mirror of
https://github.com/elastic/kibana.git
synced 2025-04-23 01:13:23 -04:00
[ML] Anomaly detection rule lookback interval improvements (#97370)
* [ML] add advanced settings
* [ML] default advanced settings
* [ML] advanced settings validators
* [ML] range control for top n buckets
* [ML] execute rule with a new query for most recent anomalies
* [ML] find most anomalous bucket from the top N
* Revert "[ML] range control for top n buckets"
This reverts commit e039f250
* [ML] validate check interval against the lookback interval
* [ML] update descriptions
* [ML] fix test subjects
* [ML] update warning message
* [ML] add functional tests
* [ML] adjust unit tests, mark getLookbackInterval
* [ML] update lookback interval description and warning message
* [ML] update fetchResult tsDoc
* [ML] cleanup
* [ML] fix imports to reduce bundle size
* [ML] round up lookback interval
* [ML] update functional test assertion
* [ML] async import for validator
This commit is contained in:
parent
13411882eb
commit
20b585d122
21 changed files with 718 additions and 68 deletions
|
@ -47,3 +47,5 @@ export const ML_ALERT_TYPES_CONFIG: Record<
|
|||
};
|
||||
|
||||
export const ALERT_PREVIEW_SAMPLE_SIZE = 5;
|
||||
|
||||
export const TOP_N_BUCKETS_COUNT = 1;
|
||||
|
|
|
@ -93,4 +93,11 @@ export type MlAnomalyDetectionAlertParams = {
|
|||
severity: number;
|
||||
resultType: AnomalyResultType;
|
||||
includeInterim: boolean;
|
||||
lookbackInterval: string | null | undefined;
|
||||
topNBuckets: number | null | undefined;
|
||||
} & AlertTypeParams;
|
||||
|
||||
export type MlAnomalyDetectionAlertAdvancedSettings = Pick<
|
||||
MlAnomalyDetectionAlertParams,
|
||||
'lookbackInterval' | 'topNBuckets'
|
||||
>;
|
||||
|
|
78
x-pack/plugins/ml/common/util/alerts.test.ts
Normal file
78
x-pack/plugins/ml/common/util/alerts.test.ts
Normal file
|
@ -0,0 +1,78 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License
|
||||
* 2.0; you may not use this file except in compliance with the Elastic License
|
||||
* 2.0.
|
||||
*/
|
||||
|
||||
import { getLookbackInterval, resolveLookbackInterval } from './alerts';
|
||||
import type { CombinedJobWithStats, Datafeed, Job } from '../types/anomaly_detection_jobs';
|
||||
|
||||
describe('resolveLookbackInterval', () => {
|
||||
test('resolves interval for bucket spans bigger than 1m', () => {
|
||||
const testJobs = [
|
||||
{
|
||||
analysis_config: {
|
||||
bucket_span: '15m',
|
||||
},
|
||||
},
|
||||
] as Job[];
|
||||
|
||||
const testDatafeeds = [
|
||||
{
|
||||
query_delay: '65630ms',
|
||||
},
|
||||
] as Datafeed[];
|
||||
|
||||
expect(resolveLookbackInterval(testJobs, testDatafeeds)).toBe('32m');
|
||||
});
|
||||
|
||||
test('resolves interval for bucket spans smaller than 1m', () => {
|
||||
const testJobs = [
|
||||
{
|
||||
analysis_config: {
|
||||
bucket_span: '50s',
|
||||
},
|
||||
},
|
||||
] as Job[];
|
||||
|
||||
const testDatafeeds = [
|
||||
{
|
||||
query_delay: '20s',
|
||||
},
|
||||
] as Datafeed[];
|
||||
|
||||
expect(resolveLookbackInterval(testJobs, testDatafeeds)).toBe('3m');
|
||||
});
|
||||
|
||||
test('resolves interval for bucket spans smaller than 1m without query dealay', () => {
|
||||
const testJobs = [
|
||||
{
|
||||
analysis_config: {
|
||||
bucket_span: '59s',
|
||||
},
|
||||
},
|
||||
] as Job[];
|
||||
|
||||
const testDatafeeds = [{}] as Datafeed[];
|
||||
|
||||
expect(resolveLookbackInterval(testJobs, testDatafeeds)).toBe('3m');
|
||||
});
|
||||
});
|
||||
|
||||
describe('getLookbackInterval', () => {
|
||||
test('resolves interval for bucket spans bigger than 1m', () => {
|
||||
const testJobs = [
|
||||
{
|
||||
analysis_config: {
|
||||
bucket_span: '15m',
|
||||
},
|
||||
datafeed_config: {
|
||||
query_delay: '65630ms',
|
||||
},
|
||||
},
|
||||
] as CombinedJobWithStats[];
|
||||
|
||||
expect(getLookbackInterval(testJobs)).toBe('32m');
|
||||
});
|
||||
});
|
53
x-pack/plugins/ml/common/util/alerts.ts
Normal file
53
x-pack/plugins/ml/common/util/alerts.ts
Normal file
|
@ -0,0 +1,53 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License
|
||||
* 2.0; you may not use this file except in compliance with the Elastic License
|
||||
* 2.0.
|
||||
*/
|
||||
|
||||
import { CombinedJobWithStats, Datafeed, Job } from '../types/anomaly_detection_jobs';
|
||||
import { resolveMaxTimeInterval } from './job_utils';
|
||||
import { isDefined } from '../types/guards';
|
||||
import { parseInterval } from './parse_interval';
|
||||
|
||||
const narrowBucketLength = 60;
|
||||
|
||||
/**
|
||||
* Resolves the lookback interval for the rule
|
||||
* using the formula max(2m, 2 * bucket_span) + query_delay + 1s.
|
||||
* and rounds up to a whole number of minutes.
|
||||
*/
|
||||
export function resolveLookbackInterval(jobs: Job[], datafeeds: Datafeed[]): string {
|
||||
const bucketSpanInSeconds = Math.ceil(
|
||||
resolveMaxTimeInterval(jobs.map((v) => v.analysis_config.bucket_span)) ?? 0
|
||||
);
|
||||
const queryDelayInSeconds = Math.ceil(
|
||||
resolveMaxTimeInterval(datafeeds.map((v) => v.query_delay).filter(isDefined)) ?? 0
|
||||
);
|
||||
|
||||
const result =
|
||||
Math.max(2 * narrowBucketLength, 2 * bucketSpanInSeconds) + queryDelayInSeconds + 1;
|
||||
|
||||
return `${Math.ceil(result / 60)}m`;
|
||||
}
|
||||
|
||||
/**
|
||||
* @deprecated We should avoid using {@link CombinedJobWithStats}. Replace usages with {@link resolveLookbackInterval} when
|
||||
* Kibana API returns mapped job and the datafeed configs.
|
||||
*/
|
||||
export function getLookbackInterval(jobs: CombinedJobWithStats[]): string {
|
||||
return resolveLookbackInterval(
|
||||
jobs,
|
||||
jobs.map((v) => v.datafeed_config)
|
||||
);
|
||||
}
|
||||
|
||||
export function getTopNBuckets(job: Job): number {
|
||||
const bucketSpan = parseInterval(job.analysis_config.bucket_span);
|
||||
|
||||
if (bucketSpan === null) {
|
||||
throw new Error('Unable to resolve a bucket span length');
|
||||
}
|
||||
|
||||
return Math.ceil(narrowBucketLength / bucketSpan.asSeconds());
|
||||
}
|
|
@ -20,7 +20,7 @@ import {
|
|||
getSafeAggregationName,
|
||||
getLatestDataOrBucketTimestamp,
|
||||
getEarliestDatafeedStartTime,
|
||||
resolveBucketSpanInSeconds,
|
||||
resolveMaxTimeInterval,
|
||||
} from './job_utils';
|
||||
import { CombinedJob, Job } from '../types/anomaly_detection_jobs';
|
||||
import moment from 'moment';
|
||||
|
@ -606,7 +606,10 @@ describe('ML - job utils', () => {
|
|||
|
||||
describe('resolveBucketSpanInSeconds', () => {
|
||||
test('should resolve maximum bucket interval', () => {
|
||||
expect(resolveBucketSpanInSeconds(['15m', '1h', '6h', '90s'])).toBe(21600);
|
||||
expect(resolveMaxTimeInterval(['15m', '1h', '6h', '90s'])).toBe(21600);
|
||||
});
|
||||
test('returns undefined for an empty array', () => {
|
||||
expect(resolveMaxTimeInterval([])).toBe(undefined);
|
||||
});
|
||||
});
|
||||
});
|
||||
|
|
|
@ -831,14 +831,16 @@ export function splitIndexPatternNames(indexPatternName: string): string[] {
|
|||
}
|
||||
|
||||
/**
|
||||
* Resolves the longest bucket span from the list.
|
||||
* @param bucketSpans Collection of bucket spans
|
||||
* Resolves the longest time interval from the list.
|
||||
* @param timeIntervals Collection of the strings representing time intervals, e.g. ['15m', '1h', '2d']
|
||||
*/
|
||||
export function resolveBucketSpanInSeconds(bucketSpans: string[]): number {
|
||||
return Math.max(
|
||||
...bucketSpans
|
||||
export function resolveMaxTimeInterval(timeIntervals: string[]): number | undefined {
|
||||
const result = Math.max(
|
||||
...timeIntervals
|
||||
.map((b) => parseInterval(b))
|
||||
.filter(isDefined)
|
||||
.map((v) => v.asSeconds())
|
||||
);
|
||||
|
||||
return Number.isFinite(result) ? result : undefined;
|
||||
}
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
|
||||
import { ALLOWED_DATA_UNITS } from '../constants/validation';
|
||||
import { parseInterval } from './parse_interval';
|
||||
import { isPopulatedObject } from './object_utils';
|
||||
|
||||
/**
|
||||
* Provides a validator function for maximum allowed input length.
|
||||
|
@ -85,6 +86,10 @@ export function memoryInputValidator(allowedUnits = ALLOWED_DATA_UNITS) {
|
|||
|
||||
export function timeIntervalInputValidator() {
|
||||
return (value: string) => {
|
||||
if (value === '') {
|
||||
return null;
|
||||
}
|
||||
|
||||
const r = parseInterval(value);
|
||||
if (r === null) {
|
||||
return {
|
||||
|
@ -95,3 +100,32 @@ export function timeIntervalInputValidator() {
|
|||
return null;
|
||||
};
|
||||
}
|
||||
|
||||
export interface NumberValidationResult {
|
||||
min: boolean;
|
||||
max: boolean;
|
||||
}
|
||||
|
||||
export function numberValidator(conditions?: { min?: number; max?: number }) {
|
||||
if (
|
||||
conditions?.min !== undefined &&
|
||||
conditions.max !== undefined &&
|
||||
conditions.min > conditions.max
|
||||
) {
|
||||
throw new Error('Invalid validator conditions');
|
||||
}
|
||||
|
||||
return (value: number): NumberValidationResult | null => {
|
||||
const result = {} as NumberValidationResult;
|
||||
if (conditions?.min !== undefined && value < conditions.min) {
|
||||
result.min = true;
|
||||
}
|
||||
if (conditions?.max !== undefined && value > conditions.max) {
|
||||
result.max = true;
|
||||
}
|
||||
if (isPopulatedObject(result)) {
|
||||
return result;
|
||||
}
|
||||
return null;
|
||||
};
|
||||
}
|
||||
|
|
117
x-pack/plugins/ml/public/alerting/advanced_settings.tsx
Normal file
117
x-pack/plugins/ml/public/alerting/advanced_settings.tsx
Normal file
|
@ -0,0 +1,117 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License
|
||||
* 2.0; you may not use this file except in compliance with the Elastic License
|
||||
* 2.0.
|
||||
*/
|
||||
|
||||
import React, { FC } from 'react';
|
||||
import { FormattedMessage } from '@kbn/i18n/react';
|
||||
import {
|
||||
EuiAccordion,
|
||||
EuiDescribedFormGroup,
|
||||
EuiFieldNumber,
|
||||
EuiFormRow,
|
||||
EuiHorizontalRule,
|
||||
EuiSpacer,
|
||||
EuiText,
|
||||
} from '@elastic/eui';
|
||||
import { MlAnomalyDetectionAlertAdvancedSettings } from '../../common/types/alerts';
|
||||
import { TimeIntervalControl } from './time_interval_control';
|
||||
import { TOP_N_BUCKETS_COUNT } from '../../common/constants/alerts';
|
||||
|
||||
interface AdvancedSettingsProps {
|
||||
value: MlAnomalyDetectionAlertAdvancedSettings;
|
||||
onChange: (update: Partial<MlAnomalyDetectionAlertAdvancedSettings>) => void;
|
||||
}
|
||||
|
||||
export const AdvancedSettings: FC<AdvancedSettingsProps> = React.memo(({ value, onChange }) => {
|
||||
return (
|
||||
<EuiAccordion
|
||||
id="mlAnomalyAlertAdvancedSettings"
|
||||
buttonContent={
|
||||
<FormattedMessage
|
||||
id="xpack.ml.anomalyDetectionAlert.advancedSettingsLabel"
|
||||
defaultMessage="Advanced settings"
|
||||
/>
|
||||
}
|
||||
data-test-subj={'mlAnomalyAlertAdvancedSettingsTrigger'}
|
||||
>
|
||||
<EuiSpacer size="m" />
|
||||
<EuiDescribedFormGroup
|
||||
gutterSize={'s'}
|
||||
titleSize={'xxs'}
|
||||
title={
|
||||
<h4>
|
||||
<FormattedMessage
|
||||
id="xpack.ml.anomalyDetectionAlert.lookbackIntervalLabel"
|
||||
defaultMessage="Lookback interval"
|
||||
/>
|
||||
</h4>
|
||||
}
|
||||
description={
|
||||
<EuiText size={'xs'}>
|
||||
<FormattedMessage
|
||||
id="xpack.ml.anomalyDetectionAlert.lookbackIntervalDescription"
|
||||
defaultMessage="Time interval to query the anomalies data during each rule condition check. By default, is derived from the bucket span of the job and the query delay of the datafeed."
|
||||
/>
|
||||
</EuiText>
|
||||
}
|
||||
>
|
||||
<TimeIntervalControl
|
||||
value={value.lookbackInterval}
|
||||
label={
|
||||
<FormattedMessage
|
||||
id="xpack.ml.anomalyDetectionAlert.lookbackIntervalLabel"
|
||||
defaultMessage="Lookback interval"
|
||||
/>
|
||||
}
|
||||
onChange={(update) => {
|
||||
onChange({ lookbackInterval: update });
|
||||
}}
|
||||
data-test-subj={'mlAnomalyAlertLookbackInterval'}
|
||||
/>
|
||||
</EuiDescribedFormGroup>
|
||||
|
||||
<EuiDescribedFormGroup
|
||||
gutterSize={'s'}
|
||||
titleSize={'xxs'}
|
||||
title={
|
||||
<h4>
|
||||
<FormattedMessage
|
||||
id="xpack.ml.anomalyDetectionAlert.topNBucketsLabel"
|
||||
defaultMessage="Number of latest buckets"
|
||||
/>
|
||||
</h4>
|
||||
}
|
||||
description={
|
||||
<EuiText size={'xs'}>
|
||||
<FormattedMessage
|
||||
id="xpack.ml.anomalyDetectionAlert.topNBucketsDescription"
|
||||
defaultMessage="The number of latest buckets to check to obtain the highest anomaly."
|
||||
/>
|
||||
</EuiText>
|
||||
}
|
||||
>
|
||||
<EuiFormRow
|
||||
label={
|
||||
<FormattedMessage
|
||||
id="xpack.ml.anomalyDetectionAlert.topNBucketsLabel"
|
||||
defaultMessage="Number of latest buckets"
|
||||
/>
|
||||
}
|
||||
>
|
||||
<EuiFieldNumber
|
||||
value={value.topNBuckets ?? TOP_N_BUCKETS_COUNT}
|
||||
min={1}
|
||||
onChange={(e) => {
|
||||
onChange({ topNBuckets: Number(e.target.value) });
|
||||
}}
|
||||
data-test-subj={'mlAnomalyAlertTopNBuckets'}
|
||||
/>
|
||||
</EuiFormRow>
|
||||
</EuiDescribedFormGroup>
|
||||
<EuiHorizontalRule margin={'m'} />
|
||||
</EuiAccordion>
|
||||
);
|
||||
});
|
|
@ -5,40 +5,35 @@
|
|||
* 2.0.
|
||||
*/
|
||||
|
||||
import React, { FC, useMemo } from 'react';
|
||||
import React, { FC } from 'react';
|
||||
|
||||
import { FormattedMessage } from '@kbn/i18n/react';
|
||||
import { EuiCallOut, EuiSpacer } from '@elastic/eui';
|
||||
import { parseInterval } from '../../common/util/parse_interval';
|
||||
import { CombinedJobWithStats } from '../../common/types/anomaly_detection_jobs';
|
||||
import { DATAFEED_STATE } from '../../common/constants/states';
|
||||
import { resolveBucketSpanInSeconds } from '../../common/util/job_utils';
|
||||
import { MlAnomalyDetectionAlertParams } from '../../common/types/alerts';
|
||||
|
||||
interface ConfigValidatorProps {
|
||||
alertInterval: string;
|
||||
jobConfigs: CombinedJobWithStats[];
|
||||
alertParams: MlAnomalyDetectionAlertParams;
|
||||
}
|
||||
|
||||
/**
|
||||
* Validated alert configuration
|
||||
*/
|
||||
export const ConfigValidator: FC<ConfigValidatorProps> = React.memo(
|
||||
({ jobConfigs = [], alertInterval }) => {
|
||||
const resultBucketSpanInSeconds = useMemo(
|
||||
() => resolveBucketSpanInSeconds(jobConfigs.map((v) => v.analysis_config.bucket_span)),
|
||||
[jobConfigs]
|
||||
);
|
||||
|
||||
const resultBucketSpanString =
|
||||
resultBucketSpanInSeconds % 60 === 0
|
||||
? `${resultBucketSpanInSeconds / 60}m`
|
||||
: `${resultBucketSpanInSeconds}s`;
|
||||
|
||||
({ jobConfigs = [], alertInterval, alertParams }) => {
|
||||
if (jobConfigs.length === 0) return null;
|
||||
|
||||
const alertIntervalInSeconds = parseInterval(alertInterval)!.asSeconds();
|
||||
|
||||
const isAlertIntervalTooHigh = resultBucketSpanInSeconds < alertIntervalInSeconds;
|
||||
const lookbackIntervalInSeconds =
|
||||
!!alertParams.lookbackInterval && parseInterval(alertParams.lookbackInterval)?.asSeconds();
|
||||
|
||||
const isAlertIntervalTooHigh =
|
||||
lookbackIntervalInSeconds && lookbackIntervalInSeconds < alertIntervalInSeconds;
|
||||
|
||||
const jobWithoutStartedDatafeed = jobConfigs
|
||||
.filter((job) => job.datafeed_config.state !== DATAFEED_STATE.STARTED)
|
||||
|
@ -66,9 +61,9 @@ export const ConfigValidator: FC<ConfigValidatorProps> = React.memo(
|
|||
<li>
|
||||
<FormattedMessage
|
||||
id="xpack.ml.alertConditionValidation.alertIntervalTooHighMessage"
|
||||
defaultMessage="The check interval is greater than the maximum bucket span of the selected jobs. Reduce it to {resultBucketSpan} to avoid excessive delay in receiving notifications."
|
||||
defaultMessage="The check interval is greater than the lookback interval. Reduce it to {lookbackInterval} to avoid potentially missing notifications."
|
||||
values={{
|
||||
resultBucketSpan: resultBucketSpanString,
|
||||
lookbackInterval: alertParams.lookbackInterval,
|
||||
}}
|
||||
/>
|
||||
</li>
|
||||
|
|
|
@ -18,11 +18,17 @@ import { ResultTypeSelector } from './result_type_selector';
|
|||
import { alertingApiProvider } from '../application/services/ml_api_service/alerting';
|
||||
import { PreviewAlertCondition } from './preview_alert_condition';
|
||||
import { ANOMALY_THRESHOLD } from '../../common';
|
||||
import { MlAnomalyDetectionAlertParams } from '../../common/types/alerts';
|
||||
import {
|
||||
MlAnomalyDetectionAlertAdvancedSettings,
|
||||
MlAnomalyDetectionAlertParams,
|
||||
} from '../../common/types/alerts';
|
||||
import { ANOMALY_RESULT_TYPE } from '../../common/constants/anomalies';
|
||||
import { InterimResultsControl } from './interim_results_control';
|
||||
import { ConfigValidator } from './config_validator';
|
||||
import { CombinedJobWithStats } from '../../common/types/anomaly_detection_jobs';
|
||||
import { AdvancedSettings } from './advanced_settings';
|
||||
import { getLookbackInterval, getTopNBuckets } from '../../common/util/alerts';
|
||||
import { isDefined } from '../../common/types/guards';
|
||||
|
||||
interface MlAnomalyAlertTriggerProps {
|
||||
alertParams: MlAnomalyDetectionAlertParams;
|
||||
|
@ -114,6 +120,28 @@ const MlAnomalyAlertTrigger: FC<MlAnomalyAlertTriggerProps> = ({
|
|||
}
|
||||
});
|
||||
|
||||
const advancedSettings = useMemo(() => {
|
||||
let { lookbackInterval, topNBuckets } = alertParams;
|
||||
|
||||
if (!isDefined(lookbackInterval) && jobConfigs.length > 0) {
|
||||
lookbackInterval = getLookbackInterval(jobConfigs);
|
||||
}
|
||||
if (!isDefined(topNBuckets) && jobConfigs.length > 0) {
|
||||
topNBuckets = getTopNBuckets(jobConfigs[0]);
|
||||
}
|
||||
return {
|
||||
lookbackInterval,
|
||||
topNBuckets,
|
||||
};
|
||||
}, [alertParams.lookbackInterval, alertParams.topNBuckets, jobConfigs]);
|
||||
|
||||
const resultParams = useMemo(() => {
|
||||
return {
|
||||
...alertParams,
|
||||
...advancedSettings,
|
||||
};
|
||||
}, [alertParams, advancedSettings]);
|
||||
|
||||
return (
|
||||
<EuiForm data-test-subj={'mlAnomalyAlertForm'}>
|
||||
<EuiFlexGroup gutterSize={'none'} justifyContent={'flexEnd'}>
|
||||
|
@ -139,7 +167,11 @@ const MlAnomalyAlertTrigger: FC<MlAnomalyAlertTriggerProps> = ({
|
|||
errors={errors.jobSelection}
|
||||
/>
|
||||
|
||||
<ConfigValidator jobConfigs={jobConfigs} alertInterval={alertInterval} />
|
||||
<ConfigValidator
|
||||
jobConfigs={jobConfigs}
|
||||
alertInterval={alertInterval}
|
||||
alertParams={resultParams}
|
||||
/>
|
||||
|
||||
<ResultTypeSelector
|
||||
value={alertParams.resultType}
|
||||
|
@ -157,6 +189,17 @@ const MlAnomalyAlertTrigger: FC<MlAnomalyAlertTriggerProps> = ({
|
|||
/>
|
||||
<EuiSpacer size="m" />
|
||||
|
||||
<AdvancedSettings
|
||||
value={advancedSettings}
|
||||
onChange={useCallback((update) => {
|
||||
Object.keys(update).forEach((k) => {
|
||||
setAlertParams(k, update[k as keyof MlAnomalyDetectionAlertAdvancedSettings]);
|
||||
});
|
||||
}, [])}
|
||||
/>
|
||||
|
||||
<EuiSpacer size="m" />
|
||||
|
||||
<PreviewAlertCondition alertingApiService={alertingApiService} alertParams={alertParams} />
|
||||
|
||||
<EuiSpacer size="m" />
|
||||
|
|
|
@ -11,7 +11,10 @@ import { ML_ALERT_TYPES } from '../../common/constants/alerts';
|
|||
import { MlAnomalyDetectionAlertParams } from '../../common/types/alerts';
|
||||
import { TriggersAndActionsUIPublicPluginSetup } from '../../../triggers_actions_ui/public';
|
||||
|
||||
export function registerMlAlerts(triggersActionsUi: TriggersAndActionsUIPublicPluginSetup) {
|
||||
export async function registerMlAlerts(triggersActionsUi: TriggersAndActionsUIPublicPluginSetup) {
|
||||
// async import validators to reduce initial bundle size
|
||||
const { validateLookbackInterval, validateTopNBucket } = await import('./validators');
|
||||
|
||||
triggersActionsUi.alertTypeRegistry.register({
|
||||
id: ML_ALERT_TYPES.ANOMALY_DETECTION,
|
||||
description: i18n.translate('xpack.ml.alertTypes.anomalyDetection.description', {
|
||||
|
@ -28,7 +31,9 @@ export function registerMlAlerts(triggersActionsUi: TriggersAndActionsUIPublicPl
|
|||
jobSelection: new Array<string>(),
|
||||
severity: new Array<string>(),
|
||||
resultType: new Array<string>(),
|
||||
},
|
||||
topNBuckets: new Array<string>(),
|
||||
lookbackInterval: new Array<string>(),
|
||||
} as Record<keyof MlAnomalyDetectionAlertParams, string[]>,
|
||||
};
|
||||
|
||||
if (
|
||||
|
@ -58,6 +63,28 @@ export function registerMlAlerts(triggersActionsUi: TriggersAndActionsUIPublicPl
|
|||
);
|
||||
}
|
||||
|
||||
if (
|
||||
!!alertParams.lookbackInterval &&
|
||||
validateLookbackInterval(alertParams.lookbackInterval)
|
||||
) {
|
||||
validationResult.errors.lookbackInterval.push(
|
||||
i18n.translate('xpack.ml.alertTypes.anomalyDetection.lookbackInterval.errorMessage', {
|
||||
defaultMessage: 'Lookback interval is invalid',
|
||||
})
|
||||
);
|
||||
}
|
||||
|
||||
if (
|
||||
typeof alertParams.topNBuckets === 'number' &&
|
||||
validateTopNBucket(alertParams.topNBuckets)
|
||||
) {
|
||||
validationResult.errors.topNBuckets.push(
|
||||
i18n.translate('xpack.ml.alertTypes.anomalyDetection.topNBuckets.errorMessage', {
|
||||
defaultMessage: 'Number of buckets is invalid',
|
||||
})
|
||||
);
|
||||
}
|
||||
|
||||
return validationResult;
|
||||
},
|
||||
requiresAppContext: false,
|
||||
|
|
|
@ -67,7 +67,7 @@ export const SeverityControl: FC<SeveritySelectorProps> = React.memo(({ value, o
|
|||
value={value ?? ANOMALY_THRESHOLD.LOW}
|
||||
onChange={(e) => {
|
||||
// @ts-ignore Property 'value' does not exist on type 'EventTarget' | (EventTarget & HTMLInputElement)
|
||||
onChange(e.target.value);
|
||||
onChange(Number(e.target.value));
|
||||
}}
|
||||
showLabels
|
||||
showValue
|
||||
|
|
49
x-pack/plugins/ml/public/alerting/time_interval_control.tsx
Normal file
49
x-pack/plugins/ml/public/alerting/time_interval_control.tsx
Normal file
|
@ -0,0 +1,49 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License
|
||||
* 2.0; you may not use this file except in compliance with the Elastic License
|
||||
* 2.0.
|
||||
*/
|
||||
|
||||
import { EuiFieldText, EuiFormRow, EuiFieldTextProps } from '@elastic/eui';
|
||||
import React, { FC, ReactNode, useMemo } from 'react';
|
||||
import { invalidTimeIntervalMessage } from '../application/jobs/new_job/common/job_validator/util';
|
||||
import { composeValidators } from '../../common';
|
||||
import { timeIntervalInputValidator } from '../../common/util/validators';
|
||||
|
||||
type TimeIntervalControlProps = Omit<EuiFieldTextProps, 'value' | 'onChange'> & {
|
||||
label: string | ReactNode;
|
||||
value: string | null | undefined;
|
||||
onChange: (update: string) => void;
|
||||
};
|
||||
|
||||
export const TimeIntervalControl: FC<TimeIntervalControlProps> = ({
|
||||
value,
|
||||
onChange,
|
||||
label,
|
||||
...fieldTextProps
|
||||
}) => {
|
||||
const validators = useMemo(() => composeValidators(timeIntervalInputValidator()), []);
|
||||
|
||||
const validationErrors = useMemo(() => validators(value), [value]);
|
||||
|
||||
const isInvalid = value !== undefined && !!validationErrors;
|
||||
|
||||
return (
|
||||
<EuiFormRow
|
||||
label={label}
|
||||
isInvalid={isInvalid}
|
||||
error={invalidTimeIntervalMessage(value ?? undefined)}
|
||||
>
|
||||
<EuiFieldText
|
||||
{...fieldTextProps}
|
||||
placeholder="15d, 6m"
|
||||
value={value ?? ''}
|
||||
onChange={(e) => {
|
||||
onChange(e.target.value);
|
||||
}}
|
||||
isInvalid={isInvalid}
|
||||
/>
|
||||
</EuiFormRow>
|
||||
);
|
||||
};
|
11
x-pack/plugins/ml/public/alerting/validators.ts
Normal file
11
x-pack/plugins/ml/public/alerting/validators.ts
Normal file
|
@ -0,0 +1,11 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License
|
||||
* 2.0; you may not use this file except in compliance with the Elastic License
|
||||
* 2.0.
|
||||
*/
|
||||
|
||||
import { numberValidator, timeIntervalInputValidator } from '../../common/util/validators';
|
||||
|
||||
export const validateLookbackInterval = timeIntervalInputValidator();
|
||||
export const validateTopNBucket = numberValidator({ min: 1 });
|
|
@ -7,8 +7,6 @@
|
|||
|
||||
import Boom from '@hapi/boom';
|
||||
import rison from 'rison-node';
|
||||
import { ElasticsearchClient } from 'kibana/server';
|
||||
import moment from 'moment';
|
||||
import { Duration } from 'moment/moment';
|
||||
import { MlClient } from '../ml_client';
|
||||
import {
|
||||
|
@ -27,8 +25,10 @@ import {
|
|||
} from '../../../common/types/alerts';
|
||||
import { AnomalyDetectionAlertContext } from './register_anomaly_detection_alert_type';
|
||||
import { MlJobsResponse } from '../../../common/types/job_service';
|
||||
import { resolveBucketSpanInSeconds } from '../../../common/util/job_utils';
|
||||
import { resolveMaxTimeInterval } from '../../../common/util/job_utils';
|
||||
import { isDefined } from '../../../common/types/guards';
|
||||
import { getTopNBuckets, resolveLookbackInterval } from '../../../common/util/alerts';
|
||||
import type { DatafeedsService } from '../../models/job_service/datafeeds';
|
||||
|
||||
type AggResultsResponse = { key?: number } & {
|
||||
[key in PreviewResultsKeys]: {
|
||||
|
@ -40,12 +40,21 @@ type AggResultsResponse = { key?: number } & {
|
|||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* Mapping for result types and corresponding score fields.
|
||||
*/
|
||||
const resultTypeScoreMapping = {
|
||||
[ANOMALY_RESULT_TYPE.BUCKET]: 'anomaly_score',
|
||||
[ANOMALY_RESULT_TYPE.RECORD]: 'record_score',
|
||||
[ANOMALY_RESULT_TYPE.INFLUENCER]: 'influencer_score',
|
||||
};
|
||||
|
||||
/**
|
||||
* Alerting related server-side methods
|
||||
* @param mlClient
|
||||
* @param esClient
|
||||
* @param datafeedsService
|
||||
*/
|
||||
export function alertingServiceProvider(mlClient: MlClient, esClient: ElasticsearchClient) {
|
||||
export function alertingServiceProvider(mlClient: MlClient, datafeedsService: DatafeedsService) {
|
||||
const getAggResultsLabel = (resultType: AnomalyResultType) => {
|
||||
return {
|
||||
aggGroupLabel: `${resultType}_results` as PreviewResultsKeys,
|
||||
|
@ -332,7 +341,16 @@ export function alertingServiceProvider(mlClient: MlClient, esClient: Elasticsea
|
|||
|
||||
if (jobsResponse.length === 0) {
|
||||
// Probably assigned groups don't contain any jobs anymore.
|
||||
return;
|
||||
throw new Error("Couldn't find the job with provided id");
|
||||
}
|
||||
|
||||
const maxBucket = resolveMaxTimeInterval(
|
||||
jobsResponse.map((v) => v.analysis_config.bucket_span)
|
||||
);
|
||||
|
||||
if (maxBucket === undefined) {
|
||||
// Technically it's not possible, just in case.
|
||||
throw new Error('Unable to resolve a valid bucket length');
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -341,9 +359,7 @@ export function alertingServiceProvider(mlClient: MlClient, esClient: Elasticsea
|
|||
*/
|
||||
const lookBackTimeInterval = `${Math.max(
|
||||
// Double the max bucket span
|
||||
Math.round(
|
||||
resolveBucketSpanInSeconds(jobsResponse.map((v) => v.analysis_config.bucket_span)) * 2
|
||||
),
|
||||
Math.round(maxBucket * 2),
|
||||
checkIntervalGap ? Math.round(checkIntervalGap.asSeconds()) : 0
|
||||
)}s`;
|
||||
|
||||
|
@ -368,7 +384,7 @@ export function alertingServiceProvider(mlClient: MlClient, esClient: Elasticsea
|
|||
},
|
||||
{
|
||||
terms: {
|
||||
result_type: Object.values(ANOMALY_RESULT_TYPE),
|
||||
result_type: Object.values(ANOMALY_RESULT_TYPE) as string[],
|
||||
},
|
||||
},
|
||||
...(params.includeInterim
|
||||
|
@ -431,6 +447,139 @@ export function alertingServiceProvider(mlClient: MlClient, esClient: Elasticsea
|
|||
).filter(isDefined);
|
||||
};
|
||||
|
||||
/**
|
||||
* Fetches the most recent anomaly according the top N buckets within the lookback interval
|
||||
* that satisfies a rule criteria.
|
||||
*
|
||||
* @param params - Alert params
|
||||
*/
|
||||
const fetchResult = async (
|
||||
params: MlAnomalyDetectionAlertParams
|
||||
): Promise<AlertExecutionResult | undefined> => {
|
||||
const jobAndGroupIds = [
|
||||
...(params.jobSelection.jobIds ?? []),
|
||||
...(params.jobSelection.groupIds ?? []),
|
||||
];
|
||||
|
||||
// Extract jobs from group ids and make sure provided jobs assigned to a current space
|
||||
const jobsResponse = (
|
||||
await mlClient.getJobs<MlJobsResponse>({ job_id: jobAndGroupIds.join(',') })
|
||||
).body.jobs;
|
||||
|
||||
if (jobsResponse.length === 0) {
|
||||
// Probably assigned groups don't contain any jobs anymore.
|
||||
return;
|
||||
}
|
||||
|
||||
const jobIds = jobsResponse.map((v) => v.job_id);
|
||||
|
||||
const dataFeeds = await datafeedsService.getDatafeedByJobId(jobIds);
|
||||
|
||||
const maxBucketInSeconds = resolveMaxTimeInterval(
|
||||
jobsResponse.map((v) => v.analysis_config.bucket_span)
|
||||
);
|
||||
|
||||
if (maxBucketInSeconds === undefined) {
|
||||
// Technically it's not possible, just in case.
|
||||
throw new Error('Unable to resolve a valid bucket length');
|
||||
}
|
||||
|
||||
const lookBackTimeInterval: string =
|
||||
params.lookbackInterval ?? resolveLookbackInterval(jobsResponse, dataFeeds ?? []);
|
||||
|
||||
const topNBuckets: number = params.topNBuckets ?? getTopNBuckets(jobsResponse[0]);
|
||||
|
||||
const requestBody = {
|
||||
size: 0,
|
||||
query: {
|
||||
bool: {
|
||||
filter: [
|
||||
{
|
||||
terms: { job_id: jobIds },
|
||||
},
|
||||
{
|
||||
terms: {
|
||||
result_type: Object.values(ANOMALY_RESULT_TYPE) as string[],
|
||||
},
|
||||
},
|
||||
{
|
||||
range: {
|
||||
timestamp: {
|
||||
gte: `now-${lookBackTimeInterval}`,
|
||||
},
|
||||
},
|
||||
},
|
||||
...(params.includeInterim
|
||||
? []
|
||||
: [
|
||||
{
|
||||
term: { is_interim: false },
|
||||
},
|
||||
]),
|
||||
],
|
||||
},
|
||||
},
|
||||
aggs: {
|
||||
alerts_over_time: {
|
||||
date_histogram: {
|
||||
field: 'timestamp',
|
||||
fixed_interval: `${maxBucketInSeconds}s`,
|
||||
order: {
|
||||
_key: 'desc' as const,
|
||||
},
|
||||
},
|
||||
aggs: {
|
||||
max_score: {
|
||||
max: {
|
||||
field: resultTypeScoreMapping[params.resultType],
|
||||
},
|
||||
},
|
||||
...getResultTypeAggRequest(params.resultType, params.severity),
|
||||
truncate: {
|
||||
bucket_sort: {
|
||||
size: topNBuckets,
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
const response = await mlClient.anomalySearch(
|
||||
{
|
||||
// @ts-expect-error
|
||||
body: requestBody,
|
||||
},
|
||||
jobIds
|
||||
);
|
||||
|
||||
const result = response.body.aggregations as {
|
||||
alerts_over_time: {
|
||||
buckets: Array<
|
||||
{
|
||||
doc_count: number;
|
||||
key: number;
|
||||
key_as_string: string;
|
||||
max_score: {
|
||||
value: number;
|
||||
};
|
||||
} & AggResultsResponse
|
||||
>;
|
||||
};
|
||||
};
|
||||
|
||||
if (result.alerts_over_time.buckets.length === 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Find the most anomalous result from the top N buckets
|
||||
const topResult = result.alerts_over_time.buckets.reduce((prev, current) =>
|
||||
prev.max_score.value > current.max_score.value ? prev : current
|
||||
);
|
||||
|
||||
return getResultsFormatter(params.resultType)(topResult);
|
||||
};
|
||||
|
||||
/**
|
||||
* TODO Replace with URL generator when https://github.com/elastic/kibana/issues/59453 is resolved
|
||||
* @param r
|
||||
|
@ -520,17 +669,8 @@ export function alertingServiceProvider(mlClient: MlClient, esClient: Elasticsea
|
|||
startedAt: Date,
|
||||
previousStartedAt: Date | null
|
||||
): Promise<AnomalyDetectionAlertContext | undefined> => {
|
||||
const checkIntervalGap = previousStartedAt
|
||||
? moment.duration(moment(startedAt).diff(previousStartedAt))
|
||||
: undefined;
|
||||
const result = await fetchResult(params);
|
||||
|
||||
const res = await fetchAnomalies(params, undefined, checkIntervalGap);
|
||||
|
||||
if (!res) {
|
||||
throw new Error('No results found');
|
||||
}
|
||||
|
||||
const result = res[0];
|
||||
if (!result) return;
|
||||
|
||||
const anomalyExplorerUrl = buildExplorerUrl(result, params.resultType);
|
||||
|
|
|
@ -34,6 +34,8 @@ interface Results {
|
|||
};
|
||||
}
|
||||
|
||||
export type DatafeedsService = ReturnType<typeof datafeedsProvider>;
|
||||
|
||||
export function datafeedsProvider(client: IScopedClusterClient, mlClient: MlClient) {
|
||||
async function forceStartDatafeeds(datafeedIds: string[], start?: number, end?: number) {
|
||||
const jobIds = await getJobIdsByDatafeedId();
|
||||
|
@ -168,25 +170,39 @@ export function datafeedsProvider(client: IScopedClusterClient, mlClient: MlClie
|
|||
}, {} as { [id: string]: string });
|
||||
}
|
||||
|
||||
async function getDatafeedByJobId(
|
||||
jobId: string[],
|
||||
excludeGenerated?: boolean
|
||||
): Promise<Datafeed[] | undefined>;
|
||||
|
||||
async function getDatafeedByJobId(
|
||||
jobId: string,
|
||||
excludeGenerated?: boolean
|
||||
): Promise<Datafeed | undefined> {
|
||||
): Promise<Datafeed | undefined>;
|
||||
|
||||
async function getDatafeedByJobId(
|
||||
jobId: string | string[],
|
||||
excludeGenerated?: boolean
|
||||
): Promise<Datafeed | Datafeed[] | undefined> {
|
||||
const jobIds = Array.isArray(jobId) ? jobId : [jobId];
|
||||
|
||||
async function findDatafeed() {
|
||||
// if the job was doesn't use the standard datafeedId format
|
||||
// get all the datafeeds and match it with the jobId
|
||||
const {
|
||||
body: { datafeeds },
|
||||
} = await mlClient.getDatafeeds(excludeGenerated ? { exclude_generated: true } : {}); //
|
||||
for (const result of datafeeds) {
|
||||
if (result.job_id === jobId) {
|
||||
return result;
|
||||
}
|
||||
} = await mlClient.getDatafeeds(excludeGenerated ? { exclude_generated: true } : {});
|
||||
if (typeof jobId === 'string') {
|
||||
return datafeeds.find((v) => v.job_id === jobId);
|
||||
}
|
||||
|
||||
if (Array.isArray(jobId)) {
|
||||
return datafeeds.filter((v) => jobIds.includes(v.job_id));
|
||||
}
|
||||
}
|
||||
// if the job was created by the wizard,
|
||||
// then we can assume it uses the standard format of the datafeedId
|
||||
const assumedDefaultDatafeedId = `datafeed-${jobId}`;
|
||||
const assumedDefaultDatafeedId = jobIds.map((v) => `datafeed-${v}`).join(',');
|
||||
try {
|
||||
const {
|
||||
body: { datafeeds: datafeedsResults },
|
||||
|
@ -194,12 +210,22 @@ export function datafeedsProvider(client: IScopedClusterClient, mlClient: MlClie
|
|||
datafeed_id: assumedDefaultDatafeedId,
|
||||
...(excludeGenerated ? { exclude_generated: true } : {}),
|
||||
});
|
||||
if (
|
||||
Array.isArray(datafeedsResults) &&
|
||||
datafeedsResults.length === 1 &&
|
||||
datafeedsResults[0].job_id === jobId
|
||||
) {
|
||||
return datafeedsResults[0];
|
||||
if (Array.isArray(datafeedsResults)) {
|
||||
const result = datafeedsResults.filter((d) => jobIds.includes(d.job_id));
|
||||
|
||||
if (typeof jobId === 'string') {
|
||||
if (datafeedsResults.length === 1 && datafeedsResults[0].job_id === jobId) {
|
||||
return datafeedsResults[0];
|
||||
} else {
|
||||
return await findDatafeed();
|
||||
}
|
||||
}
|
||||
|
||||
if (result.length === jobIds.length) {
|
||||
return datafeedsResults;
|
||||
} else {
|
||||
return await findDatafeed();
|
||||
}
|
||||
} else {
|
||||
return await findDatafeed();
|
||||
}
|
||||
|
|
|
@ -9,6 +9,7 @@ import { RouteInitialization } from '../types';
|
|||
import { wrapError } from '../client/error_wrapper';
|
||||
import { alertingServiceProvider } from '../lib/alerts/alerting_service';
|
||||
import { mlAnomalyDetectionAlertPreviewRequest } from './schemas/alerting_schema';
|
||||
import { datafeedsProvider } from '../models/job_service/datafeeds';
|
||||
|
||||
export function alertingRoutes({ router, routeGuard }: RouteInitialization) {
|
||||
/**
|
||||
|
@ -32,7 +33,10 @@ export function alertingRoutes({ router, routeGuard }: RouteInitialization) {
|
|||
},
|
||||
routeGuard.fullLicenseAPIGuard(async ({ mlClient, request, response, client }) => {
|
||||
try {
|
||||
const alertingService = alertingServiceProvider(mlClient, client.asInternalUser);
|
||||
const alertingService = alertingServiceProvider(
|
||||
mlClient,
|
||||
datafeedsProvider(client, mlClient)
|
||||
);
|
||||
|
||||
const result = await alertingService.preview(request.body);
|
||||
|
||||
|
|
|
@ -26,13 +26,19 @@ export const mlAnomalyDetectionAlertParams = schema.object({
|
|||
},
|
||||
}
|
||||
),
|
||||
severity: schema.number(),
|
||||
/** Anomaly score threshold */
|
||||
severity: schema.number({ min: 0, max: 100 }),
|
||||
/** Result type to alert upon */
|
||||
resultType: schema.oneOf([
|
||||
schema.literal(ANOMALY_RESULT_TYPE.RECORD),
|
||||
schema.literal(ANOMALY_RESULT_TYPE.BUCKET),
|
||||
schema.literal(ANOMALY_RESULT_TYPE.INFLUENCER),
|
||||
]),
|
||||
includeInterim: schema.boolean({ defaultValue: true }),
|
||||
/** User's override for the lookback interval */
|
||||
lookbackInterval: schema.nullable(schema.string()),
|
||||
/** User's override for the top N buckets */
|
||||
topNBuckets: schema.nullable(schema.number({ min: 1 })),
|
||||
});
|
||||
|
||||
export const mlAnomalyDetectionAlertPreviewRequest = schema.object({
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
import { KibanaRequest, SavedObjectsClientContract } from 'kibana/server';
|
||||
import { GetGuards } from '../shared_services';
|
||||
import { alertingServiceProvider, MlAlertingService } from '../../lib/alerts/alerting_service';
|
||||
import { datafeedsProvider } from '../../models/job_service/datafeeds';
|
||||
|
||||
export function getAlertingServiceProvider(getGuards: GetGuards) {
|
||||
return {
|
||||
|
@ -21,7 +22,9 @@ export function getAlertingServiceProvider(getGuards: GetGuards) {
|
|||
.isFullLicense()
|
||||
.hasMlCapabilities(['canGetJobs'])
|
||||
.ok(({ mlClient, scopedClient }) =>
|
||||
alertingServiceProvider(mlClient, scopedClient.asInternalUser).preview(...args)
|
||||
alertingServiceProvider(mlClient, datafeedsProvider(scopedClient, mlClient)).preview(
|
||||
...args
|
||||
)
|
||||
);
|
||||
},
|
||||
execute: async (
|
||||
|
@ -31,7 +34,9 @@ export function getAlertingServiceProvider(getGuards: GetGuards) {
|
|||
.isFullLicense()
|
||||
.hasMlCapabilities(['canGetJobs'])
|
||||
.ok(({ mlClient, scopedClient }) =>
|
||||
alertingServiceProvider(mlClient, scopedClient.asInternalUser).execute(...args)
|
||||
alertingServiceProvider(mlClient, datafeedsProvider(scopedClient, mlClient)).execute(
|
||||
...args
|
||||
)
|
||||
);
|
||||
},
|
||||
};
|
||||
|
|
|
@ -16,6 +16,7 @@ export function MachineLearningAlertingProvider(
|
|||
const retry = getService('retry');
|
||||
const comboBox = getService('comboBox');
|
||||
const testSubjects = getService('testSubjects');
|
||||
const find = getService('find');
|
||||
|
||||
return {
|
||||
async selectAnomalyDetectionAlertType() {
|
||||
|
@ -100,5 +101,47 @@ export function MachineLearningAlertingProvider(
|
|||
await testSubjects.existOrFail(`mlAnomalyAlertPreviewCallout`);
|
||||
});
|
||||
},
|
||||
|
||||
async assertLookbackInterval(expectedValue: string) {
|
||||
const actualValue = await testSubjects.getAttribute(
|
||||
'mlAnomalyAlertLookbackInterval',
|
||||
'value'
|
||||
);
|
||||
expect(actualValue).to.eql(
|
||||
expectedValue,
|
||||
`Expected lookback interval to equal ${expectedValue}, got ${actualValue}`
|
||||
);
|
||||
},
|
||||
|
||||
async assertTopNBuckets(expectedNumberOfBuckets: number) {
|
||||
const actualValue = await testSubjects.getAttribute('mlAnomalyAlertTopNBuckets', 'value');
|
||||
expect(actualValue).to.eql(
|
||||
expectedNumberOfBuckets,
|
||||
`Expected number of buckets to equal ${expectedNumberOfBuckets}, got ${actualValue}`
|
||||
);
|
||||
},
|
||||
|
||||
async setLookbackInterval(interval: string) {
|
||||
await this.ensureAdvancedSectionOpen();
|
||||
await testSubjects.setValue('mlAnomalyAlertLookbackInterval', interval);
|
||||
await this.assertLookbackInterval(interval);
|
||||
},
|
||||
|
||||
async setTopNBuckets(numberOfBuckets: number) {
|
||||
await this.ensureAdvancedSectionOpen();
|
||||
await testSubjects.setValue('mlAnomalyAlertTopNBuckets', numberOfBuckets.toString());
|
||||
await this.assertTopNBuckets(numberOfBuckets);
|
||||
},
|
||||
|
||||
async ensureAdvancedSectionOpen() {
|
||||
await retry.tryForTime(5000, async () => {
|
||||
const isVisible = await find.existsByDisplayedByCssSelector(
|
||||
'#mlAnomalyAlertAdvancedSettings'
|
||||
);
|
||||
if (!isVisible) {
|
||||
await testSubjects.click('mlAnomalyAlertAdvancedSettingsTrigger');
|
||||
}
|
||||
});
|
||||
},
|
||||
};
|
||||
}
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
* 2.0.
|
||||
*/
|
||||
|
||||
import { Datafeed } from '@elastic/elasticsearch/api/types';
|
||||
import { FtrProviderContext } from '../../ftr_provider_context';
|
||||
import { DATAFEED_STATE } from '../../../../plugins/ml/common/constants/states';
|
||||
|
||||
|
@ -39,7 +40,7 @@ function createTestJobAndDatafeed() {
|
|||
categorization_examples_limit: 4,
|
||||
},
|
||||
},
|
||||
datafeed: {
|
||||
datafeed: ({
|
||||
datafeed_id: `datafeed-${jobId}`,
|
||||
job_id: jobId,
|
||||
query: {
|
||||
|
@ -53,8 +54,9 @@ function createTestJobAndDatafeed() {
|
|||
must_not: [],
|
||||
},
|
||||
},
|
||||
query_delay: '120s',
|
||||
indices: ['ft_ecommerce'],
|
||||
},
|
||||
} as unknown) as Datafeed,
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -83,7 +85,6 @@ export default ({ getPageObjects, getService }: FtrProviderContext) => {
|
|||
// @ts-expect-error not full interface
|
||||
await ml.api.createAnomalyDetectionJob(job);
|
||||
await ml.api.openAnomalyDetectionJob(job.job_id);
|
||||
// @ts-expect-error not full interface
|
||||
await ml.api.createDatafeed(datafeed);
|
||||
await ml.api.startDatafeed(datafeed.datafeed_id);
|
||||
await ml.api.waitForDatafeedState(datafeed.datafeed_id, DATAFEED_STATE.STARTED);
|
||||
|
@ -109,6 +110,10 @@ export default ({ getPageObjects, getService }: FtrProviderContext) => {
|
|||
await ml.alerting.selectResultType('record');
|
||||
await ml.alerting.setSeverity(10);
|
||||
|
||||
await ml.testExecution.logTestStep('should populate advanced settings with default values');
|
||||
await ml.alerting.assertTopNBuckets(1);
|
||||
await ml.alerting.assertLookbackInterval('123m');
|
||||
|
||||
await ml.testExecution.logTestStep('should preview the alert condition');
|
||||
await ml.alerting.assertPreviewButtonState(false);
|
||||
await ml.alerting.setTestInterval('2y');
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue