mirror of
https://github.com/elastic/kibana.git
synced 2025-04-24 09:48:58 -04:00
[ML] Functional tests - reduce job run time in date nanos and categorization tests (#123899) (#123931)
This PR stabilizes the date nanos job and categorization job tests for cloud execution by reducing the job run time.
(cherry picked from commit 4f1d97a908
)
Co-authored-by: Robert Oskamp <robert.oskamp@elastic.co>
This commit is contained in:
parent
60a9838d21
commit
59d5addac5
3 changed files with 25 additions and 25 deletions
|
@ -21,7 +21,7 @@ export default function ({ getService }: FtrProviderContext) {
|
|||
const detectorTypeIdentifier = 'Rare';
|
||||
const categorizationFieldIdentifier = 'field1';
|
||||
const categorizationExampleCount = 5;
|
||||
const bucketSpan = '15m';
|
||||
const bucketSpan = '1d';
|
||||
const memoryLimit = '15mb';
|
||||
|
||||
function getExpectedRow(expectedJobId: string, expectedJobGroups: string[]) {
|
||||
|
@ -29,32 +29,32 @@ export default function ({ getService }: FtrProviderContext) {
|
|||
id: expectedJobId,
|
||||
description: jobDescription,
|
||||
jobGroups: [...new Set(expectedJobGroups)].sort(),
|
||||
recordCount: '1,501',
|
||||
recordCount: '1,000',
|
||||
memoryStatus: 'ok',
|
||||
jobState: 'closed',
|
||||
datafeedState: 'stopped',
|
||||
latestTimestamp: '2019-11-21 06:01:13',
|
||||
latestTimestamp: '2019-11-21 00:01:13',
|
||||
};
|
||||
}
|
||||
|
||||
function getExpectedCounts(expectedJobId: string) {
|
||||
return {
|
||||
job_id: expectedJobId,
|
||||
processed_record_count: '1,501',
|
||||
processed_field_count: '1,501',
|
||||
input_bytes: '335.4 KB',
|
||||
input_field_count: '1,501',
|
||||
processed_record_count: '1,000',
|
||||
processed_field_count: '1,000',
|
||||
input_bytes: '148.8 KB',
|
||||
input_field_count: '1,000',
|
||||
invalid_date_count: '0',
|
||||
missing_field_count: '0',
|
||||
out_of_order_timestamp_count: '0',
|
||||
empty_bucket_count: '21,428',
|
||||
empty_bucket_count: '23',
|
||||
sparse_bucket_count: '0',
|
||||
bucket_count: '22,059',
|
||||
bucket_count: '230',
|
||||
earliest_record_timestamp: '2019-04-05 11:25:35',
|
||||
latest_record_timestamp: '2019-11-21 06:01:13',
|
||||
input_record_count: '1,501',
|
||||
latest_bucket_timestamp: '2019-11-21 06:00:00',
|
||||
latest_empty_bucket_timestamp: '2019-11-21 05:45:00',
|
||||
latest_record_timestamp: '2019-11-21 00:01:13',
|
||||
input_record_count: '1,000',
|
||||
latest_bucket_timestamp: '2019-11-21 00:00:00',
|
||||
latest_empty_bucket_timestamp: '2019-11-17 00:00:00',
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -68,7 +68,7 @@ export default function ({ getService }: FtrProviderContext) {
|
|||
total_partition_field_count: '2',
|
||||
bucket_allocation_failures_count: '0',
|
||||
memory_status: 'ok',
|
||||
timestamp: '2019-11-21 05:45:00',
|
||||
timestamp: '2019-11-20 00:00:00',
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -77,8 +77,8 @@ export default function ({ getService }: FtrProviderContext) {
|
|||
describe('categorization', function () {
|
||||
this.tags(['mlqa']);
|
||||
before(async () => {
|
||||
await esArchiver.loadIfNeeded('x-pack/test/functional/es_archives/ml/categorization');
|
||||
await ml.testResources.createIndexPatternIfNeeded('ft_categorization', '@timestamp');
|
||||
await esArchiver.loadIfNeeded('x-pack/test/functional/es_archives/ml/categorization_small');
|
||||
await ml.testResources.createIndexPatternIfNeeded('ft_categorization_small', '@timestamp');
|
||||
await ml.testResources.setKibanaTimeZoneToUTC();
|
||||
|
||||
await ml.api.createCalendar(calendarId);
|
||||
|
@ -87,7 +87,7 @@ export default function ({ getService }: FtrProviderContext) {
|
|||
|
||||
after(async () => {
|
||||
await ml.api.cleanMlIndices();
|
||||
await ml.testResources.deleteIndexPatternByTitle('ft_categorization');
|
||||
await ml.testResources.deleteIndexPatternByTitle('ft_categorization_small');
|
||||
});
|
||||
|
||||
it('job creation loads the categorization wizard for the source data', async () => {
|
||||
|
@ -100,7 +100,7 @@ export default function ({ getService }: FtrProviderContext) {
|
|||
await ml.jobManagement.navigateToNewJobSourceSelection();
|
||||
|
||||
await ml.testExecution.logTestStep('job creation loads the job type selection page');
|
||||
await ml.jobSourceSelection.selectSourceForAnomalyDetectionJob('ft_categorization');
|
||||
await ml.jobSourceSelection.selectSourceForAnomalyDetectionJob('ft_categorization_small');
|
||||
|
||||
await ml.testExecution.logTestStep('job creation loads the categorization job wizard page');
|
||||
await ml.jobTypeSelection.selectCategorizationJob();
|
||||
|
@ -113,7 +113,7 @@ export default function ({ getService }: FtrProviderContext) {
|
|||
await ml.testExecution.logTestStep('job creation sets the time range');
|
||||
await ml.jobWizardCommon.clickUseFullDataButton(
|
||||
'Apr 5, 2019 @ 11:25:35.770',
|
||||
'Nov 21, 2019 @ 06:01:13.914'
|
||||
'Nov 21, 2019 @ 00:01:13.923'
|
||||
);
|
||||
|
||||
await ml.testExecution.logTestStep('job creation displays the event rate chart');
|
||||
|
@ -235,7 +235,7 @@ export default function ({ getService }: FtrProviderContext) {
|
|||
await ml.testExecution.logTestStep('job cloning sets the time range');
|
||||
await ml.jobWizardCommon.clickUseFullDataButton(
|
||||
'Apr 5, 2019 @ 11:25:35.770',
|
||||
'Nov 21, 2019 @ 06:01:13.914'
|
||||
'Nov 21, 2019 @ 00:01:13.923'
|
||||
);
|
||||
|
||||
await ml.testExecution.logTestStep('job cloning displays the event rate chart');
|
||||
|
|
|
@ -57,7 +57,7 @@ export default function ({ getService }: FtrProviderContext) {
|
|||
jobSource: 'ft_event_rate_gen_trend_nanos',
|
||||
jobId: `event_rate_nanos_count_1_${Date.now()}`,
|
||||
jobDescription:
|
||||
'Create advanced job based on the event rate dataset with a date_nanos time field, 30m bucketspan and count',
|
||||
'Create advanced job based on the event rate dataset with a date_nanos time field, 1d bucketspan and count',
|
||||
jobGroups: ['automated', 'event-rate', 'date-nanos'],
|
||||
pickFieldsConfig: {
|
||||
detectors: [
|
||||
|
@ -69,7 +69,7 @@ export default function ({ getService }: FtrProviderContext) {
|
|||
],
|
||||
summaryCountField: 'count',
|
||||
influencers: [],
|
||||
bucketSpan: '30m',
|
||||
bucketSpan: '1d',
|
||||
memoryLimit: '10mb',
|
||||
} as PickFieldsConfig,
|
||||
datafeedConfig: {} as DatafeedConfig,
|
||||
|
@ -94,7 +94,7 @@ export default function ({ getService }: FtrProviderContext) {
|
|||
out_of_order_timestamp_count: '0',
|
||||
empty_bucket_count: '0',
|
||||
sparse_bucket_count: '0',
|
||||
bucket_count: '17,520',
|
||||
bucket_count: '365',
|
||||
earliest_record_timestamp: '2015-01-01 00:10:00',
|
||||
latest_record_timestamp: '2016-01-01 00:00:00',
|
||||
input_record_count: '105,120',
|
||||
|
@ -108,7 +108,7 @@ export default function ({ getService }: FtrProviderContext) {
|
|||
total_partition_field_count: '2',
|
||||
bucket_allocation_failures_count: '0',
|
||||
memory_status: 'ok',
|
||||
timestamp: '2015-12-31 23:30:00',
|
||||
timestamp: '2015-12-31 00:00:00',
|
||||
},
|
||||
},
|
||||
},
|
||||
|
|
|
@ -26,7 +26,7 @@ export default function ({ getService, loadTestFile }: FtrProviderContext) {
|
|||
|
||||
await esArchiver.unload('x-pack/test/functional/es_archives/ml/farequote');
|
||||
await esArchiver.unload('x-pack/test/functional/es_archives/ml/ecommerce');
|
||||
await esArchiver.unload('x-pack/test/functional/es_archives/ml/categorization');
|
||||
await esArchiver.unload('x-pack/test/functional/es_archives/ml/categorization_small');
|
||||
await esArchiver.unload('x-pack/test/functional/es_archives/ml/event_rate_nanos');
|
||||
await esArchiver.unload('x-pack/test/functional/es_archives/ml/bm_classification');
|
||||
await esArchiver.unload('x-pack/test/functional/es_archives/ml/ihp_outlier');
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue