[ML] Functional tests - reduce job run time in date nanos and categorization tests (#123899) (#123931)

This PR stabilizes the date nanos job and categorization job tests for cloud execution by reducing the job run time.

(cherry picked from commit 4f1d97a908)

Co-authored-by: Robert Oskamp <robert.oskamp@elastic.co>
This commit is contained in:
Kibana Machine 2022-01-28 04:26:21 -05:00 committed by GitHub
parent 60a9838d21
commit 59d5addac5
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 25 additions and 25 deletions

View file

@ -21,7 +21,7 @@ export default function ({ getService }: FtrProviderContext) {
const detectorTypeIdentifier = 'Rare';
const categorizationFieldIdentifier = 'field1';
const categorizationExampleCount = 5;
const bucketSpan = '15m';
const bucketSpan = '1d';
const memoryLimit = '15mb';
function getExpectedRow(expectedJobId: string, expectedJobGroups: string[]) {
@ -29,32 +29,32 @@ export default function ({ getService }: FtrProviderContext) {
id: expectedJobId,
description: jobDescription,
jobGroups: [...new Set(expectedJobGroups)].sort(),
recordCount: '1,501',
recordCount: '1,000',
memoryStatus: 'ok',
jobState: 'closed',
datafeedState: 'stopped',
latestTimestamp: '2019-11-21 06:01:13',
latestTimestamp: '2019-11-21 00:01:13',
};
}
function getExpectedCounts(expectedJobId: string) {
return {
job_id: expectedJobId,
processed_record_count: '1,501',
processed_field_count: '1,501',
input_bytes: '335.4 KB',
input_field_count: '1,501',
processed_record_count: '1,000',
processed_field_count: '1,000',
input_bytes: '148.8 KB',
input_field_count: '1,000',
invalid_date_count: '0',
missing_field_count: '0',
out_of_order_timestamp_count: '0',
empty_bucket_count: '21,428',
empty_bucket_count: '23',
sparse_bucket_count: '0',
bucket_count: '22,059',
bucket_count: '230',
earliest_record_timestamp: '2019-04-05 11:25:35',
latest_record_timestamp: '2019-11-21 06:01:13',
input_record_count: '1,501',
latest_bucket_timestamp: '2019-11-21 06:00:00',
latest_empty_bucket_timestamp: '2019-11-21 05:45:00',
latest_record_timestamp: '2019-11-21 00:01:13',
input_record_count: '1,000',
latest_bucket_timestamp: '2019-11-21 00:00:00',
latest_empty_bucket_timestamp: '2019-11-17 00:00:00',
};
}
@ -68,7 +68,7 @@ export default function ({ getService }: FtrProviderContext) {
total_partition_field_count: '2',
bucket_allocation_failures_count: '0',
memory_status: 'ok',
timestamp: '2019-11-21 05:45:00',
timestamp: '2019-11-20 00:00:00',
};
}
@ -77,8 +77,8 @@ export default function ({ getService }: FtrProviderContext) {
describe('categorization', function () {
this.tags(['mlqa']);
before(async () => {
await esArchiver.loadIfNeeded('x-pack/test/functional/es_archives/ml/categorization');
await ml.testResources.createIndexPatternIfNeeded('ft_categorization', '@timestamp');
await esArchiver.loadIfNeeded('x-pack/test/functional/es_archives/ml/categorization_small');
await ml.testResources.createIndexPatternIfNeeded('ft_categorization_small', '@timestamp');
await ml.testResources.setKibanaTimeZoneToUTC();
await ml.api.createCalendar(calendarId);
@ -87,7 +87,7 @@ export default function ({ getService }: FtrProviderContext) {
after(async () => {
await ml.api.cleanMlIndices();
await ml.testResources.deleteIndexPatternByTitle('ft_categorization');
await ml.testResources.deleteIndexPatternByTitle('ft_categorization_small');
});
it('job creation loads the categorization wizard for the source data', async () => {
@ -100,7 +100,7 @@ export default function ({ getService }: FtrProviderContext) {
await ml.jobManagement.navigateToNewJobSourceSelection();
await ml.testExecution.logTestStep('job creation loads the job type selection page');
await ml.jobSourceSelection.selectSourceForAnomalyDetectionJob('ft_categorization');
await ml.jobSourceSelection.selectSourceForAnomalyDetectionJob('ft_categorization_small');
await ml.testExecution.logTestStep('job creation loads the categorization job wizard page');
await ml.jobTypeSelection.selectCategorizationJob();
@ -113,7 +113,7 @@ export default function ({ getService }: FtrProviderContext) {
await ml.testExecution.logTestStep('job creation sets the time range');
await ml.jobWizardCommon.clickUseFullDataButton(
'Apr 5, 2019 @ 11:25:35.770',
'Nov 21, 2019 @ 06:01:13.914'
'Nov 21, 2019 @ 00:01:13.923'
);
await ml.testExecution.logTestStep('job creation displays the event rate chart');
@ -235,7 +235,7 @@ export default function ({ getService }: FtrProviderContext) {
await ml.testExecution.logTestStep('job cloning sets the time range');
await ml.jobWizardCommon.clickUseFullDataButton(
'Apr 5, 2019 @ 11:25:35.770',
'Nov 21, 2019 @ 06:01:13.914'
'Nov 21, 2019 @ 00:01:13.923'
);
await ml.testExecution.logTestStep('job cloning displays the event rate chart');

View file

@ -57,7 +57,7 @@ export default function ({ getService }: FtrProviderContext) {
jobSource: 'ft_event_rate_gen_trend_nanos',
jobId: `event_rate_nanos_count_1_${Date.now()}`,
jobDescription:
'Create advanced job based on the event rate dataset with a date_nanos time field, 30m bucketspan and count',
'Create advanced job based on the event rate dataset with a date_nanos time field, 1d bucketspan and count',
jobGroups: ['automated', 'event-rate', 'date-nanos'],
pickFieldsConfig: {
detectors: [
@ -69,7 +69,7 @@ export default function ({ getService }: FtrProviderContext) {
],
summaryCountField: 'count',
influencers: [],
bucketSpan: '30m',
bucketSpan: '1d',
memoryLimit: '10mb',
} as PickFieldsConfig,
datafeedConfig: {} as DatafeedConfig,
@ -94,7 +94,7 @@ export default function ({ getService }: FtrProviderContext) {
out_of_order_timestamp_count: '0',
empty_bucket_count: '0',
sparse_bucket_count: '0',
bucket_count: '17,520',
bucket_count: '365',
earliest_record_timestamp: '2015-01-01 00:10:00',
latest_record_timestamp: '2016-01-01 00:00:00',
input_record_count: '105,120',
@ -108,7 +108,7 @@ export default function ({ getService }: FtrProviderContext) {
total_partition_field_count: '2',
bucket_allocation_failures_count: '0',
memory_status: 'ok',
timestamp: '2015-12-31 23:30:00',
timestamp: '2015-12-31 00:00:00',
},
},
},

View file

@ -26,7 +26,7 @@ export default function ({ getService, loadTestFile }: FtrProviderContext) {
await esArchiver.unload('x-pack/test/functional/es_archives/ml/farequote');
await esArchiver.unload('x-pack/test/functional/es_archives/ml/ecommerce');
await esArchiver.unload('x-pack/test/functional/es_archives/ml/categorization');
await esArchiver.unload('x-pack/test/functional/es_archives/ml/categorization_small');
await esArchiver.unload('x-pack/test/functional/es_archives/ml/event_rate_nanos');
await esArchiver.unload('x-pack/test/functional/es_archives/ml/bm_classification');
await esArchiver.unload('x-pack/test/functional/es_archives/ml/ihp_outlier');