
||||
defaultMessage: 'object',
|
||||
}
|
||||
)}
|
||||
</EuiBadge>
|
||||
</EuiToolTip>
|
||||
);
|
||||
}
|
||||
|
||||
return d;
|
||||
};
|
||||
|
||||
let columnType;
|
||||
|
||||
if (tableItems.length > 0) {
|
||||
columnType = typeof tableItems[0][k];
|
||||
}
|
||||
|
||||
if (typeof columnType !== 'undefined') {
|
||||
switch (columnType) {
|
||||
case 'boolean':
|
||||
column.dataType = 'boolean';
|
||||
break;
|
||||
case 'Date':
|
||||
column.align = 'right';
|
||||
column.render = (d: any) =>
|
||||
formatHumanReadableDateTimeSeconds(moment(d).unix() * 1000);
|
||||
break;
|
||||
case 'number':
|
||||
column.dataType = 'number';
|
||||
column.render = render;
|
||||
break;
|
||||
default:
|
||||
column.render = render;
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
column.render = render;
|
||||
}
|
||||
|
||||
return column;
|
||||
})
|
||||
);
|
||||
}
|
||||
|
||||
useEffect(() => {
|
||||
if (jobConfig !== undefined) {
|
||||
const predictedFieldName = getPredictedFieldName(
|
||||
jobConfig.dest.results_field,
|
||||
jobConfig.analysis
|
||||
);
|
||||
const predictedFieldSelected = selectedFields.includes(predictedFieldName);
|
||||
|
||||
const field = predictedFieldSelected ? predictedFieldName : selectedFields[0];
|
||||
const direction = predictedFieldSelected ? SORT_DIRECTION.DESC : SORT_DIRECTION.ASC;
|
||||
loadExploreData({ field, direction, searchQuery });
|
||||
return;
|
||||
}
|
||||
}, [JSON.stringify(searchQuery)]);
|
||||
|
||||
useEffect(() => {
|
||||
// by default set the sorting to descending on the prediction field (`<dependent_varible or prediction_field_name>_prediction`).
|
||||
// if that's not available sort ascending on the first column.
|
||||
// also check if the current sorting field is still available.
|
||||
if (jobConfig !== undefined && columns.length > 0 && !selectedFields.includes(sortField)) {
|
||||
const predictedFieldName = getPredictedFieldName(
|
||||
jobConfig.dest.results_field,
|
||||
jobConfig.analysis
|
||||
);
|
||||
const predictedFieldSelected = selectedFields.includes(predictedFieldName);
|
||||
|
||||
const field = predictedFieldSelected ? predictedFieldName : selectedFields[0];
|
||||
const direction = predictedFieldSelected ? SORT_DIRECTION.DESC : SORT_DIRECTION.ASC;
|
||||
loadExploreData({ field, direction, searchQuery });
|
||||
return;
|
||||
}
|
||||
}, [jobConfig, columns.length, sortField, sortDirection, tableItems.length]);
|
||||
|
||||
let sorting: SortingPropType = false;
|
||||
let onTableChange;
|
||||
|
||||
if (columns.length > 0 && sortField !== '' && sortField !== undefined) {
|
||||
sorting = {
|
||||
sort: {
|
||||
field: sortField,
|
||||
direction: sortDirection,
|
||||
},
|
||||
};
|
||||
|
||||
onTableChange = ({
|
||||
page = { index: 0, size: 10 },
|
||||
sort = { field: sortField, direction: sortDirection },
|
||||
}: OnTableChangeArg) => {
|
||||
const { index, size } = page;
|
||||
setPageIndex(index);
|
||||
setPageSize(size);
|
||||
|
||||
if (sort.field !== sortField || sort.direction !== sortDirection) {
|
||||
setClearTable(true);
|
||||
loadExploreData({ ...sort, searchQuery });
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
const pagination = {
|
||||
initialPageIndex: pageIndex,
|
||||
initialPageSize: pageSize,
|
||||
totalItemCount: tableItems.length,
|
||||
pageSizeOptions: PAGE_SIZE_OPTIONS,
|
||||
hidePerPageOptions: false,
|
||||
};
|
||||
|
||||
const onQueryChange = ({ query, error }: { query: QueryType; error: any }) => {
|
||||
if (error) {
|
||||
setSearchError(error.message);
|
||||
} else {
|
||||
try {
|
||||
const esQueryDsl = Query.toESQuery(query);
|
||||
setSearchQuery(esQueryDsl);
|
||||
setSearchString(query.text);
|
||||
setSearchError(undefined);
|
||||
} catch (e) {
|
||||
setSearchError(e.toString());
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const search = {
|
||||
onChange: onQueryChange,
|
||||
defaultQuery: searchString,
|
||||
box: {
|
||||
incremental: false,
|
||||
placeholder: i18n.translate(
|
||||
'xpack.ml.dataframe.analytics.regressionExploration.searchBoxPlaceholder',
|
||||
{
|
||||
defaultMessage: 'E.g. avg>0.5',
|
||||
}
|
||||
),
|
||||
},
|
||||
filters: [
|
||||
{
|
||||
type: 'field_value_toggle_group',
|
||||
field: `${jobConfig.dest.results_field}.is_training`,
|
||||
items: [
|
||||
{
|
||||
value: false,
|
||||
name: i18n.translate(
|
||||
'xpack.ml.dataframe.analytics.regressionExploration.isTestingLabel',
|
||||
{
|
||||
defaultMessage: 'Testing',
|
||||
}
|
||||
),
|
||||
},
|
||||
{
|
||||
value: true,
|
||||
name: i18n.translate(
|
||||
'xpack.ml.dataframe.analytics.regressionExploration.isTrainingLabel',
|
||||
{
|
||||
defaultMessage: 'Training',
|
||||
}
|
||||
),
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
if (jobConfig === undefined) {
|
||||
return null;
|
||||
}
|
||||
|
||||
if (status === INDEX_STATUS.ERROR) {
|
||||
return (
|
||||
<EuiPanel grow={false}>
|
||||
<EuiFlexGroup gutterSize="s">
|
||||
<EuiFlexItem grow={false}>
|
||||
<ExplorationTitle jobId={jobConfig.id} />
|
||||
</EuiFlexItem>
|
||||
<EuiFlexItem grow={false}>
|
||||
<span>{getTaskStateBadge(jobStatus)}</span>
|
||||
</EuiFlexItem>
|
||||
</EuiFlexGroup>
|
||||
<EuiCallOut
|
||||
title={i18n.translate('xpack.ml.dataframe.analytics.regressionExploration.indexError', {
|
||||
defaultMessage: 'An error occurred loading the index data.',
|
||||
})}
|
||||
color="danger"
|
||||
iconType="cross"
|
||||
>
|
||||
<p>{errorMessage}</p>
|
||||
</EuiCallOut>
|
||||
</EuiPanel>
|
||||
);
|
||||
}
|
||||
|
||||
return (
|
||||
<EuiPanel grow={false}>
|
||||
<EuiFlexGroup alignItems="center" justifyContent="spaceBetween" responsive={false}>
|
||||
<EuiFlexItem grow={false}>
|
||||
<EuiFlexGroup gutterSize="s">
|
||||
<EuiFlexItem grow={false}>
|
||||
<ExplorationTitle jobId={jobConfig.id} />
|
||||
</EuiFlexItem>
|
||||
<EuiFlexItem grow={false}>
|
||||
<span>{getTaskStateBadge(jobStatus)}</span>
|
||||
</EuiFlexItem>
|
||||
</EuiFlexGroup>
|
||||
</EuiFlexItem>
|
||||
<EuiFlexItem>
|
||||
<EuiFlexGroup alignItems="center" gutterSize="xs" responsive={false}>
|
||||
<EuiFlexItem style={{ textAlign: 'right' }}>
|
||||
{docFieldsCount > MAX_COLUMNS && (
|
||||
<EuiText size="s">
|
||||
{i18n.translate(
|
||||
'xpack.ml.dataframe.analytics.regressionExploration.fieldSelection',
|
||||
{
|
||||
defaultMessage:
|
||||
'{selectedFieldsLength, number} of {docFieldsCount, number} {docFieldsCount, plural, one {field} other {fields}} selected',
|
||||
values: { selectedFieldsLength: selectedFields.length, docFieldsCount },
|
||||
}
|
||||
)}
|
||||
</EuiText>
|
||||
)}
|
||||
</EuiFlexItem>
|
||||
<EuiFlexItem grow={false}>
|
||||
<EuiText size="s">
|
||||
<EuiPopover
|
||||
id="popover"
|
||||
button={
|
||||
<EuiButtonIcon
|
||||
iconType="gear"
|
||||
onClick={toggleColumnsPopover}
|
||||
aria-label={i18n.translate(
|
||||
'xpack.ml.dataframe.analytics.regressionExploration.selectColumnsAriaLabel',
|
||||
{
|
||||
defaultMessage: 'Select columns',
|
||||
}
|
||||
)}
|
||||
/>
|
||||
}
|
||||
isOpen={isColumnsPopoverVisible}
|
||||
closePopover={closeColumnsPopover}
|
||||
ownFocus
|
||||
>
|
||||
<EuiPopoverTitle>
|
||||
{i18n.translate(
|
||||
'xpack.ml.dataframe.analytics.regressionExploration.selectFieldsPopoverTitle',
|
||||
{
|
||||
defaultMessage: 'Select fields',
|
||||
}
|
||||
)}
|
||||
</EuiPopoverTitle>
|
||||
<div style={{ maxHeight: '400px', overflowY: 'scroll' }}>
|
||||
{docFields.map(d => (
|
||||
<EuiCheckbox
|
||||
key={d}
|
||||
id={d}
|
||||
label={d}
|
||||
checked={selectedFields.includes(d)}
|
||||
onChange={() => toggleColumn(d)}
|
||||
disabled={selectedFields.includes(d) && selectedFields.length === 1}
|
||||
/>
|
||||
))}
|
||||
</div>
|
||||
</EuiPopover>
|
||||
</EuiText>
|
||||
</EuiFlexItem>
|
||||
</EuiFlexGroup>
|
||||
</EuiFlexItem>
|
||||
</EuiFlexGroup>
|
||||
{status === INDEX_STATUS.LOADING && <EuiProgress size="xs" color="accent" />}
|
||||
{status !== INDEX_STATUS.LOADING && (
|
||||
<EuiProgress size="xs" color="accent" max={1} value={0} />
|
||||
)}
|
||||
{clearTable === false && (columns.length > 0 || searchQuery !== defaultSearchQuery) && (
|
||||
<Fragment>
|
||||
<EuiSpacer />
|
||||
<MlInMemoryTableBasic
|
||||
allowNeutralSort={false}
|
||||
columns={columns}
|
||||
compressed
|
||||
hasActions={false}
|
||||
isSelectable={false}
|
||||
items={tableItems}
|
||||
onTableChange={onTableChange}
|
||||
pagination={pagination}
|
||||
responsive={false}
|
||||
search={search}
|
||||
error={searchError}
|
||||
sorting={sorting}
|
||||
/>
|
||||
</Fragment>
|
||||
)}
|
||||
</EuiPanel>
|
||||
);
|
||||
});
|
|
@ -0,0 +1,163 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License;
|
||||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License;
|
||||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
import React, { useEffect, useState } from 'react';
|
||||
|
||||
import { SearchResponse } from 'elasticsearch';
|
||||
|
||||
import { SortDirection, SORT_DIRECTION } from '../../../../../components/ml_in_memory_table';
|
||||
|
||||
import { ml } from '../../../../../services/ml_api_service';
|
||||
import { getNestedProperty } from '../../../../../util/object_utils';
|
||||
import { SavedSearchQuery } from '../../../../../contexts/kibana';
|
||||
|
||||
import {
|
||||
getDefaultRegressionFields,
|
||||
getFlattenedFields,
|
||||
DataFrameAnalyticsConfig,
|
||||
EsFieldName,
|
||||
getPredictedFieldName,
|
||||
INDEX_STATUS,
|
||||
SEARCH_SIZE,
|
||||
} from '../../../../common';
|
||||
|
||||
export const defaultSearchQuery = {
|
||||
match_all: {},
|
||||
};
|
||||
|
||||
type TableItem = Record<string, any>;
|
||||
|
||||
interface LoadExploreDataArg {
|
||||
field: string;
|
||||
direction: SortDirection;
|
||||
searchQuery: SavedSearchQuery;
|
||||
}
|
||||
export interface UseExploreDataReturnType {
|
||||
errorMessage: string;
|
||||
loadExploreData: (arg: LoadExploreDataArg) => void;
|
||||
sortField: EsFieldName;
|
||||
sortDirection: SortDirection;
|
||||
status: INDEX_STATUS;
|
||||
tableItems: TableItem[];
|
||||
}
|
||||
|
||||
interface SearchQuery {
|
||||
query: SavedSearchQuery;
|
||||
sort?: any;
|
||||
}
|
||||
|
||||
export const useExploreData = (
|
||||
jobConfig: DataFrameAnalyticsConfig | undefined,
|
||||
selectedFields: EsFieldName[],
|
||||
setSelectedFields: React.Dispatch<React.SetStateAction<EsFieldName[]>>
|
||||
): UseExploreDataReturnType => {
|
||||
const [errorMessage, setErrorMessage] = useState('');
|
||||
const [status, setStatus] = useState(INDEX_STATUS.UNUSED);
|
||||
const [tableItems, setTableItems] = useState<TableItem[]>([]);
|
||||
const [sortField, setSortField] = useState<string>('');
|
||||
const [sortDirection, setSortDirection] = useState<SortDirection>(SORT_DIRECTION.ASC);
|
||||
|
||||
const loadExploreData = async ({ field, direction, searchQuery }: LoadExploreDataArg) => {
|
||||
if (jobConfig !== undefined) {
|
||||
setErrorMessage('');
|
||||
setStatus(INDEX_STATUS.LOADING);
|
||||
|
||||
try {
|
||||
const resultsField = jobConfig.dest.results_field;
|
||||
const body: SearchQuery = {
|
||||
query: searchQuery,
|
||||
};
|
||||
|
||||
if (field !== undefined) {
|
||||
body.sort = [
|
||||
{
|
||||
[field]: {
|
||||
order: direction,
|
||||
},
|
||||
},
|
||||
];
|
||||
}
|
||||
|
||||
const resp: SearchResponse<any> = await ml.esSearch({
|
||||
index: jobConfig.dest.index,
|
||||
size: SEARCH_SIZE,
|
||||
body,
|
||||
});
|
||||
|
||||
setSortField(field);
|
||||
setSortDirection(direction);
|
||||
|
||||
const docs = resp.hits.hits;
|
||||
|
||||
if (docs.length === 0) {
|
||||
setTableItems([]);
|
||||
setStatus(INDEX_STATUS.LOADED);
|
||||
return;
|
||||
}
|
||||
|
||||
if (selectedFields.length === 0) {
|
||||
const newSelectedFields = getDefaultRegressionFields(docs, jobConfig);
|
||||
setSelectedFields(newSelectedFields);
|
||||
}
|
||||
|
||||
// Create a version of the doc's source with flattened field names.
|
||||
// This avoids confusion later on if a field name has dots in its name
|
||||
// or is a nested fields when displaying it via EuiInMemoryTable.
|
||||
const flattenedFields = getFlattenedFields(docs[0]._source, resultsField);
|
||||
const transformedTableItems = docs.map(doc => {
|
||||
const item: TableItem = {};
|
||||
flattenedFields.forEach(ff => {
|
||||
item[ff] = getNestedProperty(doc._source, ff);
|
||||
if (item[ff] === undefined) {
|
||||
// If the attribute is undefined, it means it was not a nested property
|
||||
// but had dots in its actual name. This selects the property by its
|
||||
// full name and assigns it to `item[ff]`.
|
||||
item[ff] = doc._source[`"${ff}"`];
|
||||
}
|
||||
if (item[ff] === undefined) {
|
||||
const parts = ff.split('.');
|
||||
if (parts[0] === resultsField && parts.length >= 2) {
|
||||
parts.shift();
|
||||
if (doc._source[resultsField] !== undefined) {
|
||||
item[ff] = doc._source[resultsField][parts.join('.')];
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
return item;
|
||||
});
|
||||
|
||||
setTableItems(transformedTableItems);
|
||||
setStatus(INDEX_STATUS.LOADED);
|
||||
} catch (e) {
|
||||
if (e.message !== undefined) {
|
||||
setErrorMessage(e.message);
|
||||
} else {
|
||||
setErrorMessage(JSON.stringify(e));
|
||||
}
|
||||
setTableItems([]);
|
||||
setStatus(INDEX_STATUS.ERROR);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
if (jobConfig !== undefined) {
|
||||
loadExploreData({
|
||||
field: getPredictedFieldName(jobConfig.dest.results_field, jobConfig.analysis),
|
||||
direction: SORT_DIRECTION.DESC,
|
||||
searchQuery: defaultSearchQuery,
|
||||
});
|
||||
}
|
||||
}, [jobConfig && jobConfig.id]);
|
||||
|
||||
return { errorMessage, loadExploreData, sortField, sortDirection, status, tableItems };
|
||||
};
|
|
@ -53,8 +53,7 @@ module.directive('mlDataFrameAnalyticsExploration', ($injector: InjectorService)
|
|||
<Page
|
||||
jobId={globalState.ml.jobId}
|
||||
analysisType={globalState.ml.analysisType}
|
||||
destIndex={globalState.ml.destIndex}
|
||||
depVar={globalState.ml.depVar}
|
||||
jobStatus={globalState.ml.jobStatus}
|
||||
/>
|
||||
</KibanaContext.Provider>
|
||||
</I18nContext>,
|
||||
|
|
|
@ -26,13 +26,13 @@ import { Exploration } from './components/exploration';
|
|||
import { RegressionExploration } from './components/regression_exploration';
|
||||
|
||||
import { ANALYSIS_CONFIG_TYPE } from '../../common/analytics';
|
||||
import { DATA_FRAME_TASK_STATE } from '../analytics_management/components/analytics_list/common';
|
||||
|
||||
export const Page: FC<{
|
||||
jobId: string;
|
||||
analysisType: string;
|
||||
destIndex: string;
|
||||
depVar: string;
|
||||
}> = ({ jobId, analysisType, destIndex, depVar }) => (
|
||||
analysisType: ANALYSIS_CONFIG_TYPE;
|
||||
jobStatus: DATA_FRAME_TASK_STATE;
|
||||
}> = ({ jobId, analysisType, jobStatus }) => (
|
||||
<Fragment>
|
||||
<NavigationMenu tabId="data_frame_analytics" />
|
||||
<EuiPage data-test-subj="mlPageDataFrameAnalyticsExploration">
|
||||
|
@ -66,9 +66,11 @@ export const Page: FC<{
|
|||
</EuiPageContentHeader>
|
||||
<EuiPageContentBody>
|
||||
<EuiSpacer size="l" />
|
||||
{analysisType === ANALYSIS_CONFIG_TYPE.OUTLIER_DETECTION && <Exploration jobId={jobId} />}
|
||||
{analysisType === ANALYSIS_CONFIG_TYPE.OUTLIER_DETECTION && (
|
||||
<Exploration jobId={jobId} jobStatus={jobStatus} />
|
||||
)}
|
||||
{analysisType === ANALYSIS_CONFIG_TYPE.REGRESSION && (
|
||||
<RegressionExploration jobId={jobId} destIndex={destIndex} dependentVariable={depVar} />
|
||||
<RegressionExploration jobId={jobId} jobStatus={jobStatus} />
|
||||
)}
|
||||
</EuiPageContentBody>
|
||||
</EuiPageBody>
|
||||
|
|
|
@ -13,7 +13,7 @@ import {
|
|||
createPermissionFailureMessage,
|
||||
} from '../../../../../privilege/check_privilege';
|
||||
|
||||
import { isOutlierAnalysis, getAnalysisType, getDependentVar } from '../../../../common/analytics';
|
||||
import { getAnalysisType } from '../../../../common/analytics';
|
||||
|
||||
import { getResultsUrl, isDataFrameAnalyticsRunning, DataFrameAnalyticsListRow } from './common';
|
||||
import { stopAnalytics } from '../../services/analytics_service';
|
||||
|
@ -25,14 +25,11 @@ export const AnalyticsViewAction = {
|
|||
isPrimary: true,
|
||||
render: (item: DataFrameAnalyticsListRow) => {
|
||||
const analysisType = getAnalysisType(item.config.analysis);
|
||||
const destIndex = item.config.dest.index;
|
||||
const dependentVariable = getDependentVar(item.config.analysis);
|
||||
const jobStatus = item.stats.state;
|
||||
|
||||
const url = getResultsUrl(item.id, analysisType, destIndex, dependentVariable);
|
||||
// Disable 'View' link for regression until results view is complete
|
||||
const url = getResultsUrl(item.id, analysisType, jobStatus);
|
||||
return (
|
||||
<EuiButtonEmpty
|
||||
disabled={!isOutlierAnalysis(item.config.analysis)}
|
||||
onClick={() => (window.location.href = url)}
|
||||
size="xs"
|
||||
color="text"
|
||||
|
|
|
@ -5,7 +5,6 @@
|
|||
*/
|
||||
|
||||
import { DataFrameAnalyticsId, DataFrameAnalyticsConfig } from '../../../../common';
|
||||
import { ANALYSIS_CONFIG_TYPE } from '../../../../common/analytics';
|
||||
|
||||
export enum DATA_FRAME_TASK_STATE {
|
||||
ANALYZING = 'analyzing',
|
||||
|
@ -118,17 +117,6 @@ export function isCompletedAnalyticsJob(stats: DataFrameAnalyticsStats) {
|
|||
return stats.state === DATA_FRAME_TASK_STATE.STOPPED && progress === 100;
|
||||
}
|
||||
|
||||
export function getResultsUrl(
|
||||
jobId: string,
|
||||
analysisType: string,
|
||||
destIndex: string = '',
|
||||
dependentVariable: string = ''
|
||||
) {
|
||||
const destIndexParam = `,destIndex:${destIndex}`;
|
||||
const depVarParam = `,depVar:${dependentVariable}`;
|
||||
const isRegression = analysisType === ANALYSIS_CONFIG_TYPE.REGRESSION;
|
||||
|
||||
return `ml#/data_frame_analytics/exploration?_g=(ml:(jobId:${jobId},analysisType:${analysisType}${
|
||||
isRegression && destIndex !== '' ? destIndexParam : ''
|
||||
}${isRegression && dependentVariable !== '' ? depVarParam : ''}))`;
|
||||
export function getResultsUrl(jobId: string, analysisType: string, status: DATA_FRAME_TASK_STATE) {
|
||||
return `ml#/data_frame_analytics/exploration?_g=(ml:(jobId:${jobId},analysisType:${analysisType},jobStatus:${status}))`;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue