mirror of
https://github.com/elastic/kibana.git
synced 2025-04-24 09:48:58 -04:00
[ML] Use indices options in anomaly detection job wizards (#91830)
* [ML] WIP Datafeed preview refactor * adding indices options to ad job creation searches * update datafeed preview schema * updating types * recalculating wizard time range on JSON edit save * updating endpoint docs * fixing types * more type fixes * fixing missing runtime fields * using isPopulatedObject * adding indices options schema * fixing test * fixing schema Co-authored-by: Kibana Machine <42973632+kibanamachine@users.noreply.github.com>
This commit is contained in:
parent
2374af3011
commit
4914acc0d1
45 changed files with 490 additions and 289 deletions
|
@ -45,7 +45,7 @@ export type Aggregation = Record<
|
|||
}
|
||||
>;
|
||||
|
||||
interface IndicesOptions {
|
||||
export interface IndicesOptions {
|
||||
expand_wildcards?: 'all' | 'open' | 'closed' | 'hidden' | 'none';
|
||||
ignore_unavailable?: boolean;
|
||||
allow_no_indices?: boolean;
|
||||
|
|
|
@ -5,7 +5,9 @@
|
|||
* 2.0.
|
||||
*/
|
||||
|
||||
import { Job, JobStats } from './anomaly_detection_jobs';
|
||||
import { Job, JobStats, IndicesOptions } from './anomaly_detection_jobs';
|
||||
import { RuntimeMappings } from './fields';
|
||||
import { ES_AGGREGATION } from '../constants/aggregation_types';
|
||||
|
||||
export interface MlJobsResponse {
|
||||
jobs: Job[];
|
||||
|
@ -23,3 +25,18 @@ export interface JobsExistResponse {
|
|||
isGroup: boolean;
|
||||
};
|
||||
}
|
||||
|
||||
export interface BucketSpanEstimatorData {
|
||||
aggTypes: Array<ES_AGGREGATION | null>;
|
||||
duration: {
|
||||
start: number;
|
||||
end: number;
|
||||
};
|
||||
fields: Array<string | null>;
|
||||
index: string;
|
||||
query: any;
|
||||
splitField: string | undefined;
|
||||
timeField: string | undefined;
|
||||
runtimeMappings: RuntimeMappings | undefined;
|
||||
indicesOptions: IndicesOptions | undefined;
|
||||
}
|
||||
|
|
|
@ -29,7 +29,8 @@ export function chartLoaderProvider(mlResultsService: MlResultsService) {
|
|||
job.data_description.time_field,
|
||||
job.data_counts.earliest_record_timestamp,
|
||||
job.data_counts.latest_record_timestamp,
|
||||
intervalMs
|
||||
intervalMs,
|
||||
job.datafeed_config.indices_options
|
||||
);
|
||||
if (resp.error !== undefined) {
|
||||
throw resp.error;
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
import memoizeOne from 'memoize-one';
|
||||
import { isEqual } from 'lodash';
|
||||
import { IndexPatternTitle } from '../../../../../../common/types/kibana';
|
||||
import { IndicesOptions } from '../../../../../../common/types/anomaly_detection_jobs';
|
||||
import {
|
||||
Field,
|
||||
SplitField,
|
||||
|
@ -56,7 +57,8 @@ export class ChartLoader {
|
|||
splitField: SplitField,
|
||||
splitFieldValue: SplitFieldValue,
|
||||
intervalMs: number,
|
||||
runtimeMappings: RuntimeMappings | null
|
||||
runtimeMappings: RuntimeMappings | null,
|
||||
indicesOptions?: IndicesOptions
|
||||
): Promise<LineChartData> {
|
||||
if (this._timeFieldName !== '') {
|
||||
if (aggFieldPairsCanBeCharted(aggFieldPairs) === false) {
|
||||
|
@ -77,7 +79,8 @@ export class ChartLoader {
|
|||
aggFieldPairNames,
|
||||
splitFieldName,
|
||||
splitFieldValue,
|
||||
runtimeMappings ?? undefined
|
||||
runtimeMappings ?? undefined,
|
||||
indicesOptions
|
||||
);
|
||||
|
||||
return resp.results;
|
||||
|
@ -91,7 +94,8 @@ export class ChartLoader {
|
|||
aggFieldPairs: AggFieldPair[],
|
||||
splitField: SplitField,
|
||||
intervalMs: number,
|
||||
runtimeMappings: RuntimeMappings | null
|
||||
runtimeMappings: RuntimeMappings | null,
|
||||
indicesOptions?: IndicesOptions
|
||||
): Promise<LineChartData> {
|
||||
if (this._timeFieldName !== '') {
|
||||
if (aggFieldPairsCanBeCharted(aggFieldPairs) === false) {
|
||||
|
@ -111,7 +115,8 @@ export class ChartLoader {
|
|||
this._query,
|
||||
aggFieldPairNames,
|
||||
splitFieldName,
|
||||
runtimeMappings ?? undefined
|
||||
runtimeMappings ?? undefined,
|
||||
indicesOptions
|
||||
);
|
||||
|
||||
return resp.results;
|
||||
|
@ -122,7 +127,8 @@ export class ChartLoader {
|
|||
async loadEventRateChart(
|
||||
start: number,
|
||||
end: number,
|
||||
intervalMs: number
|
||||
intervalMs: number,
|
||||
indicesOptions?: IndicesOptions
|
||||
): Promise<LineChartPoint[]> {
|
||||
if (this._timeFieldName !== '') {
|
||||
const resp = await getEventRateData(
|
||||
|
@ -131,7 +137,8 @@ export class ChartLoader {
|
|||
this._timeFieldName,
|
||||
start,
|
||||
end,
|
||||
intervalMs * 3
|
||||
intervalMs * 3,
|
||||
indicesOptions
|
||||
);
|
||||
if (resp.error !== undefined) {
|
||||
throw resp.error;
|
||||
|
@ -147,14 +154,16 @@ export class ChartLoader {
|
|||
|
||||
async loadFieldExampleValues(
|
||||
field: Field,
|
||||
runtimeMappings: RuntimeMappings | null
|
||||
runtimeMappings: RuntimeMappings | null,
|
||||
indicesOptions?: IndicesOptions
|
||||
): Promise<string[]> {
|
||||
const { results } = await getCategoryFields(
|
||||
this._indexPatternTitle,
|
||||
field.name,
|
||||
10,
|
||||
this._query,
|
||||
runtimeMappings ?? undefined
|
||||
runtimeMappings ?? undefined,
|
||||
indicesOptions
|
||||
);
|
||||
return results;
|
||||
}
|
||||
|
|
|
@ -9,6 +9,7 @@ import { get } from 'lodash';
|
|||
|
||||
import { ml } from '../../../../services/ml_api_service';
|
||||
import { RuntimeMappings } from '../../../../../../common/types/fields';
|
||||
import { IndicesOptions } from '../../../../../../common/types/anomaly_detection_jobs';
|
||||
|
||||
interface CategoryResults {
|
||||
success: boolean;
|
||||
|
@ -20,7 +21,8 @@ export function getCategoryFields(
|
|||
fieldName: string,
|
||||
size: number,
|
||||
query: any,
|
||||
runtimeMappings?: RuntimeMappings
|
||||
runtimeMappings?: RuntimeMappings,
|
||||
indicesOptions?: IndicesOptions
|
||||
): Promise<CategoryResults> {
|
||||
return new Promise((resolve, reject) => {
|
||||
ml.esSearch({
|
||||
|
@ -38,6 +40,7 @@ export function getCategoryFields(
|
|||
},
|
||||
...(runtimeMappings !== undefined ? { runtime_mappings: runtimeMappings } : {}),
|
||||
},
|
||||
...(indicesOptions ?? {}),
|
||||
})
|
||||
.then((resp: any) => {
|
||||
const catFields = get(resp, ['aggregations', 'catFields', 'buckets'], []);
|
||||
|
|
|
@ -177,16 +177,13 @@ export class AdvancedJobCreator extends JobCreator {
|
|||
// load the start and end times for the selected index
|
||||
// and apply them to the job creator
|
||||
public async autoSetTimeRange() {
|
||||
try {
|
||||
const { start, end } = await ml.getTimeFieldRange({
|
||||
index: this._indexPatternTitle,
|
||||
timeFieldName: this.timeFieldName,
|
||||
query: this.query,
|
||||
});
|
||||
this.setTimeRange(start.epoch, end.epoch);
|
||||
} catch (error) {
|
||||
throw Error(error);
|
||||
}
|
||||
const { start, end } = await ml.getTimeFieldRange({
|
||||
index: this._indexPatternTitle,
|
||||
timeFieldName: this.timeFieldName,
|
||||
query: this.query,
|
||||
indicesOptions: this.datafeedConfig.indices_options,
|
||||
});
|
||||
this.setTimeRange(start.epoch, end.epoch);
|
||||
}
|
||||
|
||||
public cloneFromExistingJob(job: Job, datafeed: Datafeed) {
|
||||
|
|
|
@ -51,7 +51,8 @@ export class CategorizationExamplesLoader {
|
|||
this._jobCreator.start,
|
||||
this._jobCreator.end,
|
||||
analyzer,
|
||||
this._jobCreator.runtimeMappings ?? undefined
|
||||
this._jobCreator.runtimeMappings ?? undefined,
|
||||
this._jobCreator.datafeedConfig.indices_options
|
||||
);
|
||||
return resp;
|
||||
}
|
||||
|
|
|
@ -256,7 +256,8 @@ export class ResultsLoader {
|
|||
if (this._jobCreator.splitField !== null) {
|
||||
const fieldValues = await this._chartLoader.loadFieldExampleValues(
|
||||
this._jobCreator.splitField,
|
||||
this._jobCreator.runtimeMappings
|
||||
this._jobCreator.runtimeMappings,
|
||||
this._jobCreator.datafeedConfig.indices_options
|
||||
);
|
||||
if (fieldValues.length > 0) {
|
||||
this._detectorSplitFieldFilters = {
|
||||
|
|
|
@ -25,7 +25,9 @@ import { CombinedJob, Datafeed } from '../../../../../../../../common/types/anom
|
|||
import { ML_EDITOR_MODE, MLJobEditor } from '../../../../../jobs_list/components/ml_job_editor';
|
||||
import { isValidJson } from '../../../../../../../../common/util/validation_utils';
|
||||
import { JobCreatorContext } from '../../job_creator_context';
|
||||
import { isAdvancedJobCreator } from '../../../../common/job_creator';
|
||||
import { DatafeedPreview } from '../datafeed_preview_flyout';
|
||||
import { useToastNotificationService } from '../../../../../../services/toast_notification_service';
|
||||
|
||||
export enum EDITOR_MODE {
|
||||
HIDDEN,
|
||||
|
@ -40,6 +42,7 @@ interface Props {
|
|||
}
|
||||
export const JsonEditorFlyout: FC<Props> = ({ isDisabled, jobEditorMode, datafeedEditorMode }) => {
|
||||
const { jobCreator, jobCreatorUpdate, jobCreatorUpdated } = useContext(JobCreatorContext);
|
||||
const { displayErrorToast } = useToastNotificationService();
|
||||
const [showJsonFlyout, setShowJsonFlyout] = useState(false);
|
||||
const [showChangedIndicesWarning, setShowChangedIndicesWarning] = useState(false);
|
||||
|
||||
|
@ -120,10 +123,23 @@ export const JsonEditorFlyout: FC<Props> = ({ isDisabled, jobEditorMode, datafee
|
|||
setSaveable(valid);
|
||||
}
|
||||
|
||||
function onSave() {
|
||||
async function onSave() {
|
||||
const jobConfig = JSON.parse(jobConfigString);
|
||||
const datafeedConfig = JSON.parse(collapseLiteralStrings(datafeedConfigString));
|
||||
jobCreator.cloneFromExistingJob(jobConfig, datafeedConfig);
|
||||
if (isAdvancedJobCreator(jobCreator)) {
|
||||
try {
|
||||
await jobCreator.autoSetTimeRange();
|
||||
} catch (error) {
|
||||
const title = i18n.translate(
|
||||
'xpack.ml.newJob.wizard.jsonFlyout.autoSetJobCreatorTimeRange.error',
|
||||
{
|
||||
defaultMessage: `Error retrieving beginning and end times of index`,
|
||||
}
|
||||
);
|
||||
displayErrorToast(error, title);
|
||||
}
|
||||
}
|
||||
jobCreatorUpdate();
|
||||
setShowJsonFlyout(false);
|
||||
}
|
||||
|
|
|
@ -9,12 +9,13 @@ import { useContext, useState } from 'react';
|
|||
|
||||
import { JobCreatorContext } from '../../../job_creator_context';
|
||||
import { EVENT_RATE_FIELD_ID } from '../../../../../../../../../common/types/fields';
|
||||
import { BucketSpanEstimatorData } from '../../../../../../../../../common/types/job_service';
|
||||
import {
|
||||
isMultiMetricJobCreator,
|
||||
isPopulationJobCreator,
|
||||
isAdvancedJobCreator,
|
||||
} from '../../../../../common/job_creator';
|
||||
import { ml, BucketSpanEstimatorData } from '../../../../../../../services/ml_api_service';
|
||||
import { ml } from '../../../../../../../services/ml_api_service';
|
||||
import { useMlContext } from '../../../../../../../contexts/ml';
|
||||
import { getToastNotificationService } from '../../../../../../../services/toast_notification_service';
|
||||
|
||||
|
@ -41,6 +42,7 @@ export function useEstimateBucketSpan() {
|
|||
splitField: undefined,
|
||||
timeField: mlContext.currentIndexPattern.timeFieldName,
|
||||
runtimeMappings: jobCreator.runtimeMappings ?? undefined,
|
||||
indicesOptions: jobCreator.datafeedConfig.indices_options,
|
||||
};
|
||||
|
||||
if (
|
||||
|
|
|
@ -54,7 +54,8 @@ export const CategorizationDetectorsSummary: FC = () => {
|
|||
const resp = await chartLoader.loadEventRateChart(
|
||||
jobCreator.start,
|
||||
jobCreator.end,
|
||||
chartInterval.getInterval().asMilliseconds()
|
||||
chartInterval.getInterval().asMilliseconds(),
|
||||
jobCreator.datafeedConfig.indices_options
|
||||
);
|
||||
setEventRateChartData(resp);
|
||||
} catch (error) {
|
||||
|
|
|
@ -111,7 +111,11 @@ export const MultiMetricDetectors: FC<Props> = ({ setIsValid }) => {
|
|||
useEffect(() => {
|
||||
if (splitField !== null) {
|
||||
chartLoader
|
||||
.loadFieldExampleValues(splitField, jobCreator.runtimeMappings)
|
||||
.loadFieldExampleValues(
|
||||
splitField,
|
||||
jobCreator.runtimeMappings,
|
||||
jobCreator.datafeedConfig.indices_options
|
||||
)
|
||||
.then(setFieldValues)
|
||||
.catch((error) => {
|
||||
getToastNotificationService().displayErrorToast(error);
|
||||
|
@ -140,7 +144,8 @@ export const MultiMetricDetectors: FC<Props> = ({ setIsValid }) => {
|
|||
jobCreator.splitField,
|
||||
fieldValues.length > 0 ? fieldValues[0] : null,
|
||||
cs.intervalMs,
|
||||
jobCreator.runtimeMappings
|
||||
jobCreator.runtimeMappings,
|
||||
jobCreator.datafeedConfig.indices_options
|
||||
);
|
||||
setLineChartsData(resp);
|
||||
} catch (error) {
|
||||
|
|
|
@ -43,7 +43,8 @@ export const MultiMetricDetectorsSummary: FC = () => {
|
|||
try {
|
||||
const tempFieldValues = await chartLoader.loadFieldExampleValues(
|
||||
jobCreator.splitField,
|
||||
jobCreator.runtimeMappings
|
||||
jobCreator.runtimeMappings,
|
||||
jobCreator.datafeedConfig.indices_options
|
||||
);
|
||||
setFieldValues(tempFieldValues);
|
||||
} catch (error) {
|
||||
|
@ -76,7 +77,8 @@ export const MultiMetricDetectorsSummary: FC = () => {
|
|||
jobCreator.splitField,
|
||||
fieldValues.length > 0 ? fieldValues[0] : null,
|
||||
cs.intervalMs,
|
||||
jobCreator.runtimeMappings
|
||||
jobCreator.runtimeMappings,
|
||||
jobCreator.datafeedConfig.indices_options
|
||||
);
|
||||
setLineChartsData(resp);
|
||||
} catch (error) {
|
||||
|
|
|
@ -160,7 +160,8 @@ export const PopulationDetectors: FC<Props> = ({ setIsValid }) => {
|
|||
aggFieldPairList,
|
||||
jobCreator.splitField,
|
||||
cs.intervalMs,
|
||||
jobCreator.runtimeMappings
|
||||
jobCreator.runtimeMappings,
|
||||
jobCreator.datafeedConfig.indices_options
|
||||
);
|
||||
|
||||
setLineChartsData(resp);
|
||||
|
@ -180,7 +181,11 @@ export const PopulationDetectors: FC<Props> = ({ setIsValid }) => {
|
|||
(async (index: number, field: Field) => {
|
||||
return {
|
||||
index,
|
||||
fields: await chartLoader.loadFieldExampleValues(field, jobCreator.runtimeMappings),
|
||||
fields: await chartLoader.loadFieldExampleValues(
|
||||
field,
|
||||
jobCreator.runtimeMappings,
|
||||
jobCreator.datafeedConfig.indices_options
|
||||
),
|
||||
};
|
||||
})(i, af.by.field)
|
||||
);
|
||||
|
|
|
@ -78,7 +78,8 @@ export const PopulationDetectorsSummary: FC = () => {
|
|||
aggFieldPairList,
|
||||
jobCreator.splitField,
|
||||
cs.intervalMs,
|
||||
jobCreator.runtimeMappings
|
||||
jobCreator.runtimeMappings,
|
||||
jobCreator.datafeedConfig.indices_options
|
||||
);
|
||||
|
||||
setLineChartsData(resp);
|
||||
|
@ -98,7 +99,11 @@ export const PopulationDetectorsSummary: FC = () => {
|
|||
(async (index: number, field: Field) => {
|
||||
return {
|
||||
index,
|
||||
fields: await chartLoader.loadFieldExampleValues(field, jobCreator.runtimeMappings),
|
||||
fields: await chartLoader.loadFieldExampleValues(
|
||||
field,
|
||||
jobCreator.runtimeMappings,
|
||||
jobCreator.datafeedConfig.indices_options
|
||||
),
|
||||
};
|
||||
})(i, af.by.field)
|
||||
);
|
||||
|
|
|
@ -93,7 +93,8 @@ export const SingleMetricDetectors: FC<Props> = ({ setIsValid }) => {
|
|||
null,
|
||||
null,
|
||||
cs.intervalMs,
|
||||
jobCreator.runtimeMappings
|
||||
jobCreator.runtimeMappings,
|
||||
jobCreator.datafeedConfig.indices_options
|
||||
);
|
||||
if (resp[DTR_IDX] !== undefined) {
|
||||
setLineChartData(resp);
|
||||
|
|
|
@ -59,7 +59,8 @@ export const SingleMetricDetectorsSummary: FC = () => {
|
|||
null,
|
||||
null,
|
||||
cs.intervalMs,
|
||||
jobCreator.runtimeMappings
|
||||
jobCreator.runtimeMappings,
|
||||
jobCreator.datafeedConfig.indices_options
|
||||
);
|
||||
if (resp[DTR_IDX] !== undefined) {
|
||||
setLineChartData(resp);
|
||||
|
|
|
@ -47,7 +47,8 @@ export const TimeRangeStep: FC<StepProps> = ({ setCurrentStep, isCurrentStep })
|
|||
const resp = await chartLoader.loadEventRateChart(
|
||||
jobCreator.start,
|
||||
jobCreator.end,
|
||||
chartInterval.getInterval().asMilliseconds()
|
||||
chartInterval.getInterval().asMilliseconds(),
|
||||
jobCreator.datafeedConfig.indices_options
|
||||
);
|
||||
setEventRateChartData(resp);
|
||||
} catch (error) {
|
||||
|
|
|
@ -20,7 +20,6 @@ import { FormattedMessage } from '@kbn/i18n/react';
|
|||
import { Wizard } from './wizard';
|
||||
import { WIZARD_STEPS } from '../components/step_types';
|
||||
import { getJobCreatorTitle } from '../../common/job_creator/util/general';
|
||||
import { useMlKibana } from '../../../../contexts/kibana';
|
||||
import {
|
||||
jobCreatorFactory,
|
||||
isAdvancedJobCreator,
|
||||
|
@ -41,6 +40,7 @@ import { ExistingJobsAndGroups, mlJobService } from '../../../../services/job_se
|
|||
import { newJobCapsService } from '../../../../services/new_job_capabilities_service';
|
||||
import { EVENT_RATE_FIELD_ID } from '../../../../../../common/types/fields';
|
||||
import { getNewJobDefaults } from '../../../../services/ml_server_info';
|
||||
import { useToastNotificationService } from '../../../../services/toast_notification_service';
|
||||
|
||||
const PAGE_WIDTH = 1200; // document.querySelector('.single-metric-job-container').width();
|
||||
const BAR_TARGET = PAGE_WIDTH > 2000 ? 1000 : PAGE_WIDTH / 2;
|
||||
|
@ -52,15 +52,13 @@ export interface PageProps {
|
|||
}
|
||||
|
||||
export const Page: FC<PageProps> = ({ existingJobsAndGroups, jobType }) => {
|
||||
const {
|
||||
services: { notifications },
|
||||
} = useMlKibana();
|
||||
const mlContext = useMlContext();
|
||||
const jobCreator = jobCreatorFactory(jobType)(
|
||||
mlContext.currentIndexPattern,
|
||||
mlContext.currentSavedSearch,
|
||||
mlContext.combinedQuery
|
||||
);
|
||||
const { displayErrorToast } = useToastNotificationService();
|
||||
|
||||
const { from, to } = getTimeFilterRange();
|
||||
jobCreator.setTimeRange(from, to);
|
||||
|
@ -154,17 +152,12 @@ export const Page: FC<PageProps> = ({ existingJobsAndGroups, jobType }) => {
|
|||
if (autoSetTimeRange && isAdvancedJobCreator(jobCreator)) {
|
||||
// for advanced jobs, load the full time range start and end times
|
||||
// so they can be used for job validation and bucket span estimation
|
||||
try {
|
||||
jobCreator.autoSetTimeRange();
|
||||
} catch (error) {
|
||||
const { toasts } = notifications;
|
||||
toasts.addDanger({
|
||||
title: i18n.translate('xpack.ml.newJob.wizard.autoSetJobCreatorTimeRange.error', {
|
||||
defaultMessage: `Error retrieving beginning and end times of index`,
|
||||
}),
|
||||
text: error,
|
||||
jobCreator.autoSetTimeRange().catch((error) => {
|
||||
const title = i18n.translate('xpack.ml.newJob.wizard.autoSetJobCreatorTimeRange.error', {
|
||||
defaultMessage: `Error retrieving beginning and end times of index`,
|
||||
});
|
||||
}
|
||||
displayErrorToast(error, title);
|
||||
});
|
||||
}
|
||||
|
||||
function initCategorizationSettings() {
|
||||
|
|
|
@ -13,7 +13,6 @@ import { ml } from './ml_api_service';
|
|||
|
||||
import { getToastNotificationService } from '../services/toast_notification_service';
|
||||
import { isWebUrl } from '../util/url_utils';
|
||||
import { ML_DATA_PREVIEW_COUNT } from '../../../common/util/job_utils';
|
||||
import { TIME_FORMAT } from '../../../common/constants/time_format';
|
||||
import { parseInterval } from '../../../common/util/parse_interval';
|
||||
import { validateTimeRange } from '../../../common/util/date_utils';
|
||||
|
@ -348,163 +347,9 @@ class JobService {
|
|||
return job;
|
||||
}
|
||||
|
||||
searchPreview(job) {
|
||||
return new Promise((resolve, reject) => {
|
||||
if (job.datafeed_config) {
|
||||
// if query is set, add it to the search, otherwise use match_all
|
||||
let query = { match_all: {} };
|
||||
if (job.datafeed_config.query) {
|
||||
query = job.datafeed_config.query;
|
||||
}
|
||||
|
||||
// Get bucket span
|
||||
// Get first doc time for datafeed
|
||||
// Create a new query - must user query and must range query.
|
||||
// Time range 'to' first doc time plus < 10 buckets
|
||||
|
||||
// Do a preliminary search to get the date of the earliest doc matching the
|
||||
// query in the datafeed. This will be used to apply a time range criteria
|
||||
// on the datafeed search preview.
|
||||
// This time filter is required for datafeed searches using aggregations to ensure
|
||||
// the search does not create too many buckets (default 10000 max_bucket limit),
|
||||
// but apply it to searches without aggregations too for consistency.
|
||||
ml.getTimeFieldRange({
|
||||
index: job.datafeed_config.indices,
|
||||
timeFieldName: job.data_description.time_field,
|
||||
query,
|
||||
})
|
||||
.then((timeRange) => {
|
||||
const bucketSpan = parseInterval(job.analysis_config.bucket_span);
|
||||
const earliestMs = timeRange.start.epoch;
|
||||
const latestMs = +timeRange.start.epoch + 10 * bucketSpan.asMilliseconds();
|
||||
|
||||
const body = {
|
||||
query: {
|
||||
bool: {
|
||||
must: [
|
||||
{
|
||||
range: {
|
||||
[job.data_description.time_field]: {
|
||||
gte: earliestMs,
|
||||
lt: latestMs,
|
||||
format: 'epoch_millis',
|
||||
},
|
||||
},
|
||||
},
|
||||
query,
|
||||
],
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
// if aggs or aggregations is set, add it to the search
|
||||
const aggregations = job.datafeed_config.aggs || job.datafeed_config.aggregations;
|
||||
if (aggregations && Object.keys(aggregations).length) {
|
||||
body.size = 0;
|
||||
body.aggregations = aggregations;
|
||||
|
||||
// add script_fields if present
|
||||
const scriptFields = job.datafeed_config.script_fields;
|
||||
if (scriptFields && Object.keys(scriptFields).length) {
|
||||
body.script_fields = scriptFields;
|
||||
}
|
||||
|
||||
// add runtime_mappings if present
|
||||
const runtimeMappings = job.datafeed_config.runtime_mappings;
|
||||
if (runtimeMappings && Object.keys(runtimeMappings).length) {
|
||||
body.runtime_mappings = runtimeMappings;
|
||||
}
|
||||
} else {
|
||||
// if aggregations is not set and retrieveWholeSource is not set, add all of the fields from the job
|
||||
body.size = ML_DATA_PREVIEW_COUNT;
|
||||
|
||||
// add script_fields if present
|
||||
const scriptFields = job.datafeed_config.script_fields;
|
||||
if (scriptFields && Object.keys(scriptFields).length) {
|
||||
body.script_fields = scriptFields;
|
||||
}
|
||||
|
||||
// add runtime_mappings if present
|
||||
const runtimeMappings = job.datafeed_config.runtime_mappings;
|
||||
if (runtimeMappings && Object.keys(runtimeMappings).length) {
|
||||
body.runtime_mappings = runtimeMappings;
|
||||
}
|
||||
|
||||
const fields = {};
|
||||
|
||||
// get fields from detectors
|
||||
if (job.analysis_config.detectors) {
|
||||
each(job.analysis_config.detectors, (dtr) => {
|
||||
if (dtr.by_field_name) {
|
||||
fields[dtr.by_field_name] = {};
|
||||
}
|
||||
if (dtr.field_name) {
|
||||
fields[dtr.field_name] = {};
|
||||
}
|
||||
if (dtr.over_field_name) {
|
||||
fields[dtr.over_field_name] = {};
|
||||
}
|
||||
if (dtr.partition_field_name) {
|
||||
fields[dtr.partition_field_name] = {};
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// get fields from influencers
|
||||
if (job.analysis_config.influencers) {
|
||||
each(job.analysis_config.influencers, (inf) => {
|
||||
fields[inf] = {};
|
||||
});
|
||||
}
|
||||
|
||||
// get fields from categorizationFieldName
|
||||
if (job.analysis_config.categorization_field_name) {
|
||||
fields[job.analysis_config.categorization_field_name] = {};
|
||||
}
|
||||
|
||||
// get fields from summary_count_field_name
|
||||
if (job.analysis_config.summary_count_field_name) {
|
||||
fields[job.analysis_config.summary_count_field_name] = {};
|
||||
}
|
||||
|
||||
// get fields from time_field
|
||||
if (job.data_description.time_field) {
|
||||
fields[job.data_description.time_field] = {};
|
||||
}
|
||||
|
||||
// add runtime fields
|
||||
if (runtimeMappings) {
|
||||
Object.keys(runtimeMappings).forEach((fieldName) => {
|
||||
fields[fieldName] = {};
|
||||
});
|
||||
}
|
||||
|
||||
const fieldsList = Object.keys(fields);
|
||||
if (fieldsList.length) {
|
||||
body.fields = fieldsList;
|
||||
body._source = false;
|
||||
}
|
||||
}
|
||||
|
||||
const data = {
|
||||
index: job.datafeed_config.indices,
|
||||
body,
|
||||
...(job.datafeed_config.indices_options || {}),
|
||||
};
|
||||
|
||||
ml.esSearch(data)
|
||||
.then((resp) => {
|
||||
resolve(resp);
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
}
|
||||
});
|
||||
searchPreview(combinedJob) {
|
||||
const { datafeed_config: datafeed, ...job } = combinedJob;
|
||||
return ml.jobs.datafeedPreview(job, datafeed);
|
||||
}
|
||||
|
||||
openJob(jobId) {
|
||||
|
|
|
@ -24,7 +24,7 @@ import {
|
|||
|
||||
import { MlCapabilitiesResponse } from '../../../../common/types/capabilities';
|
||||
import { Calendar, CalendarId, UpdateCalendar } from '../../../../common/types/calendars';
|
||||
import { RuntimeMappings } from '../../../../common/types/fields';
|
||||
import { BucketSpanEstimatorData } from '../../../../common/types/job_service';
|
||||
import {
|
||||
Job,
|
||||
JobStats,
|
||||
|
@ -33,8 +33,8 @@ import {
|
|||
Detector,
|
||||
AnalysisConfig,
|
||||
ModelSnapshot,
|
||||
IndicesOptions,
|
||||
} from '../../../../common/types/anomaly_detection_jobs';
|
||||
import { ES_AGGREGATION } from '../../../../common/constants/aggregation_types';
|
||||
import {
|
||||
FieldHistogramRequestConfig,
|
||||
FieldRequestConfig,
|
||||
|
@ -53,20 +53,6 @@ export interface MlInfoResponse {
|
|||
cloudId?: string;
|
||||
}
|
||||
|
||||
export interface BucketSpanEstimatorData {
|
||||
aggTypes: Array<ES_AGGREGATION | null>;
|
||||
duration: {
|
||||
start: number;
|
||||
end: number;
|
||||
};
|
||||
fields: Array<string | null>;
|
||||
index: string;
|
||||
query: any;
|
||||
splitField: string | undefined;
|
||||
timeField: string | undefined;
|
||||
runtimeMappings: RuntimeMappings | undefined;
|
||||
}
|
||||
|
||||
export interface BucketSpanEstimatorResponse {
|
||||
name: string;
|
||||
ms: number;
|
||||
|
@ -704,12 +690,14 @@ export function mlApiServicesProvider(httpService: HttpService) {
|
|||
index,
|
||||
timeFieldName,
|
||||
query,
|
||||
indicesOptions,
|
||||
}: {
|
||||
index: string;
|
||||
timeFieldName?: string;
|
||||
query: any;
|
||||
indicesOptions?: IndicesOptions;
|
||||
}) {
|
||||
const body = JSON.stringify({ index, timeFieldName, query });
|
||||
const body = JSON.stringify({ index, timeFieldName, query, indicesOptions });
|
||||
|
||||
return httpService.http<GetTimeFieldRangeResponse>({
|
||||
path: `${basePath()}/fields_service/time_field_range`,
|
||||
|
|
|
@ -15,6 +15,7 @@ import type {
|
|||
CombinedJobWithStats,
|
||||
Job,
|
||||
Datafeed,
|
||||
IndicesOptions,
|
||||
} from '../../../../common/types/anomaly_detection_jobs';
|
||||
import type { JobMessage } from '../../../../common/types/audit_message';
|
||||
import type { AggFieldNamePair, RuntimeMappings } from '../../../../common/types/fields';
|
||||
|
@ -189,7 +190,8 @@ export const jobsApiProvider = (httpService: HttpService) => ({
|
|||
aggFieldNamePairs: AggFieldNamePair[],
|
||||
splitFieldName: string | null,
|
||||
splitFieldValue: string | null,
|
||||
runtimeMappings?: RuntimeMappings
|
||||
runtimeMappings?: RuntimeMappings,
|
||||
indicesOptions?: IndicesOptions
|
||||
) {
|
||||
const body = JSON.stringify({
|
||||
indexPatternTitle,
|
||||
|
@ -202,6 +204,7 @@ export const jobsApiProvider = (httpService: HttpService) => ({
|
|||
splitFieldName,
|
||||
splitFieldValue,
|
||||
runtimeMappings,
|
||||
indicesOptions,
|
||||
});
|
||||
return httpService.http<any>({
|
||||
path: `${ML_BASE_PATH}/jobs/new_job_line_chart`,
|
||||
|
@ -219,7 +222,8 @@ export const jobsApiProvider = (httpService: HttpService) => ({
|
|||
query: any,
|
||||
aggFieldNamePairs: AggFieldNamePair[],
|
||||
splitFieldName: string,
|
||||
runtimeMappings?: RuntimeMappings
|
||||
runtimeMappings?: RuntimeMappings,
|
||||
indicesOptions?: IndicesOptions
|
||||
) {
|
||||
const body = JSON.stringify({
|
||||
indexPatternTitle,
|
||||
|
@ -231,6 +235,7 @@ export const jobsApiProvider = (httpService: HttpService) => ({
|
|||
aggFieldNamePairs,
|
||||
splitFieldName,
|
||||
runtimeMappings,
|
||||
indicesOptions,
|
||||
});
|
||||
return httpService.http<any>({
|
||||
path: `${ML_BASE_PATH}/jobs/new_job_population_chart`,
|
||||
|
@ -268,7 +273,8 @@ export const jobsApiProvider = (httpService: HttpService) => ({
|
|||
start: number,
|
||||
end: number,
|
||||
analyzer: CategorizationAnalyzer,
|
||||
runtimeMappings?: RuntimeMappings
|
||||
runtimeMappings?: RuntimeMappings,
|
||||
indicesOptions?: IndicesOptions
|
||||
) {
|
||||
const body = JSON.stringify({
|
||||
indexPatternTitle,
|
||||
|
@ -280,6 +286,7 @@ export const jobsApiProvider = (httpService: HttpService) => ({
|
|||
end,
|
||||
analyzer,
|
||||
runtimeMappings,
|
||||
indicesOptions,
|
||||
});
|
||||
return httpService.http<{
|
||||
examples: CategoryFieldExample[];
|
||||
|
@ -322,4 +329,16 @@ export const jobsApiProvider = (httpService: HttpService) => ({
|
|||
body,
|
||||
});
|
||||
},
|
||||
|
||||
datafeedPreview(job: Job, datafeed: Datafeed) {
|
||||
const body = JSON.stringify({ job, datafeed });
|
||||
return httpService.http<{
|
||||
total: number;
|
||||
categories: Array<{ count?: number; category: Category }>;
|
||||
}>({
|
||||
path: `${ML_BASE_PATH}/jobs/datafeed_preview`,
|
||||
method: 'POST',
|
||||
body,
|
||||
});
|
||||
},
|
||||
});
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
* 2.0.
|
||||
*/
|
||||
|
||||
import { IndicesOptions } from '../../../../common/types/anomaly_detection_jobs';
|
||||
import { MlApiServices } from '../ml_api_service';
|
||||
|
||||
export function resultsServiceProvider(
|
||||
|
@ -58,7 +59,8 @@ export function resultsServiceProvider(
|
|||
timeFieldName: string,
|
||||
earliestMs: number,
|
||||
latestMs: number,
|
||||
intervalMs: number
|
||||
intervalMs: number,
|
||||
indicesOptions?: IndicesOptions
|
||||
): Promise<any>;
|
||||
getEventDistributionData(
|
||||
index: string,
|
||||
|
|
|
@ -1052,7 +1052,15 @@ export function resultsServiceProvider(mlApiServices) {
|
|||
// Extra query object can be supplied, or pass null if no additional query.
|
||||
// Returned response contains a results property, which is an object
|
||||
// of document counts against time (epoch millis).
|
||||
getEventRateData(index, query, timeFieldName, earliestMs, latestMs, intervalMs) {
|
||||
getEventRateData(
|
||||
index,
|
||||
query,
|
||||
timeFieldName,
|
||||
earliestMs,
|
||||
latestMs,
|
||||
intervalMs,
|
||||
indicesOptions
|
||||
) {
|
||||
return new Promise((resolve, reject) => {
|
||||
const obj = { success: true, results: {} };
|
||||
|
||||
|
@ -1102,6 +1110,7 @@ export function resultsServiceProvider(mlApiServices) {
|
|||
},
|
||||
},
|
||||
},
|
||||
...(indicesOptions ?? {}),
|
||||
})
|
||||
.then((resp) => {
|
||||
const dataByTimeBucket = get(resp, ['aggregations', 'eventRate', 'buckets'], []);
|
||||
|
|
|
@ -8,20 +8,8 @@
|
|||
import { IScopedClusterClient } from 'kibana/server';
|
||||
import { ES_AGGREGATION } from '../../../common/constants/aggregation_types';
|
||||
import { RuntimeMappings } from '../../../common/types/fields';
|
||||
|
||||
export interface BucketSpanEstimatorData {
|
||||
aggTypes: Array<ES_AGGREGATION | null>;
|
||||
duration: {
|
||||
start: number;
|
||||
end: number;
|
||||
};
|
||||
fields: Array<string | null>;
|
||||
index: string;
|
||||
query: any;
|
||||
splitField: string | undefined;
|
||||
timeField: string | undefined;
|
||||
runtimeMappings: RuntimeMappings | undefined;
|
||||
}
|
||||
import { IndicesOptions } from '../../../common/types/anomaly_detection_jobs';
|
||||
import { BucketSpanEstimatorData } from '../../../common/types/job_service';
|
||||
|
||||
export function estimateBucketSpanFactory({
|
||||
asCurrentUser,
|
||||
|
|
|
@ -20,7 +20,17 @@ export function estimateBucketSpanFactory(client) {
|
|||
|
||||
class BucketSpanEstimator {
|
||||
constructor(
|
||||
{ index, timeField, aggTypes, fields, duration, query, splitField, runtimeMappings },
|
||||
{
|
||||
index,
|
||||
timeField,
|
||||
aggTypes,
|
||||
fields,
|
||||
duration,
|
||||
query,
|
||||
splitField,
|
||||
runtimeMappings,
|
||||
indicesOptions,
|
||||
},
|
||||
splitFieldValues,
|
||||
maxBuckets
|
||||
) {
|
||||
|
@ -72,7 +82,8 @@ export function estimateBucketSpanFactory(client) {
|
|||
this.index,
|
||||
this.timeField,
|
||||
this.duration,
|
||||
this.query
|
||||
this.query,
|
||||
indicesOptions
|
||||
);
|
||||
|
||||
if (this.aggTypes.length === this.fields.length) {
|
||||
|
@ -89,7 +100,8 @@ export function estimateBucketSpanFactory(client) {
|
|||
this.duration,
|
||||
this.query,
|
||||
this.thresholds,
|
||||
this.runtimeMappings
|
||||
this.runtimeMappings,
|
||||
indicesOptions
|
||||
),
|
||||
result: null,
|
||||
});
|
||||
|
@ -112,7 +124,8 @@ export function estimateBucketSpanFactory(client) {
|
|||
this.duration,
|
||||
queryCopy,
|
||||
this.thresholds,
|
||||
this.runtimeMappings
|
||||
this.runtimeMappings,
|
||||
indicesOptions
|
||||
),
|
||||
result: null,
|
||||
});
|
||||
|
@ -246,7 +259,7 @@ export function estimateBucketSpanFactory(client) {
|
|||
}
|
||||
}
|
||||
|
||||
const getFieldCardinality = function (index, field, runtimeMappings) {
|
||||
const getFieldCardinality = function (index, field, runtimeMappings, indicesOptions) {
|
||||
return new Promise((resolve, reject) => {
|
||||
asCurrentUser
|
||||
.search({
|
||||
|
@ -262,6 +275,7 @@ export function estimateBucketSpanFactory(client) {
|
|||
},
|
||||
...(runtimeMappings !== undefined ? { runtime_mappings: runtimeMappings } : {}),
|
||||
},
|
||||
...(indicesOptions ?? {}),
|
||||
})
|
||||
.then(({ body }) => {
|
||||
const value = get(body, ['aggregations', 'field_count', 'value'], 0);
|
||||
|
@ -273,13 +287,13 @@ export function estimateBucketSpanFactory(client) {
|
|||
});
|
||||
};
|
||||
|
||||
const getRandomFieldValues = function (index, field, query, runtimeMappings) {
|
||||
const getRandomFieldValues = function (index, field, query, runtimeMappings, indicesOptions) {
|
||||
let fieldValues = [];
|
||||
return new Promise((resolve, reject) => {
|
||||
const NUM_PARTITIONS = 10;
|
||||
// use a partitioned search to load 10 random fields
|
||||
// load ten fields, to test that there are at least 10.
|
||||
getFieldCardinality(index, field)
|
||||
getFieldCardinality(index, field, runtimeMappings, indicesOptions)
|
||||
.then((value) => {
|
||||
const numPartitions = Math.floor(value / NUM_PARTITIONS) || 1;
|
||||
asCurrentUser
|
||||
|
@ -301,6 +315,7 @@ export function estimateBucketSpanFactory(client) {
|
|||
},
|
||||
...(runtimeMappings !== undefined ? { runtime_mappings: runtimeMappings } : {}),
|
||||
},
|
||||
...(indicesOptions ?? {}),
|
||||
})
|
||||
.then(({ body }) => {
|
||||
// eslint-disable-next-line camelcase
|
||||
|
@ -390,7 +405,8 @@ export function estimateBucketSpanFactory(client) {
|
|||
formConfig.index,
|
||||
formConfig.splitField,
|
||||
formConfig.query,
|
||||
formConfig.runtimeMappings
|
||||
formConfig.runtimeMappings,
|
||||
formConfig.indicesOptions
|
||||
)
|
||||
.then((splitFieldValues) => {
|
||||
runEstimator(splitFieldValues);
|
||||
|
|
|
@ -8,8 +8,9 @@
|
|||
import { IScopedClusterClient } from 'kibana/server';
|
||||
|
||||
import { ES_AGGREGATION } from '../../../common/constants/aggregation_types';
|
||||
import { BucketSpanEstimatorData } from '../../../common/types/job_service';
|
||||
|
||||
import { estimateBucketSpanFactory, BucketSpanEstimatorData } from './bucket_span_estimator';
|
||||
import { estimateBucketSpanFactory } from './bucket_span_estimator';
|
||||
|
||||
const callAs = {
|
||||
search: () => Promise.resolve({ body: {} }),
|
||||
|
@ -36,6 +37,7 @@ const formConfig: BucketSpanEstimatorData = {
|
|||
splitField: undefined,
|
||||
timeField: undefined,
|
||||
runtimeMappings: undefined,
|
||||
indicesOptions: undefined,
|
||||
};
|
||||
|
||||
describe('ML - BucketSpanEstimator', () => {
|
||||
|
|
|
@ -15,11 +15,12 @@ import { get } from 'lodash';
|
|||
|
||||
export function polledDataCheckerFactory({ asCurrentUser }) {
|
||||
class PolledDataChecker {
|
||||
constructor(index, timeField, duration, query) {
|
||||
constructor(index, timeField, duration, query, indicesOptions) {
|
||||
this.index = index;
|
||||
this.timeField = timeField;
|
||||
this.duration = duration;
|
||||
this.query = query;
|
||||
this.indicesOptions = indicesOptions;
|
||||
|
||||
this.isPolled = false;
|
||||
this.minimumBucketSpan = 0;
|
||||
|
@ -73,6 +74,7 @@ export function polledDataCheckerFactory({ asCurrentUser }) {
|
|||
index: this.index,
|
||||
size: 0,
|
||||
body: searchBody,
|
||||
...(this.indicesOptions ?? {}),
|
||||
});
|
||||
return body;
|
||||
}
|
||||
|
|
|
@ -18,7 +18,17 @@ export function singleSeriesCheckerFactory({ asCurrentUser }) {
|
|||
const REF_DATA_INTERVAL = { name: '1h', ms: 3600000 };
|
||||
|
||||
class SingleSeriesChecker {
|
||||
constructor(index, timeField, aggType, field, duration, query, thresholds, runtimeMappings) {
|
||||
constructor(
|
||||
index,
|
||||
timeField,
|
||||
aggType,
|
||||
field,
|
||||
duration,
|
||||
query,
|
||||
thresholds,
|
||||
runtimeMappings,
|
||||
indicesOptions
|
||||
) {
|
||||
this.index = index;
|
||||
this.timeField = timeField;
|
||||
this.aggType = aggType;
|
||||
|
@ -32,6 +42,7 @@ export function singleSeriesCheckerFactory({ asCurrentUser }) {
|
|||
created: false,
|
||||
};
|
||||
this.runtimeMappings = runtimeMappings;
|
||||
this.indicesOptions = indicesOptions;
|
||||
this.interval = null;
|
||||
}
|
||||
|
||||
|
@ -193,6 +204,7 @@ export function singleSeriesCheckerFactory({ asCurrentUser }) {
|
|||
index: this.index,
|
||||
size: 0,
|
||||
body: searchBody,
|
||||
...(this.indicesOptions ?? {}),
|
||||
});
|
||||
return body;
|
||||
}
|
||||
|
|
|
@ -13,7 +13,7 @@ import { initCardinalityFieldsCache } from './fields_aggs_cache';
|
|||
import { AggCardinality } from '../../../common/types/fields';
|
||||
import { isValidAggregationField } from '../../../common/util/validation_utils';
|
||||
import { getDatafeedAggregations } from '../../../common/util/datafeed_utils';
|
||||
import { Datafeed } from '../../../common/types/anomaly_detection_jobs';
|
||||
import { Datafeed, IndicesOptions } from '../../../common/types/anomaly_detection_jobs';
|
||||
|
||||
/**
|
||||
* Service for carrying out queries to obtain data
|
||||
|
@ -183,6 +183,7 @@ export function fieldsServiceProvider({ asCurrentUser }: IScopedClusterClient) {
|
|||
} = await asCurrentUser.search({
|
||||
index,
|
||||
body,
|
||||
...(datafeedConfig?.indices_options ?? {}),
|
||||
});
|
||||
|
||||
if (!aggregations) {
|
||||
|
@ -210,7 +211,8 @@ export function fieldsServiceProvider({ asCurrentUser }: IScopedClusterClient) {
|
|||
async function getTimeFieldRange(
|
||||
index: string[] | string,
|
||||
timeFieldName: string,
|
||||
query: any
|
||||
query: any,
|
||||
indicesOptions?: IndicesOptions
|
||||
): Promise<{
|
||||
success: boolean;
|
||||
start: { epoch: number; string: string };
|
||||
|
@ -238,6 +240,7 @@ export function fieldsServiceProvider({ asCurrentUser }: IScopedClusterClient) {
|
|||
},
|
||||
},
|
||||
},
|
||||
...(indicesOptions ?? {}),
|
||||
});
|
||||
|
||||
if (aggregations && aggregations.earliest && aggregations.latest) {
|
||||
|
@ -394,6 +397,7 @@ export function fieldsServiceProvider({ asCurrentUser }: IScopedClusterClient) {
|
|||
} = await asCurrentUser.search({
|
||||
index,
|
||||
body,
|
||||
...(datafeedConfig?.indices_options ?? {}),
|
||||
});
|
||||
|
||||
if (!aggregations) {
|
||||
|
|
|
@ -6,10 +6,15 @@
|
|||
*/
|
||||
|
||||
import { i18n } from '@kbn/i18n';
|
||||
import { IScopedClusterClient } from 'kibana/server';
|
||||
import { JOB_STATE, DATAFEED_STATE } from '../../../common/constants/states';
|
||||
import { fillResultsWithTimeouts, isRequestTimeout } from './error_utils';
|
||||
import { Datafeed, DatafeedStats } from '../../../common/types/anomaly_detection_jobs';
|
||||
import { Datafeed, DatafeedStats, Job } from '../../../common/types/anomaly_detection_jobs';
|
||||
import { ML_DATA_PREVIEW_COUNT } from '../../../common/util/job_utils';
|
||||
import { fieldsServiceProvider } from '../fields_service';
|
||||
import type { MlClient } from '../../lib/ml_client';
|
||||
import { parseInterval } from '../../../common/util/parse_interval';
|
||||
import { isPopulatedObject } from '../../../common/util/object_utils';
|
||||
|
||||
export interface MlDatafeedsResponse {
|
||||
datafeeds: Datafeed[];
|
||||
|
@ -27,7 +32,7 @@ interface Results {
|
|||
};
|
||||
}
|
||||
|
||||
export function datafeedsProvider(mlClient: MlClient) {
|
||||
export function datafeedsProvider(client: IScopedClusterClient, mlClient: MlClient) {
|
||||
async function forceStartDatafeeds(datafeedIds: string[], start?: number, end?: number) {
|
||||
const jobIds = await getJobIdsByDatafeedId();
|
||||
const doStartsCalled = datafeedIds.reduce((acc, cur) => {
|
||||
|
@ -204,6 +209,153 @@ export function datafeedsProvider(mlClient: MlClient) {
|
|||
}
|
||||
}
|
||||
|
||||
async function datafeedPreview(job: Job, datafeed: Datafeed) {
|
||||
let query: any = { match_all: {} };
|
||||
if (datafeed.query) {
|
||||
query = datafeed.query;
|
||||
}
|
||||
const { getTimeFieldRange } = fieldsServiceProvider(client);
|
||||
const { start } = await getTimeFieldRange(
|
||||
datafeed.indices,
|
||||
job.data_description.time_field,
|
||||
query,
|
||||
datafeed.indices_options
|
||||
);
|
||||
|
||||
// Get bucket span
|
||||
// Get first doc time for datafeed
|
||||
// Create a new query - must user query and must range query.
|
||||
// Time range 'to' first doc time plus < 10 buckets
|
||||
|
||||
// Do a preliminary search to get the date of the earliest doc matching the
|
||||
// query in the datafeed. This will be used to apply a time range criteria
|
||||
// on the datafeed search preview.
|
||||
// This time filter is required for datafeed searches using aggregations to ensure
|
||||
// the search does not create too many buckets (default 10000 max_bucket limit),
|
||||
// but apply it to searches without aggregations too for consistency.
|
||||
const bucketSpan = parseInterval(job.analysis_config.bucket_span);
|
||||
if (bucketSpan === null) {
|
||||
return;
|
||||
}
|
||||
const earliestMs = start.epoch;
|
||||
const latestMs = +start.epoch + 10 * bucketSpan.asMilliseconds();
|
||||
|
||||
const body: any = {
|
||||
query: {
|
||||
bool: {
|
||||
must: [
|
||||
{
|
||||
range: {
|
||||
[job.data_description.time_field]: {
|
||||
gte: earliestMs,
|
||||
lt: latestMs,
|
||||
format: 'epoch_millis',
|
||||
},
|
||||
},
|
||||
},
|
||||
query,
|
||||
],
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
// if aggs or aggregations is set, add it to the search
|
||||
const aggregations = datafeed.aggs ?? datafeed.aggregations;
|
||||
if (isPopulatedObject(aggregations)) {
|
||||
body.size = 0;
|
||||
body.aggregations = aggregations;
|
||||
|
||||
// add script_fields if present
|
||||
const scriptFields = datafeed.script_fields;
|
||||
if (isPopulatedObject(scriptFields)) {
|
||||
body.script_fields = scriptFields;
|
||||
}
|
||||
|
||||
// add runtime_mappings if present
|
||||
const runtimeMappings = datafeed.runtime_mappings;
|
||||
if (isPopulatedObject(runtimeMappings)) {
|
||||
body.runtime_mappings = runtimeMappings;
|
||||
}
|
||||
} else {
|
||||
// if aggregations is not set and retrieveWholeSource is not set, add all of the fields from the job
|
||||
body.size = ML_DATA_PREVIEW_COUNT;
|
||||
|
||||
// add script_fields if present
|
||||
const scriptFields = datafeed.script_fields;
|
||||
if (isPopulatedObject(scriptFields)) {
|
||||
body.script_fields = scriptFields;
|
||||
}
|
||||
|
||||
// add runtime_mappings if present
|
||||
const runtimeMappings = datafeed.runtime_mappings;
|
||||
if (isPopulatedObject(runtimeMappings)) {
|
||||
body.runtime_mappings = runtimeMappings;
|
||||
}
|
||||
|
||||
const fields = new Set<string>();
|
||||
|
||||
// get fields from detectors
|
||||
if (job.analysis_config.detectors) {
|
||||
job.analysis_config.detectors.forEach((dtr) => {
|
||||
if (dtr.by_field_name) {
|
||||
fields.add(dtr.by_field_name);
|
||||
}
|
||||
if (dtr.field_name) {
|
||||
fields.add(dtr.field_name);
|
||||
}
|
||||
if (dtr.over_field_name) {
|
||||
fields.add(dtr.over_field_name);
|
||||
}
|
||||
if (dtr.partition_field_name) {
|
||||
fields.add(dtr.partition_field_name);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// get fields from influencers
|
||||
if (job.analysis_config.influencers) {
|
||||
job.analysis_config.influencers.forEach((inf) => {
|
||||
fields.add(inf);
|
||||
});
|
||||
}
|
||||
|
||||
// get fields from categorizationFieldName
|
||||
if (job.analysis_config.categorization_field_name) {
|
||||
fields.add(job.analysis_config.categorization_field_name);
|
||||
}
|
||||
|
||||
// get fields from summary_count_field_name
|
||||
if (job.analysis_config.summary_count_field_name) {
|
||||
fields.add(job.analysis_config.summary_count_field_name);
|
||||
}
|
||||
|
||||
// get fields from time_field
|
||||
if (job.data_description.time_field) {
|
||||
fields.add(job.data_description.time_field);
|
||||
}
|
||||
|
||||
// add runtime fields
|
||||
if (runtimeMappings) {
|
||||
Object.keys(runtimeMappings).forEach((fieldName) => {
|
||||
fields.add(fieldName);
|
||||
});
|
||||
}
|
||||
|
||||
const fieldsList = [...fields];
|
||||
if (fieldsList.length) {
|
||||
body.fields = fieldsList;
|
||||
body._source = false;
|
||||
}
|
||||
}
|
||||
const data = {
|
||||
index: datafeed.indices,
|
||||
body,
|
||||
...(datafeed.indices_options ?? {}),
|
||||
};
|
||||
|
||||
return (await client.asCurrentUser.search(data)).body;
|
||||
}
|
||||
|
||||
return {
|
||||
forceStartDatafeeds,
|
||||
stopDatafeeds,
|
||||
|
@ -211,5 +363,6 @@ export function datafeedsProvider(mlClient: MlClient) {
|
|||
getDatafeedIdsByJobId,
|
||||
getJobIdsByDatafeedId,
|
||||
getDatafeedByJobId,
|
||||
datafeedPreview,
|
||||
};
|
||||
}
|
||||
|
|
|
@ -16,12 +16,12 @@ import type { MlClient } from '../../lib/ml_client';
|
|||
|
||||
export function jobServiceProvider(client: IScopedClusterClient, mlClient: MlClient) {
|
||||
return {
|
||||
...datafeedsProvider(mlClient),
|
||||
...datafeedsProvider(client, mlClient),
|
||||
...jobsProvider(client, mlClient),
|
||||
...groupsProvider(mlClient),
|
||||
...newJobCapsProvider(client),
|
||||
...newJobChartsProvider(client),
|
||||
...topCategoriesProvider(mlClient),
|
||||
...modelSnapshotProvider(mlClient),
|
||||
...modelSnapshotProvider(client, mlClient),
|
||||
};
|
||||
}
|
||||
|
|
|
@ -52,6 +52,7 @@ export function jobsProvider(client: IScopedClusterClient, mlClient: MlClient) {
|
|||
const { asInternalUser } = client;
|
||||
|
||||
const { forceDeleteDatafeed, getDatafeedIdsByJobId, getDatafeedByJobId } = datafeedsProvider(
|
||||
client,
|
||||
mlClient
|
||||
);
|
||||
const { getAuditMessagesSummary } = jobAuditMessagesProvider(client, mlClient);
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
|
||||
import Boom from '@hapi/boom';
|
||||
import { i18n } from '@kbn/i18n';
|
||||
import { IScopedClusterClient } from 'kibana/server';
|
||||
import { ModelSnapshot } from '../../../common/types/anomaly_detection_jobs';
|
||||
import { datafeedsProvider } from './datafeeds';
|
||||
import { FormCalendar, CalendarManager } from '../calendar';
|
||||
|
@ -20,8 +21,8 @@ export interface RevertModelSnapshotResponse {
|
|||
model: ModelSnapshot;
|
||||
}
|
||||
|
||||
export function modelSnapshotProvider(mlClient: MlClient) {
|
||||
const { forceStartDatafeeds, getDatafeedIdsByJobId } = datafeedsProvider(mlClient);
|
||||
export function modelSnapshotProvider(client: IScopedClusterClient, mlClient: MlClient) {
|
||||
const { forceStartDatafeeds, getDatafeedIdsByJobId } = datafeedsProvider(client, mlClient);
|
||||
|
||||
async function revertModelSnapshot(
|
||||
jobId: string,
|
||||
|
|
|
@ -15,6 +15,7 @@ import {
|
|||
CategoryFieldExample,
|
||||
} from '../../../../../common/types/categories';
|
||||
import { RuntimeMappings } from '../../../../../common/types/fields';
|
||||
import { IndicesOptions } from '../../../../../common/types/anomaly_detection_jobs';
|
||||
import { ValidationResults } from './validation_results';
|
||||
|
||||
const CHUNK_SIZE = 100;
|
||||
|
@ -34,7 +35,8 @@ export function categorizationExamplesProvider({
|
|||
start: number,
|
||||
end: number,
|
||||
analyzer: CategorizationAnalyzer,
|
||||
runtimeMappings: RuntimeMappings | undefined
|
||||
runtimeMappings: RuntimeMappings | undefined,
|
||||
indicesOptions: IndicesOptions | undefined
|
||||
): Promise<{ examples: CategoryFieldExample[]; error?: any }> {
|
||||
if (timeField !== undefined) {
|
||||
const range = {
|
||||
|
@ -69,6 +71,7 @@ export function categorizationExamplesProvider({
|
|||
sort: ['_doc'],
|
||||
...(runtimeMappings !== undefined ? { runtime_mappings: runtimeMappings } : {}),
|
||||
},
|
||||
...(indicesOptions ?? {}),
|
||||
});
|
||||
|
||||
// hit.fields can be undefined if value is originally null
|
||||
|
@ -169,7 +172,8 @@ export function categorizationExamplesProvider({
|
|||
start: number,
|
||||
end: number,
|
||||
analyzer: CategorizationAnalyzer,
|
||||
runtimeMappings: RuntimeMappings | undefined
|
||||
runtimeMappings: RuntimeMappings | undefined,
|
||||
indicesOptions: IndicesOptions | undefined
|
||||
) {
|
||||
const resp = await categorizationExamples(
|
||||
indexPatternTitle,
|
||||
|
@ -180,7 +184,8 @@ export function categorizationExamplesProvider({
|
|||
start,
|
||||
end,
|
||||
analyzer,
|
||||
runtimeMappings
|
||||
runtimeMappings,
|
||||
indicesOptions
|
||||
);
|
||||
|
||||
const { examples } = resp;
|
||||
|
|
|
@ -12,6 +12,7 @@ import {
|
|||
EVENT_RATE_FIELD_ID,
|
||||
RuntimeMappings,
|
||||
} from '../../../../common/types/fields';
|
||||
import { IndicesOptions } from '../../../../common/types/anomaly_detection_jobs';
|
||||
import { ML_MEDIAN_PERCENTS } from '../../../../common/util/job_utils';
|
||||
|
||||
type DtrIndex = number;
|
||||
|
@ -39,7 +40,8 @@ export function newJobLineChartProvider({ asCurrentUser }: IScopedClusterClient)
|
|||
aggFieldNamePairs: AggFieldNamePair[],
|
||||
splitFieldName: string | null,
|
||||
splitFieldValue: string | null,
|
||||
runtimeMappings: RuntimeMappings | undefined
|
||||
runtimeMappings: RuntimeMappings | undefined,
|
||||
indicesOptions: IndicesOptions | undefined
|
||||
) {
|
||||
const json: object = getSearchJsonFromConfig(
|
||||
indexPatternTitle,
|
||||
|
@ -51,7 +53,8 @@ export function newJobLineChartProvider({ asCurrentUser }: IScopedClusterClient)
|
|||
aggFieldNamePairs,
|
||||
splitFieldName,
|
||||
splitFieldValue,
|
||||
runtimeMappings
|
||||
runtimeMappings,
|
||||
indicesOptions
|
||||
);
|
||||
|
||||
const { body } = await asCurrentUser.search(json);
|
||||
|
@ -110,7 +113,8 @@ function getSearchJsonFromConfig(
|
|||
aggFieldNamePairs: AggFieldNamePair[],
|
||||
splitFieldName: string | null,
|
||||
splitFieldValue: string | null,
|
||||
runtimeMappings: RuntimeMappings | undefined
|
||||
runtimeMappings: RuntimeMappings | undefined,
|
||||
indicesOptions: IndicesOptions | undefined
|
||||
): object {
|
||||
const json = {
|
||||
index: indexPatternTitle,
|
||||
|
@ -134,6 +138,7 @@ function getSearchJsonFromConfig(
|
|||
},
|
||||
...(runtimeMappings !== undefined ? { runtime_mappings: runtimeMappings } : {}),
|
||||
},
|
||||
...(indicesOptions ?? {}),
|
||||
};
|
||||
|
||||
if (query.bool === undefined) {
|
||||
|
|
|
@ -12,6 +12,7 @@ import {
|
|||
EVENT_RATE_FIELD_ID,
|
||||
RuntimeMappings,
|
||||
} from '../../../../common/types/fields';
|
||||
import { IndicesOptions } from '../../../../common/types/anomaly_detection_jobs';
|
||||
import { ML_MEDIAN_PERCENTS } from '../../../../common/util/job_utils';
|
||||
|
||||
const OVER_FIELD_EXAMPLES_COUNT = 40;
|
||||
|
@ -44,7 +45,8 @@ export function newJobPopulationChartProvider({ asCurrentUser }: IScopedClusterC
|
|||
query: object,
|
||||
aggFieldNamePairs: AggFieldNamePair[],
|
||||
splitFieldName: string | null,
|
||||
runtimeMappings: RuntimeMappings | undefined
|
||||
runtimeMappings: RuntimeMappings | undefined,
|
||||
indicesOptions: IndicesOptions | undefined
|
||||
) {
|
||||
const json: object = getPopulationSearchJsonFromConfig(
|
||||
indexPatternTitle,
|
||||
|
@ -55,7 +57,8 @@ export function newJobPopulationChartProvider({ asCurrentUser }: IScopedClusterC
|
|||
query,
|
||||
aggFieldNamePairs,
|
||||
splitFieldName,
|
||||
runtimeMappings
|
||||
runtimeMappings,
|
||||
indicesOptions
|
||||
);
|
||||
|
||||
const { body } = await asCurrentUser.search(json);
|
||||
|
@ -138,7 +141,8 @@ function getPopulationSearchJsonFromConfig(
|
|||
query: any,
|
||||
aggFieldNamePairs: AggFieldNamePair[],
|
||||
splitFieldName: string | null,
|
||||
runtimeMappings: RuntimeMappings | undefined
|
||||
runtimeMappings: RuntimeMappings | undefined,
|
||||
indicesOptions: IndicesOptions | undefined
|
||||
): object {
|
||||
const json = {
|
||||
index: indexPatternTitle,
|
||||
|
@ -162,6 +166,7 @@ function getPopulationSearchJsonFromConfig(
|
|||
},
|
||||
...(runtimeMappings !== undefined ? { runtime_mappings: runtimeMappings } : {}),
|
||||
},
|
||||
...(indicesOptions ?? {}),
|
||||
};
|
||||
|
||||
if (query.bool === undefined) {
|
||||
|
|
|
@ -84,6 +84,7 @@
|
|||
"GetLookBackProgress",
|
||||
"ValidateCategoryExamples",
|
||||
"TopCategories",
|
||||
"DatafeedPreview",
|
||||
"UpdateGroups",
|
||||
"DeletingJobTasks",
|
||||
"DeleteJobs",
|
||||
|
|
|
@ -133,7 +133,7 @@ describe('schema_extractor', () => {
|
|||
{
|
||||
name: 'expand_wildcards',
|
||||
documentation: '',
|
||||
type: 'string[]',
|
||||
type: '"all" | "open" | "closed" | "hidden" | "none"[]',
|
||||
},
|
||||
{
|
||||
name: 'ignore_unavailable',
|
||||
|
|
|
@ -22,8 +22,8 @@ function getCardinalityOfFields(client: IScopedClusterClient, payload: any) {
|
|||
|
||||
function getTimeFieldRange(client: IScopedClusterClient, payload: any) {
|
||||
const fs = fieldsServiceProvider(client);
|
||||
const { index, timeFieldName, query } = payload;
|
||||
return fs.getTimeFieldRange(index, timeFieldName, query);
|
||||
const { index, timeFieldName, query, indicesOptions } = payload;
|
||||
return fs.getTimeFieldRange(index, timeFieldName, query, indicesOptions);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -20,12 +20,14 @@ import {
|
|||
updateGroupsSchema,
|
||||
revertModelSnapshotSchema,
|
||||
jobsExistSchema,
|
||||
datafeedPreviewSchema,
|
||||
} from './schemas/job_service_schema';
|
||||
|
||||
import { jobIdSchema } from './schemas/anomaly_detectors_schema';
|
||||
|
||||
import { jobServiceProvider } from '../models/job_service';
|
||||
import { categorizationExamplesProvider } from '../models/job_service/new_job';
|
||||
import { getAuthorizationHeader } from '../lib/request_authorization';
|
||||
|
||||
/**
|
||||
* Routes for job service
|
||||
|
@ -535,6 +537,7 @@ export function jobServiceRoutes({ router, routeGuard }: RouteInitialization) {
|
|||
splitFieldName,
|
||||
splitFieldValue,
|
||||
runtimeMappings,
|
||||
indicesOptions,
|
||||
} = request.body;
|
||||
|
||||
const { newJobLineChart } = jobServiceProvider(client, mlClient);
|
||||
|
@ -548,7 +551,8 @@ export function jobServiceRoutes({ router, routeGuard }: RouteInitialization) {
|
|||
aggFieldNamePairs,
|
||||
splitFieldName,
|
||||
splitFieldValue,
|
||||
runtimeMappings
|
||||
runtimeMappings,
|
||||
indicesOptions
|
||||
);
|
||||
|
||||
return response.ok({
|
||||
|
@ -591,6 +595,7 @@ export function jobServiceRoutes({ router, routeGuard }: RouteInitialization) {
|
|||
aggFieldNamePairs,
|
||||
splitFieldName,
|
||||
runtimeMappings,
|
||||
indicesOptions,
|
||||
} = request.body;
|
||||
|
||||
const { newJobPopulationChart } = jobServiceProvider(client, mlClient);
|
||||
|
@ -603,7 +608,8 @@ export function jobServiceRoutes({ router, routeGuard }: RouteInitialization) {
|
|||
query,
|
||||
aggFieldNamePairs,
|
||||
splitFieldName,
|
||||
runtimeMappings
|
||||
runtimeMappings,
|
||||
indicesOptions
|
||||
);
|
||||
|
||||
return response.ok({
|
||||
|
@ -710,6 +716,7 @@ export function jobServiceRoutes({ router, routeGuard }: RouteInitialization) {
|
|||
end,
|
||||
analyzer,
|
||||
runtimeMappings,
|
||||
indicesOptions,
|
||||
} = request.body;
|
||||
|
||||
const resp = await validateCategoryExamples(
|
||||
|
@ -721,7 +728,8 @@ export function jobServiceRoutes({ router, routeGuard }: RouteInitialization) {
|
|||
start,
|
||||
end,
|
||||
analyzer,
|
||||
runtimeMappings
|
||||
runtimeMappings,
|
||||
indicesOptions
|
||||
);
|
||||
|
||||
return response.ok({
|
||||
|
@ -767,6 +775,52 @@ export function jobServiceRoutes({ router, routeGuard }: RouteInitialization) {
|
|||
})
|
||||
);
|
||||
|
||||
/**
|
||||
* @apiGroup JobService
|
||||
*
|
||||
* @api {post} /api/ml/jobs/datafeed_preview Get datafeed preview
|
||||
* @apiName DatafeedPreview
|
||||
* @apiDescription Returns a preview of the datafeed search
|
||||
*
|
||||
* @apiSchema (body) datafeedPreviewSchema
|
||||
*/
|
||||
router.post(
|
||||
{
|
||||
path: '/api/ml/jobs/datafeed_preview',
|
||||
validate: {
|
||||
body: datafeedPreviewSchema,
|
||||
},
|
||||
options: {
|
||||
tags: ['access:ml:canGetJobs'],
|
||||
},
|
||||
},
|
||||
routeGuard.fullLicenseAPIGuard(async ({ client, mlClient, request, response }) => {
|
||||
try {
|
||||
const { datafeedId, job, datafeed } = request.body;
|
||||
|
||||
if (datafeedId !== undefined) {
|
||||
const { body } = await mlClient.previewDatafeed(
|
||||
{
|
||||
datafeed_id: datafeedId,
|
||||
},
|
||||
getAuthorizationHeader(request)
|
||||
);
|
||||
return response.ok({
|
||||
body,
|
||||
});
|
||||
}
|
||||
|
||||
const { datafeedPreview } = jobServiceProvider(client, mlClient);
|
||||
const body = await datafeedPreview(job, datafeed);
|
||||
return response.ok({
|
||||
body,
|
||||
});
|
||||
} catch (e) {
|
||||
return response.customError(wrapError(e));
|
||||
}
|
||||
})
|
||||
);
|
||||
|
||||
/**
|
||||
* @apiGroup JobService
|
||||
*
|
||||
|
|
|
@ -13,6 +13,23 @@ export const startDatafeedSchema = schema.object({
|
|||
timeout: schema.maybe(schema.any()),
|
||||
});
|
||||
|
||||
export const indicesOptionsSchema = schema.object({
|
||||
expand_wildcards: schema.maybe(
|
||||
schema.arrayOf(
|
||||
schema.oneOf([
|
||||
schema.literal('all'),
|
||||
schema.literal('open'),
|
||||
schema.literal('closed'),
|
||||
schema.literal('hidden'),
|
||||
schema.literal('none'),
|
||||
])
|
||||
)
|
||||
),
|
||||
ignore_unavailable: schema.maybe(schema.boolean()),
|
||||
allow_no_indices: schema.maybe(schema.boolean()),
|
||||
ignore_throttled: schema.maybe(schema.boolean()),
|
||||
});
|
||||
|
||||
export const datafeedConfigSchema = schema.object({
|
||||
datafeed_id: schema.maybe(schema.string()),
|
||||
feed_id: schema.maybe(schema.string()),
|
||||
|
@ -35,14 +52,7 @@ export const datafeedConfigSchema = schema.object({
|
|||
runtime_mappings: schema.maybe(schema.any()),
|
||||
scroll_size: schema.maybe(schema.number()),
|
||||
delayed_data_check_config: schema.maybe(schema.any()),
|
||||
indices_options: schema.maybe(
|
||||
schema.object({
|
||||
expand_wildcards: schema.maybe(schema.arrayOf(schema.string())),
|
||||
ignore_unavailable: schema.maybe(schema.boolean()),
|
||||
allow_no_indices: schema.maybe(schema.boolean()),
|
||||
ignore_throttled: schema.maybe(schema.boolean()),
|
||||
})
|
||||
),
|
||||
indices_options: indicesOptionsSchema,
|
||||
});
|
||||
|
||||
export const datafeedIdSchema = schema.object({ datafeedId: schema.string() });
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
*/
|
||||
|
||||
import { schema } from '@kbn/config-schema';
|
||||
import { indicesOptionsSchema } from './datafeeds_schema';
|
||||
|
||||
export const getCardinalityOfFieldsSchema = schema.object({
|
||||
/** Index or indexes for which to return the time range. */
|
||||
|
@ -29,4 +30,6 @@ export const getTimeFieldRangeSchema = schema.object({
|
|||
timeFieldName: schema.maybe(schema.string()),
|
||||
/** Query to match documents in the index(es). */
|
||||
query: schema.maybe(schema.any()),
|
||||
/** Additional search options. */
|
||||
indicesOptions: indicesOptionsSchema,
|
||||
});
|
||||
|
|
|
@ -6,6 +6,8 @@
|
|||
*/
|
||||
|
||||
import { schema } from '@kbn/config-schema';
|
||||
import { anomalyDetectionJobSchema } from './anomaly_detectors_schema';
|
||||
import { datafeedConfigSchema, indicesOptionsSchema } from './datafeeds_schema';
|
||||
|
||||
export const categorizationFieldExamplesSchema = {
|
||||
indexPatternTitle: schema.string(),
|
||||
|
@ -17,6 +19,7 @@ export const categorizationFieldExamplesSchema = {
|
|||
end: schema.number(),
|
||||
analyzer: schema.any(),
|
||||
runtimeMappings: schema.maybe(schema.any()),
|
||||
indicesOptions: indicesOptionsSchema,
|
||||
};
|
||||
|
||||
export const chartSchema = {
|
||||
|
@ -30,6 +33,7 @@ export const chartSchema = {
|
|||
splitFieldName: schema.maybe(schema.nullable(schema.string())),
|
||||
splitFieldValue: schema.maybe(schema.nullable(schema.string())),
|
||||
runtimeMappings: schema.maybe(schema.any()),
|
||||
indicesOptions: indicesOptionsSchema,
|
||||
};
|
||||
|
||||
export const datafeedIdsSchema = schema.object({
|
||||
|
@ -92,6 +96,16 @@ export const revertModelSnapshotSchema = schema.object({
|
|||
),
|
||||
});
|
||||
|
||||
export const datafeedPreviewSchema = schema.oneOf([
|
||||
schema.object({
|
||||
job: schema.maybe(schema.object(anomalyDetectionJobSchema)),
|
||||
datafeed: schema.maybe(datafeedConfigSchema),
|
||||
}),
|
||||
schema.object({
|
||||
datafeedId: schema.maybe(schema.string()),
|
||||
}),
|
||||
]);
|
||||
|
||||
export const jobsExistSchema = schema.object({
|
||||
jobIds: schema.arrayOf(schema.string()),
|
||||
allSpaces: schema.maybe(schema.boolean()),
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
|
||||
import { schema } from '@kbn/config-schema';
|
||||
import { analysisConfigSchema, anomalyDetectionJobSchema } from './anomaly_detectors_schema';
|
||||
import { datafeedConfigSchema } from './datafeeds_schema';
|
||||
import { datafeedConfigSchema, indicesOptionsSchema } from './datafeeds_schema';
|
||||
|
||||
export const estimateBucketSpanSchema = schema.object({
|
||||
aggTypes: schema.arrayOf(schema.nullable(schema.string())),
|
||||
|
@ -19,6 +19,7 @@ export const estimateBucketSpanSchema = schema.object({
|
|||
splitField: schema.maybe(schema.string()),
|
||||
timeField: schema.maybe(schema.string()),
|
||||
runtimeMappings: schema.maybe(schema.any()),
|
||||
indicesOptions: indicesOptionsSchema,
|
||||
});
|
||||
|
||||
export const modelMemoryLimitSchema = schema.object({
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue