[ML] Fix Trained models list crashes on browser refresh if not on page 1 (#164163)

## Summary

Fixes https://github.com/elastic/kibana/issues/162618

There was an issue with setting pagination for the EUI table before
models are fetched. Providing a page index while the items count is 0
caused pagination to reset with an uninitialized URL state callback.
This PR adds a check to verify model list has been retrieved.

Also, the Kibana `_stats` endpoint has been updated to provide a `size`
parameter.
This commit is contained in:
Dima Arnautov 2023-08-17 18:55:33 +02:00 committed by GitHub
parent 0a331f1023
commit 24baf38eaa
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 15 additions and 7 deletions

View file

@ -131,6 +131,7 @@ export const ModelsList: FC<Props> = ({
const { displayErrorToast } = useToastNotificationService();
const [isInitialized, setIsInitialized] = useState(false);
const [isLoading, setIsLoading] = useState(false);
const [items, setItems] = useState<ModelItem[]>([]);
const [selectedModels, setSelectedModels] = useState<ModelItem[]>([]);
@ -183,7 +184,6 @@ export const ModelsList: FC<Props> = ({
try {
const response = await trainedModelsApiService.getTrainedModels(undefined, {
with_pipelines: true,
size: 1000,
});
const newItems: ModelItem[] = [];
@ -235,6 +235,7 @@ export const ModelsList: FC<Props> = ({
})
);
}
setIsInitialized(true);
setIsLoading(false);
// eslint-disable-next-line react-hooks/exhaustive-deps
}, [itemIdToExpandedRowMap]);
@ -267,7 +268,7 @@ export const ModelsList: FC<Props> = ({
try {
if (models) {
const { trained_model_stats: modelsStatsResponse } =
await trainedModelsApiService.getTrainedModelStats(models.map((m) => m.model_id));
await trainedModelsApiService.getTrainedModelStats();
const groupByModelId = groupBy(modelsStatsResponse, 'model_id');
@ -596,6 +597,8 @@ export const ModelsList: FC<Props> = ({
return [...items, ...notDownloaded];
}, [items]);
if (!isInitialized) return null;
return (
<>
<SavedObjectsWarning onCloseFlyout={fetchModelsData} forceRefresh={isLoading} />

View file

@ -37,6 +37,7 @@ import {
GetAnalyticsModelIdArg,
} from './types';
import type { MlClient } from '../../lib/ml_client';
import { DEFAULT_TRAINED_MODELS_PAGE_SIZE } from '../../routes/trained_models';
export class AnalyticsManager {
private _trainedModels: estypes.MlTrainedModelConfig[] = [];
@ -47,7 +48,7 @@ export class AnalyticsManager {
private async initData() {
const [models, jobs] = await Promise.all([
this._mlClient.getTrainedModels(),
this._mlClient.getTrainedModels({ size: DEFAULT_TRAINED_MODELS_PAGE_SIZE }),
this._mlClient.getDataFrameAnalytics({ size: 1000 }),
]);
this._trainedModels = models.trained_model_configs;

View file

@ -7,6 +7,7 @@
import { schema } from '@kbn/config-schema';
import { ErrorType } from '@kbn/ml-error-utils';
import { type MlGetTrainedModelsRequest } from '@elastic/elasticsearch/lib/api/typesWithBodyKey';
import { ML_INTERNAL_BASE_PATH } from '../../common/constants/app';
import { RouteInitialization } from '../types';
import { wrapError } from '../client/error_wrapper';
@ -29,6 +30,8 @@ import { mlLog } from '../lib/log';
import { forceQuerySchema } from './schemas/anomaly_detectors_schema';
import { modelsProvider } from '../models/model_management';
export const DEFAULT_TRAINED_MODELS_PAGE_SIZE = 10000;
export function trainedModelsRoutes({ router, routeGuard }: RouteInitialization) {
/**
* @apiGroup TrainedModels
@ -60,11 +63,10 @@ export function trainedModelsRoutes({ router, routeGuard }: RouteInitialization)
const { modelId } = request.params;
const { with_pipelines: withPipelines, ...query } = request.query;
const body = await mlClient.getTrainedModels({
// @ts-expect-error @elastic-elasticsearch not sure why this is an error, size is a number
size: 1000,
...query,
...(modelId ? { model_id: modelId } : {}),
});
size: DEFAULT_TRAINED_MODELS_PAGE_SIZE,
} as MlGetTrainedModelsRequest);
// model_type is missing
// @ts-ignore
const result = body.trained_model_configs as TrainedModelConfigResponse[];
@ -152,7 +154,9 @@ export function trainedModelsRoutes({ router, routeGuard }: RouteInitialization)
},
routeGuard.fullLicenseAPIGuard(async ({ mlClient, request, response }) => {
try {
const body = await mlClient.getTrainedModelsStats();
const body = await mlClient.getTrainedModelsStats({
size: DEFAULT_TRAINED_MODELS_PAGE_SIZE,
});
return response.ok({
body,
});