mirror of
https://github.com/elastic/kibana.git
synced 2025-04-23 17:28:26 -04:00
[6.x] [ML] Removing angular services refactor (#18654)
This commit is contained in:
parent
641f9da5af
commit
6f30c7b905
67 changed files with 3568 additions and 3595 deletions
|
@ -17,11 +17,7 @@ import 'plugins/ml/factories/listener_factory';
|
|||
import 'plugins/ml/factories/state_factory';
|
||||
import 'plugins/ml/lib/angular_bootstrap_patch';
|
||||
import 'plugins/ml/jobs';
|
||||
import 'plugins/ml/services/ml_clipboard_service';
|
||||
import 'plugins/ml/services/job_service';
|
||||
import 'plugins/ml/services/calendar_service';
|
||||
import 'plugins/ml/services/ml_api_service';
|
||||
import 'plugins/ml/services/results_service';
|
||||
import 'plugins/ml/components/messagebar';
|
||||
import 'plugins/ml/datavisualizer';
|
||||
import 'plugins/ml/explorer';
|
||||
|
|
|
@ -27,14 +27,16 @@ import {
|
|||
showTypicalForFunction,
|
||||
getSeverity
|
||||
} from 'plugins/ml/util/anomaly_utils';
|
||||
import { getFieldTypeFromMapping } from 'plugins/ml/services/mapping_service';
|
||||
import { ResultsServiceProvider } from 'plugins/ml/services/results_service';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { FieldFormatServiceProvider } from 'plugins/ml/services/field_format_service';
|
||||
import template from './anomalies_table.html';
|
||||
|
||||
import 'plugins/ml/components/controls';
|
||||
import 'plugins/ml/components/paginated_table';
|
||||
import 'plugins/ml/filters/format_value';
|
||||
import 'plugins/ml/filters/metric_change_description';
|
||||
import 'plugins/ml/services/job_service';
|
||||
import 'plugins/ml/services/mapping_service';
|
||||
import './expanded_row/expanded_row_directive';
|
||||
import './influencers_cell/influencers_cell_directive';
|
||||
|
||||
|
@ -48,13 +50,10 @@ module.directive('mlAnomaliesTable', function (
|
|||
$window,
|
||||
$route,
|
||||
timefilter,
|
||||
mlJobService,
|
||||
mlESMappingService,
|
||||
mlResultsService,
|
||||
Private,
|
||||
mlAnomaliesTableService,
|
||||
mlSelectIntervalService,
|
||||
mlSelectSeverityService,
|
||||
mlFieldFormatService,
|
||||
formatValueFilter) {
|
||||
|
||||
return {
|
||||
|
@ -77,6 +76,9 @@ module.directive('mlAnomaliesTable', function (
|
|||
// just remove these resets.
|
||||
mlSelectIntervalService.state.reset().changed();
|
||||
mlSelectSeverityService.state.reset().changed();
|
||||
const mlResultsService = Private(ResultsServiceProvider);
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const mlFieldFormatService = Private(FieldFormatServiceProvider);
|
||||
|
||||
scope.momentInterval = 'second';
|
||||
|
||||
|
@ -195,7 +197,7 @@ module.directive('mlAnomaliesTable', function (
|
|||
findFieldType(datafeedIndices[i]);
|
||||
|
||||
function findFieldType(index) {
|
||||
mlESMappingService.getFieldTypeFromMapping(index, categorizationFieldName)
|
||||
getFieldTypeFromMapping(index, categorizationFieldName)
|
||||
.then((resp) => {
|
||||
if (resp !== '') {
|
||||
createAndOpenUrl(index, resp);
|
||||
|
|
|
@ -16,28 +16,28 @@ const module = uiModules.get('apps/ml');
|
|||
module.service('mlConfirmModalService', function ($modal, $q) {
|
||||
|
||||
this.open = function (options) {
|
||||
const deferred = $q.defer();
|
||||
$modal.open({
|
||||
template,
|
||||
controller: 'MlConfirmModal',
|
||||
backdrop: 'static',
|
||||
keyboard: false,
|
||||
size: (options.size === undefined) ? 'sm' : options.size,
|
||||
resolve: {
|
||||
params: function () {
|
||||
return {
|
||||
message: options.message,
|
||||
title: options.title,
|
||||
okLabel: options.okLabel,
|
||||
cancelLabel: options.cancelLabel,
|
||||
hideCancel: options.hideCancel,
|
||||
ok: deferred.resolve,
|
||||
cancel: deferred.reject,
|
||||
};
|
||||
return $q((resolve, reject) => {
|
||||
$modal.open({
|
||||
template,
|
||||
controller: 'MlConfirmModal',
|
||||
backdrop: 'static',
|
||||
keyboard: false,
|
||||
size: (options.size === undefined) ? 'sm' : options.size,
|
||||
resolve: {
|
||||
params: function () {
|
||||
return {
|
||||
message: options.message,
|
||||
title: options.title,
|
||||
okLabel: options.okLabel,
|
||||
cancelLabel: options.cancelLabel,
|
||||
hideCancel: options.hideCancel,
|
||||
ok: resolve,
|
||||
cancel: reject,
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
});
|
||||
return deferred.promise;
|
||||
};
|
||||
});
|
||||
|
||||
|
|
|
@ -11,7 +11,9 @@ import PropTypes from 'prop-types';
|
|||
import React, { Component } from 'react';
|
||||
import { RecognizedResult } from './recognized_result';
|
||||
|
||||
export function dataRecognizerProvider(ml) {
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
export function dataRecognizerProvider() {
|
||||
|
||||
class DataRecognizer extends Component {
|
||||
constructor(props) {
|
||||
|
|
|
@ -15,7 +15,6 @@ import _ from 'lodash';
|
|||
import d3 from 'd3';
|
||||
import moment from 'moment';
|
||||
|
||||
import 'plugins/ml/services/results_service';
|
||||
import { parseInterval } from 'ui/utils/parse_interval';
|
||||
import { numTicksForDateFormat } from 'plugins/ml/util/chart_utils';
|
||||
import { calculateTextWidth } from 'plugins/ml/util/string_utils';
|
||||
|
|
|
@ -6,15 +6,14 @@
|
|||
|
||||
|
||||
|
||||
import moment from 'moment';
|
||||
import template from './full_time_range_selector.html';
|
||||
|
||||
import { FieldsServiceProvider } from 'plugins/ml/services/fields_service';
|
||||
import { FullTimeRangeSelectorServiceProvider } from 'plugins/ml/components/full_time_range_selector/full_time_range_selector_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.directive('mlFullTimeRangeSelector', function (mlFullTimeRangeSelectorService) {
|
||||
module.directive('mlFullTimeRangeSelector', function (Private) {
|
||||
return {
|
||||
restrict: 'E',
|
||||
replace: true,
|
||||
|
@ -25,33 +24,11 @@ module.directive('mlFullTimeRangeSelector', function (mlFullTimeRangeSelectorSer
|
|||
query: '='
|
||||
},
|
||||
controller: function ($scope) {
|
||||
const mlFullTimeRangeSelectorService = Private(FullTimeRangeSelectorServiceProvider);
|
||||
|
||||
$scope.setFullTimeRange = function () {
|
||||
mlFullTimeRangeSelectorService.setFullTimeRange($scope.indexPattern, $scope.query);
|
||||
};
|
||||
}
|
||||
};
|
||||
})
|
||||
.service('mlFullTimeRangeSelectorService', function (
|
||||
timefilter,
|
||||
Notifier,
|
||||
Private) {
|
||||
|
||||
const notify = new Notifier();
|
||||
const fieldsService = Private(FieldsServiceProvider);
|
||||
|
||||
// called on button press
|
||||
this.setFullTimeRange = function (indexPattern, query) {
|
||||
// load the earliest and latest time stamps for the index
|
||||
fieldsService.getTimeFieldRange(
|
||||
indexPattern.title,
|
||||
indexPattern.timeFieldName,
|
||||
query)
|
||||
.then((resp) => {
|
||||
timefilter.time.from = moment(resp.start.epoch).toISOString();
|
||||
timefilter.time.to = moment(resp.end.epoch).toISOString();
|
||||
})
|
||||
.catch((resp) => {
|
||||
notify.error(resp);
|
||||
});
|
||||
};
|
||||
});
|
||||
});
|
||||
|
|
|
@ -0,0 +1,36 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License;
|
||||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
import moment from 'moment';
|
||||
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
export function FullTimeRangeSelectorServiceProvider(timefilter, Notifier, $q) {
|
||||
const notify = new Notifier();
|
||||
|
||||
function setFullTimeRange(indexPattern, query) {
|
||||
// load the earliest and latest time stamps for the index
|
||||
$q.when(ml.getTimeFieldRange({
|
||||
index: indexPattern.title,
|
||||
timeFieldName: indexPattern.timeFieldName,
|
||||
query
|
||||
}))
|
||||
.then((resp) => {
|
||||
timefilter.time.from = moment(resp.start.epoch).toISOString();
|
||||
timefilter.time.to = moment(resp.end.epoch).toISOString();
|
||||
})
|
||||
.catch((resp) => {
|
||||
notify.error(resp);
|
||||
});
|
||||
}
|
||||
|
||||
return {
|
||||
setFullTimeRange
|
||||
};
|
||||
}
|
|
@ -10,11 +10,13 @@ import _ from 'lodash';
|
|||
|
||||
import template from './job_group_select.html';
|
||||
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { CalendarServiceProvider } from 'plugins/ml/services/calendar_service';
|
||||
import { InitAfterBindingsWorkaround } from 'ui/compat';
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.directive('mlJobGroupSelect', function (es, ml, $timeout, mlJobService, mlCalendarService) {
|
||||
module.directive('mlJobGroupSelect', function (es, $timeout, Private) {
|
||||
return {
|
||||
restrict: 'E',
|
||||
template,
|
||||
|
@ -26,7 +28,10 @@ module.directive('mlJobGroupSelect', function (es, ml, $timeout, mlJobService, m
|
|||
controllerAs: 'mlGroupSelect',
|
||||
bindToController: true,
|
||||
controller: class MlGroupSelectController extends InitAfterBindingsWorkaround {
|
||||
|
||||
initAfterBindings($scope) {
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const mlCalendarService = Private(CalendarServiceProvider);
|
||||
this.$scope = $scope;
|
||||
this.selectedGroups = [];
|
||||
this.groups = [];
|
||||
|
|
|
@ -18,17 +18,19 @@ import d3 from 'd3';
|
|||
|
||||
import template from './job_select_list.html';
|
||||
import { isTimeSeriesViewJob } from 'plugins/ml/../common/util/job_utils';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.directive('mlJobSelectList', function (mlJobService, mlJobSelectService, timefilter) {
|
||||
module.directive('mlJobSelectList', function (Private, mlJobSelectService, timefilter) {
|
||||
return {
|
||||
restrict: 'AE',
|
||||
replace: true,
|
||||
transclude: true,
|
||||
template,
|
||||
controller: function ($scope) {
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
$scope.jobs = [];
|
||||
$scope.groups = [];
|
||||
$scope.homelessJobs = [];
|
||||
|
|
|
@ -11,10 +11,13 @@
|
|||
import _ from 'lodash';
|
||||
import { notify } from 'ui/notify';
|
||||
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.service('mlJobSelectService', function ($rootScope, mlJobService, globalState) {
|
||||
module.service('mlJobSelectService', function ($rootScope, Private, globalState) {
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
|
||||
const self = this;
|
||||
|
||||
|
|
|
@ -9,13 +9,15 @@
|
|||
|
||||
import 'ngreact';
|
||||
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml', ['react']);
|
||||
|
||||
import { ValidateJob } from './validate_job_view';
|
||||
|
||||
module.directive('mlValidateJob', function ($injector) {
|
||||
const mlJobService = $injector.get('mlJobService');
|
||||
const Private = $injector.get('Private');
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const reactDirective = $injector.get('reactDirective');
|
||||
|
||||
return reactDirective(
|
||||
|
|
|
@ -32,6 +32,7 @@ import { checkGetJobsPrivilege } from 'plugins/ml/privilege/check_privilege';
|
|||
import { createSearchItems } from 'plugins/ml/jobs/new_job/utils/new_job_utils';
|
||||
import { getIndexPatternWithRoute, getSavedSearchWithRoute, timeBasedIndexCheck } from 'plugins/ml/util/index_utils';
|
||||
import { checkMlNodesAvailable } from 'plugins/ml/ml_nodes_check/check_ml_nodes';
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
import template from './datavisualizer.html';
|
||||
|
||||
uiRoutes
|
||||
|
@ -55,10 +56,10 @@ module
|
|||
$route,
|
||||
$timeout,
|
||||
$window,
|
||||
$q,
|
||||
Private,
|
||||
timefilter,
|
||||
AppState,
|
||||
ml) {
|
||||
AppState) {
|
||||
|
||||
timefilter.enableTimeRangeSelector();
|
||||
timefilter.enableAutoRefreshSelector();
|
||||
|
@ -461,7 +462,7 @@ module
|
|||
buckets.setBarTarget(BAR_TARGET);
|
||||
const aggInterval = buckets.getInterval();
|
||||
|
||||
ml.getVisualizerFieldStats({
|
||||
$q.when(ml.getVisualizerFieldStats({
|
||||
indexPatternTitle: indexPattern.title,
|
||||
query: $scope.searchQuery,
|
||||
timeFieldName: indexPattern.timeFieldName,
|
||||
|
@ -470,7 +471,7 @@ module
|
|||
samplerShardSize: $scope.samplerShardSize,
|
||||
interval: aggInterval.expression,
|
||||
fields: numberFields
|
||||
})
|
||||
}))
|
||||
.then((resp) => {
|
||||
// Add the metric stats to the existing stats in the corresponding card.
|
||||
_.each($scope.metricCards, (card) => {
|
||||
|
@ -520,7 +521,7 @@ module
|
|||
|
||||
if (fields.length > 0) {
|
||||
|
||||
ml.getVisualizerFieldStats({
|
||||
$q.when(ml.getVisualizerFieldStats({
|
||||
indexPatternTitle: indexPattern.title,
|
||||
query: $scope.searchQuery,
|
||||
fields: fields,
|
||||
|
@ -529,7 +530,7 @@ module
|
|||
latest: $scope.latest,
|
||||
samplerShardSize: $scope.samplerShardSize,
|
||||
maxExamples: 10
|
||||
})
|
||||
}))
|
||||
.then((resp) => {
|
||||
// Add the metric stats to the existing stats in the corresponding card.
|
||||
_.each($scope.fieldCards, (card) => {
|
||||
|
@ -575,7 +576,7 @@ module
|
|||
// 2. List of aggregatable fields that do not exist in docs
|
||||
// 3. List of non-aggregatable fields that do exist in docs.
|
||||
// 4. List of non-aggregatable fields that do not exist in docs.
|
||||
ml.getVisualizerOverallStats({
|
||||
$q.when(ml.getVisualizerOverallStats({
|
||||
indexPatternTitle: indexPattern.title,
|
||||
query: $scope.searchQuery,
|
||||
timeFieldName: indexPattern.timeFieldName,
|
||||
|
@ -584,7 +585,7 @@ module
|
|||
latest: $scope.latest,
|
||||
aggregatableFields: aggregatableFields,
|
||||
nonAggregatableFields: nonAggregatableFields
|
||||
})
|
||||
}))
|
||||
.then((resp) => {
|
||||
$scope.overallStats = resp;
|
||||
createMetricCards();
|
||||
|
|
|
@ -16,8 +16,10 @@ import _ from 'lodash';
|
|||
import { parseInterval } from 'ui/utils/parse_interval';
|
||||
import { buildConfigFromDetector } from 'plugins/ml/util/chart_config_builder';
|
||||
import { mlEscape } from 'plugins/ml/util/string_utils';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
|
||||
export function explorerChartConfigBuilder(mlJobService) {
|
||||
export function explorerChartConfigBuilder(Private) {
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
|
||||
const compiledTooltip = _.template(
|
||||
'<div class="explorer-chart-info-tooltip">job ID: <%= jobId %><br/>' +
|
||||
|
|
|
@ -24,18 +24,19 @@ import { TimeBucketsProvider } from 'ui/time_buckets';
|
|||
import 'plugins/ml/filters/format_value';
|
||||
import loadingIndicatorWrapperTemplate from 'plugins/ml/components/loading_indicator/loading_indicator_wrapper.html';
|
||||
import { mlEscape } from 'plugins/ml/util/string_utils';
|
||||
import { FieldFormatServiceProvider } from 'plugins/ml/services/field_format_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.directive('mlExplorerChart', function (
|
||||
Private,
|
||||
formatValueFilter,
|
||||
mlChartTooltipService,
|
||||
mlSelectSeverityService,
|
||||
mlFieldFormatService) {
|
||||
Private,
|
||||
mlSelectSeverityService) {
|
||||
|
||||
function link(scope, element) {
|
||||
const mlFieldFormatService = Private(FieldFormatServiceProvider);
|
||||
console.log('ml-explorer-chart directive link series config:', scope.seriesConfig);
|
||||
if (typeof scope.seriesConfig === 'undefined') {
|
||||
// just return so the empty directive renders without an error later on
|
||||
|
|
|
@ -21,15 +21,16 @@ const module = uiModules.get('apps/ml');
|
|||
import { explorerChartConfigBuilder } from './explorer_chart_config_builder';
|
||||
import { chartLimits } from 'plugins/ml/util/chart_utils';
|
||||
import { isTimeSeriesViewDetector } from 'plugins/ml/../common/util/job_utils';
|
||||
import 'plugins/ml/services/results_service';
|
||||
import { ResultsServiceProvider } from 'plugins/ml/services/results_service';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
|
||||
module.controller('MlExplorerChartsContainerController', function ($scope, $injector) {
|
||||
const Private = $injector.get('Private');
|
||||
const mlJobService = $injector.get('mlJobService');
|
||||
const mlExplorerDashboardService = $injector.get('mlExplorerDashboardService');
|
||||
const mlResultsService = $injector.get('mlResultsService');
|
||||
const mlSelectSeverityService = $injector.get('mlSelectSeverityService');
|
||||
const $q = $injector.get('$q');
|
||||
const mlResultsService = Private(ResultsServiceProvider);
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
|
||||
$scope.seriesToPlot = [];
|
||||
|
||||
|
|
|
@ -20,9 +20,6 @@ import moment from 'moment';
|
|||
import 'plugins/ml/components/anomalies_table';
|
||||
import 'plugins/ml/components/influencers_list';
|
||||
import 'plugins/ml/components/job_select_list';
|
||||
import 'plugins/ml/services/field_format_service';
|
||||
import 'plugins/ml/services/job_service';
|
||||
import 'plugins/ml/services/results_service';
|
||||
|
||||
import { FilterBarQueryFilterProvider } from 'ui/filter_bar/query_filter';
|
||||
import { parseInterval } from 'ui/utils/parse_interval';
|
||||
|
@ -34,6 +31,9 @@ import { checkGetJobsPrivilege } from 'plugins/ml/privilege/check_privilege';
|
|||
import { getIndexPatterns } from 'plugins/ml/util/index_utils';
|
||||
import { refreshIntervalWatcher } from 'plugins/ml/util/refresh_interval_watcher';
|
||||
import { IntervalHelperProvider, getBoundsRoundedToInterval } from 'plugins/ml/util/ml_time_buckets';
|
||||
import { ResultsServiceProvider } from 'plugins/ml/services/results_service';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { FieldFormatServiceProvider } from 'plugins/ml/services/field_format_service';
|
||||
|
||||
uiRoutes
|
||||
.when('/explorer/?', {
|
||||
|
@ -56,9 +56,6 @@ module.controller('MlExplorerController', function (
|
|||
Private,
|
||||
timefilter,
|
||||
mlCheckboxShowChartsService,
|
||||
mlFieldFormatService,
|
||||
mlJobService,
|
||||
mlResultsService,
|
||||
mlJobSelectService,
|
||||
mlExplorerDashboardService,
|
||||
mlSelectLimitService,
|
||||
|
@ -72,6 +69,9 @@ module.controller('MlExplorerController', function (
|
|||
|
||||
const TimeBuckets = Private(IntervalHelperProvider);
|
||||
const queryFilter = Private(FilterBarQueryFilterProvider);
|
||||
const mlResultsService = Private(ResultsServiceProvider);
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const mlFieldFormatService = Private(FieldFormatServiceProvider);
|
||||
|
||||
let resizeTimeout = null;
|
||||
|
||||
|
|
|
@ -12,8 +12,10 @@ import { parseInterval } from 'ui/utils/parse_interval';
|
|||
|
||||
import { ML_RESULTS_INDEX_PATTERN } from 'plugins/ml/constants/index_patterns';
|
||||
import { replaceTokensInUrlValue } from 'plugins/ml/util/custom_url_utils';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
|
||||
export function CustomUrlEditorServiceProvider(es, mlJobService, $q) {
|
||||
export function CustomUrlEditorServiceProvider(es, Private, $q) {
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
|
||||
// Builds the full URL for testing out a custom URL configuration, which
|
||||
// may contain dollar delimited partition / influencer entity tokens and
|
||||
|
|
|
@ -5,11 +5,13 @@
|
|||
*/
|
||||
|
||||
|
||||
import { CreateWatchServiceProvider } from 'plugins/ml/jobs/new_job/simple/components/watcher/create_watch_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.controller('MlCreateWatchModal', function ($scope, $modalInstance, params, mlMessageBarService, mlCreateWatchService) {
|
||||
module.controller('MlCreateWatchModal', function ($scope, $modalInstance, params, mlMessageBarService, Private) {
|
||||
const mlCreateWatchService = Private(CreateWatchServiceProvider);
|
||||
const msgs = mlMessageBarService; // set a reference to the message bar service
|
||||
msgs.clear();
|
||||
|
||||
|
|
|
@ -17,6 +17,7 @@ import { parseInterval } from 'plugins/ml/../common/util/parse_interval';
|
|||
import { CustomUrlEditorServiceProvider } from 'plugins/ml/jobs/components/custom_url_editor/custom_url_editor_service';
|
||||
import { isWebUrl } from 'plugins/ml/util/string_utils';
|
||||
import { newJobLimits } from 'plugins/ml/jobs/new_job/utils/new_job_defaults';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
@ -28,10 +29,10 @@ module.controller('MlEditJobModal', function (
|
|||
$window,
|
||||
params,
|
||||
Private,
|
||||
mlJobService,
|
||||
mlMessageBarService) {
|
||||
const msgs = mlMessageBarService;
|
||||
msgs.clear();
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
$scope.saveLock = false;
|
||||
const refreshJob = params.pscope.refreshJob;
|
||||
|
||||
|
|
|
@ -7,9 +7,11 @@
|
|||
import _ from 'lodash';
|
||||
import moment from 'moment';
|
||||
import { toLocaleString, detectorToString } from 'plugins/ml/util/string_utils';
|
||||
import { copyTextToClipboard } from 'plugins/ml/util/clipboard_utils';
|
||||
import { JOB_STATE, DATAFEED_STATE } from 'plugins/ml/../common/constants/states';
|
||||
import { ML_DATA_PREVIEW_COUNT } from 'plugins/ml/../common/util/job_utils';
|
||||
import { checkPermission } from 'plugins/ml/privilege/check_privilege';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import numeral from '@elastic/numeral';
|
||||
import chrome from 'ui/chrome';
|
||||
import angular from 'angular';
|
||||
|
@ -18,7 +20,7 @@ import template from './expanded_row.html';
|
|||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.directive('mlJobListExpandedRow', function ($location, mlMessageBarService, mlJobService, mlClipboardService) {
|
||||
module.directive('mlJobListExpandedRow', function ($location, mlMessageBarService, Private) {
|
||||
return {
|
||||
restrict: 'AE',
|
||||
replace: false,
|
||||
|
@ -34,6 +36,7 @@ module.directive('mlJobListExpandedRow', function ($location, mlMessageBarServic
|
|||
template,
|
||||
link: function ($scope, $element) {
|
||||
const msgs = mlMessageBarService; // set a reference to the message bar service
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const TIME_FORMAT = 'YYYY-MM-DD HH:mm:ss';
|
||||
const DATA_FORMAT = '0.0 b';
|
||||
|
||||
|
@ -169,7 +172,7 @@ module.directive('mlJobListExpandedRow', function ($location, mlMessageBarServic
|
|||
|
||||
$scope.copyToClipboard = function (job) {
|
||||
const newJob = angular.copy(job);
|
||||
const success = mlClipboardService.copy(angular.toJson(newJob));
|
||||
const success = copyTextToClipboard(angular.toJson(newJob));
|
||||
if (success) {
|
||||
// flash the background color of the json box
|
||||
// to show the contents has been copied.
|
||||
|
|
|
@ -8,7 +8,8 @@
|
|||
|
||||
|
||||
import 'ngreact';
|
||||
import 'plugins/ml/services/forecast_service';
|
||||
|
||||
import { ForecastServiceProvider } from 'plugins/ml/services/forecast_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml', ['react']);
|
||||
|
@ -16,7 +17,8 @@ const module = uiModules.get('apps/ml', ['react']);
|
|||
import { ForecastsTable } from './forecasts_table';
|
||||
|
||||
module.directive('mlForecastsTable', function ($injector) {
|
||||
const mlForecastService = $injector.get('mlForecastService');
|
||||
const Private = $injector.get('Private');
|
||||
const mlForecastService = Private(ForecastServiceProvider);
|
||||
const reactDirective = $injector.get('reactDirective');
|
||||
|
||||
return reactDirective(
|
||||
|
|
|
@ -16,4 +16,3 @@ import './expanded_row';
|
|||
import 'ui/directives/confirm_click';
|
||||
import 'plugins/ml/components/paginated_table';
|
||||
import 'plugins/ml/components/validate_job';
|
||||
import 'plugins/ml/services/notification_service';
|
||||
|
|
|
@ -9,6 +9,9 @@
|
|||
import moment from 'moment';
|
||||
import angular from 'angular';
|
||||
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { CreateWatchServiceProvider } from 'plugins/ml/jobs/new_job/simple/components/watcher/create_watch_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
|
@ -17,10 +20,11 @@ module.controller('MlJobTimepickerModal', function (
|
|||
$rootScope,
|
||||
$modalInstance,
|
||||
params,
|
||||
mlJobService,
|
||||
mlCreateWatchService,
|
||||
Private,
|
||||
mlMessageBarService) {
|
||||
const msgs = mlMessageBarService;
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const mlCreateWatchService = Private(CreateWatchServiceProvider);
|
||||
$scope.saveLock = false;
|
||||
$scope.watcherEnabled = mlCreateWatchService.isWatcherEnabled();
|
||||
|
||||
|
|
|
@ -16,6 +16,7 @@ import jobsListControlsHtml from './jobs_list_controls.html';
|
|||
import jobsListArrow from 'plugins/ml/components/paginated_table/open.html';
|
||||
import { isTimeSeriesViewJob } from 'plugins/ml/../common/util/job_utils';
|
||||
import { toLocaleString, mlEscape } from 'plugins/ml/util/string_utils';
|
||||
import { copyTextToClipboard } from 'plugins/ml/util/clipboard_utils';
|
||||
|
||||
import uiRoutes from 'ui/routes';
|
||||
import { checkLicense } from 'plugins/ml/license/check_license';
|
||||
|
@ -31,6 +32,9 @@ import createWatchTemplate from 'plugins/ml/jobs/jobs_list/create_watch_modal/cr
|
|||
import { buttonsEnabledChecks } from 'plugins/ml/jobs/jobs_list/buttons_enabled_checks';
|
||||
import { cloudServiceProvider } from 'plugins/ml/services/cloud_service';
|
||||
import { loadNewJobDefaults } from 'plugins/ml/jobs/new_job/utils/new_job_defaults';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { CalendarServiceProvider } from 'plugins/ml/services/calendar_service';
|
||||
import { JobMessagesServiceProvider } from 'plugins/ml/services/job_messages_service';
|
||||
|
||||
uiRoutes
|
||||
.when('/jobs/?', {
|
||||
|
@ -60,11 +64,7 @@ module.controller('MlJobsList',
|
|||
kbnUrl,
|
||||
Private,
|
||||
mlMessageBarService,
|
||||
mlClipboardService,
|
||||
mlJobService,
|
||||
mlCalendarService,
|
||||
mlDatafeedService,
|
||||
mlNotificationService) {
|
||||
mlDatafeedService) {
|
||||
|
||||
timefilter.disableTimeRangeSelector(); // remove time picker from top of page
|
||||
timefilter.disableAutoRefreshSelector(); // remove time picker from top of page
|
||||
|
@ -85,6 +85,9 @@ module.controller('MlJobsList',
|
|||
$scope.mlNodesAvailable = mlNodesAvailable();
|
||||
$scope.permissionToViewMlNodeCount = permissionToViewMlNodeCount();
|
||||
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const mlCalendarService = Private(CalendarServiceProvider);
|
||||
const jobMessagesService = Private(JobMessagesServiceProvider);
|
||||
const { isRunningOnCloud, getCloudId } = Private(cloudServiceProvider);
|
||||
$scope.isCloud = isRunningOnCloud();
|
||||
$scope.cloudId = getCloudId();
|
||||
|
@ -169,7 +172,7 @@ module.controller('MlJobsList',
|
|||
};
|
||||
|
||||
$scope.copyToClipboard = function (job) {
|
||||
const success = mlClipboardService.copy(angular.toJson(job));
|
||||
const success = copyTextToClipboard(angular.toJson(job));
|
||||
if (success) {
|
||||
msgs.clear();
|
||||
msgs.info(job.job_id + ' JSON copied to clipboard');
|
||||
|
@ -436,7 +439,7 @@ module.controller('MlJobsList',
|
|||
}
|
||||
}
|
||||
|
||||
return mlNotificationService.getJobAuditMessages(fromRange, jobId)
|
||||
return jobMessagesService.getJobAuditMessages(fromRange, jobId)
|
||||
.then((resp) => {
|
||||
const messages = resp.messages;
|
||||
_.each(messages, (msg) => {
|
||||
|
@ -488,7 +491,7 @@ module.controller('MlJobsList',
|
|||
createTimes[job.job_id] = moment(job.create_time).valueOf();
|
||||
});
|
||||
|
||||
mlNotificationService.getAuditMessagesSummary()
|
||||
jobMessagesService.getAuditMessagesSummary()
|
||||
.then((resp) => {
|
||||
const messagesPerJob = resp.messagesPerJob;
|
||||
_.each(messagesPerJob, (job) => {
|
||||
|
|
|
@ -12,7 +12,7 @@ import angular from 'angular';
|
|||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.controller('MlDetectorFilterModal', function ($scope, $modalInstance, params, mlJobService, mlMessageBarService) {
|
||||
module.controller('MlDetectorFilterModal', function ($scope, $modalInstance, params, mlMessageBarService) {
|
||||
const msgs = mlMessageBarService;
|
||||
msgs.clear();
|
||||
$scope.title = 'Add new filter';
|
||||
|
|
|
@ -16,11 +16,12 @@ import { detectorToString } from 'plugins/ml/util/string_utils';
|
|||
import template from './detectors_list.html';
|
||||
import detectorModalTemplate from 'plugins/ml/jobs/new_job/advanced/detector_modal/detector_modal.html';
|
||||
import detectorFilterModalTemplate from 'plugins/ml/jobs/new_job/advanced/detector_filter_modal/detector_filter_modal.html';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.directive('mlJobDetectorsList', function ($modal, $q, mlJobService) {
|
||||
module.directive('mlJobDetectorsList', function ($modal, $q, Private) {
|
||||
return {
|
||||
restrict: 'AE',
|
||||
replace: true,
|
||||
|
@ -33,6 +34,7 @@ module.directive('mlJobDetectorsList', function ($modal, $q, mlJobService) {
|
|||
},
|
||||
template,
|
||||
controller: function ($scope) {
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
|
||||
$scope.addDetector = function (dtr, index) {
|
||||
if (dtr !== undefined) {
|
||||
|
|
|
@ -18,7 +18,7 @@ import { checkLicense } from 'plugins/ml/license/check_license';
|
|||
import { checkCreateJobsPrivilege } from 'plugins/ml/privilege/check_privilege';
|
||||
import template from './new_job.html';
|
||||
import saveStatusTemplate from 'plugins/ml/jobs/new_job/advanced/save_status_modal/save_status_modal.html';
|
||||
import { createSearchItems } from 'plugins/ml/jobs/new_job/utils/new_job_utils';
|
||||
import { createSearchItems, createJobForSaving } from 'plugins/ml/jobs/new_job/utils/new_job_utils';
|
||||
import { getIndexPatterns, getIndexPatternWithRoute, getSavedSearchWithRoute, timeBasedIndexCheck } from 'plugins/ml/util/index_utils';
|
||||
import { ML_JOB_FIELD_TYPES, ES_FIELD_TYPES } from 'plugins/ml/../common/constants/field_types';
|
||||
import { checkMlNodesAvailable } from 'plugins/ml/ml_nodes_check/check_ml_nodes';
|
||||
|
@ -28,6 +28,8 @@ import {
|
|||
ML_DATA_PREVIEW_COUNT,
|
||||
basicJobValidation
|
||||
} from 'plugins/ml/../common/util/job_utils';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
uiRoutes
|
||||
.when('/jobs/new_job/advanced', {
|
||||
|
@ -65,19 +67,15 @@ module.controller('MlNewJob',
|
|||
$location,
|
||||
$modal,
|
||||
$q,
|
||||
$timeout,
|
||||
courier,
|
||||
es,
|
||||
ml,
|
||||
Private,
|
||||
timefilter,
|
||||
esServerUrl,
|
||||
mlJobService,
|
||||
mlMessageBarService,
|
||||
mlDatafeedService,
|
||||
mlConfirmModalService) {
|
||||
|
||||
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
timefilter.disableTimeRangeSelector(); // remove time picker from top of page
|
||||
timefilter.disableAutoRefreshSelector(); // remove time picker from top of page
|
||||
const MODE = {
|
||||
|
@ -433,12 +431,6 @@ module.controller('MlNewJob',
|
|||
}
|
||||
}
|
||||
|
||||
function createJobForSaving(job) {
|
||||
const newJob = angular.copy(job);
|
||||
delete newJob.datafeed_config;
|
||||
return newJob;
|
||||
}
|
||||
|
||||
function saveFunc() {
|
||||
|
||||
if ($scope.ui.useDedicatedIndex) {
|
||||
|
|
|
@ -9,13 +9,12 @@
|
|||
import template from './bucket_span_estimator.html';
|
||||
import { getQueryFromSavedSearch } from 'plugins/ml/jobs/new_job/utils/new_job_utils';
|
||||
import { EVENT_RATE_COUNT_FIELD } from 'plugins/ml/jobs/new_job/simple/components/constants/general';
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.directive('mlBucketSpanEstimator', function ($injector) {
|
||||
const ml = $injector.get('ml');
|
||||
|
||||
module.directive('mlBucketSpanEstimator', function ($q) {
|
||||
return {
|
||||
restrict: 'AE',
|
||||
replace: false,
|
||||
|
@ -79,7 +78,7 @@ module.directive('mlBucketSpanEstimator', function ($injector) {
|
|||
});
|
||||
}
|
||||
|
||||
ml.estimateBucketSpan(data)
|
||||
$q.when(ml.estimateBucketSpan(data))
|
||||
.then((interval) => {
|
||||
if (interval.error) {
|
||||
errorHandler(interval.message);
|
||||
|
|
|
@ -6,12 +6,14 @@
|
|||
|
||||
|
||||
|
||||
import { PostSaveServiceProvider } from './post_save_service';
|
||||
import { CreateWatchServiceProvider } from 'plugins/ml/jobs/new_job/simple/components/watcher/create_watch_service';
|
||||
import template from './post_save_options.html';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.directive('mlPostSaveOptions', function (mlPostSaveService, mlCreateWatchService) {
|
||||
module.directive('mlPostSaveOptions', function (Private) {
|
||||
return {
|
||||
restrict: 'AE',
|
||||
replace: false,
|
||||
|
@ -23,13 +25,16 @@ module.directive('mlPostSaveOptions', function (mlPostSaveService, mlCreateWatch
|
|||
template,
|
||||
link: function ($scope) {
|
||||
|
||||
$scope.watcherEnabled = mlCreateWatchService.isWatcherEnabled();
|
||||
$scope.status = mlPostSaveService.status;
|
||||
$scope.STATUS = mlPostSaveService.STATUS;
|
||||
const postSaveService = Private(PostSaveServiceProvider);
|
||||
const createWatchService = Private(CreateWatchServiceProvider);
|
||||
|
||||
mlCreateWatchService.reset();
|
||||
$scope.watcherEnabled = createWatchService.isWatcherEnabled();
|
||||
$scope.status = postSaveService.status;
|
||||
$scope.STATUS = postSaveService.STATUS;
|
||||
|
||||
mlCreateWatchService.config.includeInfluencers = $scope.includeInfluencers;
|
||||
createWatchService.reset();
|
||||
|
||||
createWatchService.config.includeInfluencers = $scope.includeInfluencers;
|
||||
$scope.runInRealtime = false;
|
||||
$scope.createWatch = false;
|
||||
$scope.embedded = true;
|
||||
|
@ -39,55 +44,8 @@ module.directive('mlPostSaveOptions', function (mlPostSaveService, mlCreateWatch
|
|||
};
|
||||
|
||||
$scope.apply = function () {
|
||||
mlPostSaveService.apply($scope.jobId, $scope.runInRealtime, $scope.createWatch);
|
||||
postSaveService.apply($scope.jobId, $scope.runInRealtime, $scope.createWatch);
|
||||
};
|
||||
}
|
||||
};
|
||||
}).service('mlPostSaveService', function (mlJobService, mlMessageBarService, $q, mlCreateWatchService) {
|
||||
const msgs = mlMessageBarService;
|
||||
this.STATUS = {
|
||||
SAVE_FAILED: -1,
|
||||
SAVING: 0,
|
||||
SAVED: 1,
|
||||
};
|
||||
|
||||
this.status = {
|
||||
realtimeJob: null,
|
||||
watch: null
|
||||
};
|
||||
mlCreateWatchService.status = this.status;
|
||||
|
||||
this.externalCreateWatch;
|
||||
this.startRealtimeJob = function (jobId) {
|
||||
const deferred = $q.defer();
|
||||
this.status.realtimeJob = this.STATUS.SAVING;
|
||||
|
||||
const datafeedId = mlJobService.getDatafeedId(jobId);
|
||||
|
||||
mlJobService.openJob(jobId)
|
||||
.finally(() => {
|
||||
mlJobService.startDatafeed(datafeedId, jobId, 0, undefined)
|
||||
.then(() => {
|
||||
this.status.realtimeJob = this.STATUS.SAVED;
|
||||
deferred.resolve();
|
||||
}).catch((resp) => {
|
||||
msgs.error('Could not start datafeed: ', resp);
|
||||
this.status.realtimeJob = this.STATUS.SAVE_FAILED;
|
||||
deferred.reject();
|
||||
});
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
};
|
||||
|
||||
this.apply = function (jobId, runInRealtime, createWatch) {
|
||||
if (runInRealtime) {
|
||||
this.startRealtimeJob(jobId)
|
||||
.then(() => {
|
||||
if (createWatch) {
|
||||
mlCreateWatchService.createNewWatch(jobId);
|
||||
}
|
||||
});
|
||||
}
|
||||
};
|
||||
});
|
||||
|
|
|
@ -0,0 +1,70 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License;
|
||||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { CreateWatchServiceProvider } from 'plugins/ml/jobs/new_job/simple/components/watcher/create_watch_service';
|
||||
|
||||
export function PostSaveServiceProvider(Private, mlMessageBarService, $q) {
|
||||
const msgs = mlMessageBarService;
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const createWatchService = Private(CreateWatchServiceProvider);
|
||||
|
||||
class PostSaveService {
|
||||
constructor() {
|
||||
this.STATUS = {
|
||||
SAVE_FAILED: -1,
|
||||
SAVING: 0,
|
||||
SAVED: 1,
|
||||
};
|
||||
|
||||
this.status = {
|
||||
realtimeJob: null,
|
||||
watch: null
|
||||
};
|
||||
createWatchService.status = this.status;
|
||||
|
||||
this.externalCreateWatch;
|
||||
}
|
||||
|
||||
startRealtimeJob(jobId) {
|
||||
return $q((resolve, reject) => {
|
||||
this.status.realtimeJob = this.STATUS.SAVING;
|
||||
|
||||
const datafeedId = mlJobService.getDatafeedId(jobId);
|
||||
|
||||
mlJobService.openJob(jobId)
|
||||
.finally(() => {
|
||||
mlJobService.startDatafeed(datafeedId, jobId, 0, undefined)
|
||||
.then(() => {
|
||||
this.status.realtimeJob = this.STATUS.SAVED;
|
||||
resolve();
|
||||
}).catch((resp) => {
|
||||
msgs.error('Could not start datafeed: ', resp);
|
||||
this.status.realtimeJob = this.STATUS.SAVE_FAILED;
|
||||
reject();
|
||||
});
|
||||
});
|
||||
|
||||
});
|
||||
}
|
||||
|
||||
apply(jobId, runInRealtime, createWatch) {
|
||||
if (runInRealtime) {
|
||||
this.startRealtimeJob(jobId)
|
||||
.then(() => {
|
||||
if (createWatch) {
|
||||
createWatchService.createNewWatch(jobId);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return new PostSaveService();
|
||||
}
|
|
@ -10,7 +10,9 @@
|
|||
// based on the cardinality of the field being used to split the data.
|
||||
// the limit should be 10MB plus 20kB per series, rounded up to the nearest MB.
|
||||
|
||||
export function CalculateModelMemoryLimitProvider(ml) {
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
export function CalculateModelMemoryLimitProvider() {
|
||||
return function calculateModelMemoryLimit(
|
||||
indexPattern,
|
||||
splitFieldName,
|
||||
|
|
|
@ -11,9 +11,13 @@
|
|||
import _ from 'lodash';
|
||||
import { IntervalHelperProvider } from 'plugins/ml/util/ml_time_buckets';
|
||||
import { calculateTextWidth } from 'plugins/ml/util/string_utils';
|
||||
import { ResultsServiceProvider } from 'plugins/ml/services/results_service';
|
||||
import { SimpleJobSearchServiceProvider } from 'plugins/ml/jobs/new_job/simple/components/utils/search_service';
|
||||
|
||||
export function ChartDataUtilsProvider($q, Private, timefilter, mlSimpleJobSearchService, mlResultsService) {
|
||||
export function ChartDataUtilsProvider($q, Private, timefilter) {
|
||||
const TimeBuckets = Private(IntervalHelperProvider);
|
||||
const mlResultsService = Private(ResultsServiceProvider);
|
||||
const mlSimpleJobSearchService = Private(SimpleJobSearchServiceProvider);
|
||||
|
||||
function loadDocCountData(formConfig, chartData) {
|
||||
return $q((resolve, reject) => {
|
||||
|
|
|
@ -11,85 +11,83 @@ import _ from 'lodash';
|
|||
import { ML_RESULTS_INDEX_PATTERN } from 'plugins/ml/constants/index_patterns';
|
||||
import { escapeForElasticsearchQuery } from 'plugins/ml/util/string_utils';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.service('mlSimpleJobSearchService', function ($q, es) {
|
||||
export function SimpleJobSearchServiceProvider($q, es) {
|
||||
// detector swimlane search
|
||||
this.getScoresByRecord = function (jobId, earliestMs, latestMs, interval, firstSplitField) {
|
||||
const deferred = $q.defer();
|
||||
const obj = {
|
||||
success: true,
|
||||
results: {}
|
||||
};
|
||||
function getScoresByRecord(jobId, earliestMs, latestMs, interval, firstSplitField) {
|
||||
return $q((resolve, reject) => {
|
||||
const obj = {
|
||||
success: true,
|
||||
results: {}
|
||||
};
|
||||
|
||||
let jobIdFilterStr = 'job_id: ' + jobId;
|
||||
if (firstSplitField && firstSplitField.value !== undefined) {
|
||||
// Escape any reserved characters for the query_string query,
|
||||
// wrapping the value in quotes to do a phrase match.
|
||||
// Backslash is a special character in JSON strings, so doubly escape
|
||||
// any backslash characters which exist in the field value.
|
||||
jobIdFilterStr += ` AND ${escapeForElasticsearchQuery(firstSplitField.name)}:`;
|
||||
jobIdFilterStr += `"${String(firstSplitField.value).replace(/\\/g, '\\\\')}"`;
|
||||
}
|
||||
let jobIdFilterStr = 'job_id: ' + jobId;
|
||||
if (firstSplitField && firstSplitField.value !== undefined) {
|
||||
// Escape any reserved characters for the query_string query,
|
||||
// wrapping the value in quotes to do a phrase match.
|
||||
// Backslash is a special character in JSON strings, so doubly escape
|
||||
// any backslash characters which exist in the field value.
|
||||
jobIdFilterStr += ` AND ${escapeForElasticsearchQuery(firstSplitField.name)}:`;
|
||||
jobIdFilterStr += `"${String(firstSplitField.value).replace(/\\/g, '\\\\')}"`;
|
||||
}
|
||||
|
||||
es.search({
|
||||
index: ML_RESULTS_INDEX_PATTERN,
|
||||
size: 0,
|
||||
body: {
|
||||
query: {
|
||||
bool: {
|
||||
filter: [{
|
||||
query_string: {
|
||||
query: 'result_type:record'
|
||||
}
|
||||
}, {
|
||||
bool: {
|
||||
must: [{
|
||||
range: {
|
||||
timestamp: {
|
||||
gte: earliestMs,
|
||||
lte: latestMs,
|
||||
format: 'epoch_millis'
|
||||
es.search({
|
||||
index: ML_RESULTS_INDEX_PATTERN,
|
||||
size: 0,
|
||||
body: {
|
||||
query: {
|
||||
bool: {
|
||||
filter: [{
|
||||
query_string: {
|
||||
query: 'result_type:record'
|
||||
}
|
||||
}, {
|
||||
bool: {
|
||||
must: [{
|
||||
range: {
|
||||
timestamp: {
|
||||
gte: earliestMs,
|
||||
lte: latestMs,
|
||||
format: 'epoch_millis'
|
||||
}
|
||||
}
|
||||
}
|
||||
}, {
|
||||
query_string: {
|
||||
query: jobIdFilterStr
|
||||
}
|
||||
}]
|
||||
}
|
||||
}]
|
||||
}
|
||||
},
|
||||
aggs: {
|
||||
detector_index: {
|
||||
terms: {
|
||||
field: 'detector_index',
|
||||
order: {
|
||||
recordScore: 'desc'
|
||||
}
|
||||
},
|
||||
aggs: {
|
||||
recordScore: {
|
||||
max: {
|
||||
field: 'record_score'
|
||||
}, {
|
||||
query_string: {
|
||||
query: jobIdFilterStr
|
||||
}
|
||||
}]
|
||||
}
|
||||
}]
|
||||
}
|
||||
},
|
||||
aggs: {
|
||||
detector_index: {
|
||||
terms: {
|
||||
field: 'detector_index',
|
||||
order: {
|
||||
recordScore: 'desc'
|
||||
}
|
||||
},
|
||||
byTime: {
|
||||
date_histogram: {
|
||||
field: 'timestamp',
|
||||
interval: interval,
|
||||
min_doc_count: 1,
|
||||
extended_bounds: {
|
||||
min: earliestMs,
|
||||
max: latestMs
|
||||
aggs: {
|
||||
recordScore: {
|
||||
max: {
|
||||
field: 'record_score'
|
||||
}
|
||||
},
|
||||
aggs: {
|
||||
recordScore: {
|
||||
max: {
|
||||
field: 'record_score'
|
||||
byTime: {
|
||||
date_histogram: {
|
||||
field: 'timestamp',
|
||||
interval: interval,
|
||||
min_doc_count: 1,
|
||||
extended_bounds: {
|
||||
min: earliestMs,
|
||||
max: latestMs
|
||||
}
|
||||
},
|
||||
aggs: {
|
||||
recordScore: {
|
||||
max: {
|
||||
field: 'record_score'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -97,69 +95,73 @@ module.service('mlSimpleJobSearchService', function ($q, es) {
|
|||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
.then((resp) => {
|
||||
const detectorsByIndex = _.get(resp, ['aggregations', 'detector_index', 'buckets'], []);
|
||||
_.each(detectorsByIndex, (dtr) => {
|
||||
const dtrResults = {};
|
||||
const dtrIndex = +dtr.key;
|
||||
|
||||
const buckets = _.get(dtr, ['byTime', 'buckets'], []);
|
||||
for (let j = 0; j < buckets.length; j++) {
|
||||
const bkt = buckets[j];
|
||||
const time = bkt.key;
|
||||
dtrResults[time] = {
|
||||
recordScore: _.get(bkt, ['recordScore', 'value']),
|
||||
};
|
||||
}
|
||||
obj.results[dtrIndex] = dtrResults;
|
||||
});
|
||||
|
||||
deferred.resolve(obj);
|
||||
})
|
||||
.catch((resp) => {
|
||||
deferred.reject(resp);
|
||||
});
|
||||
return deferred.promise;
|
||||
};
|
||||
.then((resp) => {
|
||||
const detectorsByIndex = _.get(resp, ['aggregations', 'detector_index', 'buckets'], []);
|
||||
_.each(detectorsByIndex, (dtr) => {
|
||||
const dtrResults = {};
|
||||
const dtrIndex = +dtr.key;
|
||||
|
||||
this.getCategoryFields = function (index, field, size, query) {
|
||||
const deferred = $q.defer();
|
||||
const obj = {
|
||||
success: true,
|
||||
results: {}
|
||||
};
|
||||
const buckets = _.get(dtr, ['byTime', 'buckets'], []);
|
||||
for (let j = 0; j < buckets.length; j++) {
|
||||
const bkt = buckets[j];
|
||||
const time = bkt.key;
|
||||
dtrResults[time] = {
|
||||
recordScore: _.get(bkt, ['recordScore', 'value']),
|
||||
};
|
||||
}
|
||||
obj.results[dtrIndex] = dtrResults;
|
||||
});
|
||||
|
||||
es.search({
|
||||
index,
|
||||
size: 0,
|
||||
body: {
|
||||
query: query,
|
||||
aggs: {
|
||||
catFields: {
|
||||
terms: {
|
||||
field: field,
|
||||
size: size
|
||||
resolve(obj);
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
function getCategoryFields(index, field, size, query) {
|
||||
return $q((resolve, reject) => {
|
||||
const obj = {
|
||||
success: true,
|
||||
results: {}
|
||||
};
|
||||
|
||||
es.search({
|
||||
index,
|
||||
size: 0,
|
||||
body: {
|
||||
query: query,
|
||||
aggs: {
|
||||
catFields: {
|
||||
terms: {
|
||||
field: field,
|
||||
size: size
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
.then((resp) => {
|
||||
obj.results.values = [];
|
||||
const catFields = _.get(resp, ['aggregations', 'catFields', 'buckets'], []);
|
||||
_.each(catFields, (f) => {
|
||||
obj.results.values.push(f.key);
|
||||
})
|
||||
.then((resp) => {
|
||||
obj.results.values = [];
|
||||
const catFields = _.get(resp, ['aggregations', 'catFields', 'buckets'], []);
|
||||
_.each(catFields, (f) => {
|
||||
obj.results.values.push(f.key);
|
||||
});
|
||||
|
||||
resolve(obj);
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
|
||||
deferred.resolve(obj);
|
||||
})
|
||||
.catch((resp) => {
|
||||
deferred.reject(resp);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
return deferred.promise;
|
||||
return {
|
||||
getScoresByRecord,
|
||||
getCategoryFields
|
||||
};
|
||||
|
||||
});
|
||||
}
|
||||
|
|
|
@ -8,13 +8,15 @@
|
|||
|
||||
import _ from 'lodash';
|
||||
import { parseInterval } from 'ui/utils/parse_interval';
|
||||
import { CreateWatchServiceProvider } from 'plugins/ml/jobs/new_job/simple/components/watcher/create_watch_service';
|
||||
|
||||
import template from './create_watch.html';
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.directive('mlCreateWatch', function (es, ml, mlCreateWatchService) {
|
||||
module.directive('mlCreateWatch', function (es, $q, Private) {
|
||||
return {
|
||||
restrict: 'AE',
|
||||
replace: false,
|
||||
|
@ -25,7 +27,7 @@ module.directive('mlCreateWatch', function (es, ml, mlCreateWatchService) {
|
|||
},
|
||||
template,
|
||||
link: function ($scope) {
|
||||
|
||||
const mlCreateWatchService = Private(CreateWatchServiceProvider);
|
||||
$scope.config = mlCreateWatchService.config;
|
||||
$scope.status = mlCreateWatchService.status;
|
||||
$scope.STATUS = mlCreateWatchService.STATUS;
|
||||
|
@ -56,7 +58,7 @@ module.directive('mlCreateWatch', function (es, ml, mlCreateWatchService) {
|
|||
}
|
||||
|
||||
// load elasticsearch settings to see if email has been configured
|
||||
ml.getNotificationSettings().then((resp) => {
|
||||
$q.when(ml.getNotificationSettings()).then((resp) => {
|
||||
if (_.has(resp, 'defaults.xpack.notification.email')) {
|
||||
$scope.ui.emailEnabled = true;
|
||||
}
|
||||
|
|
|
@ -14,38 +14,10 @@ import emailBody from './email.html';
|
|||
import emailInfluencersBody from './email-influencers.html';
|
||||
import { watch } from './watch.js';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
module.service('mlCreateWatchService', function ($http, $q, Private) {
|
||||
export function CreateWatchServiceProvider($http, $q, Private) {
|
||||
|
||||
const xpackInfo = Private(XPackInfoProvider);
|
||||
|
||||
this.config = {};
|
||||
|
||||
this.STATUS = {
|
||||
SAVE_FAILED: -1,
|
||||
SAVING: 0,
|
||||
SAVED: 1,
|
||||
};
|
||||
|
||||
this.status = {
|
||||
realtimeJob: null,
|
||||
watch: null
|
||||
};
|
||||
|
||||
this.reset = function () {
|
||||
this.status.realtimeJob = null;
|
||||
this.status.watch = null;
|
||||
|
||||
this.config.id = '';
|
||||
this.config.includeEmail = false;
|
||||
this.config.email = '';
|
||||
this.config.interval = '20m';
|
||||
this.config.watcherEditURL = '';
|
||||
this.config.includeInfluencers = false;
|
||||
this.config.threshold = { display: 'critical', val: 75 };
|
||||
};
|
||||
|
||||
const compiledEmailBody = _.template(emailBody);
|
||||
|
||||
const emailSection = {
|
||||
|
@ -67,67 +39,6 @@ module.service('mlCreateWatchService', function ($http, $q, Private) {
|
|||
return Math.floor(Math.random() * (max - min + 1) + min);
|
||||
}
|
||||
|
||||
this.createNewWatch = function (jobId) {
|
||||
const deferred = $q.defer();
|
||||
this.status.watch = this.STATUS.SAVING;
|
||||
if (jobId !== undefined) {
|
||||
const id = `ml-${jobId}`;
|
||||
this.config.id = id;
|
||||
|
||||
// set specific properties of the the watch
|
||||
watch.input.search.request.body.query.bool.filter[0].term.job_id = jobId;
|
||||
watch.input.search.request.body.query.bool.filter[1].range.timestamp.gte = `now-${this.config.interval}`;
|
||||
watch.input.search.request.body.aggs.bucket_results.filter.range.anomaly_score.gte = this.config.threshold.val;
|
||||
|
||||
if (this.config.includeEmail && this.config.email !== '') {
|
||||
const emails = this.config.email.split(',');
|
||||
emailSection.send_email.email.to = emails;
|
||||
|
||||
// create the html by adding the variables to the compiled email body.
|
||||
emailSection.send_email.email.body.html = compiledEmailBody({
|
||||
serverAddress: chrome.getAppUrl(),
|
||||
influencersSection: ((this.config.includeInfluencers === true) ? emailInfluencersBody : '')
|
||||
});
|
||||
|
||||
// add email section to watch
|
||||
watch.actions.send_email = emailSection.send_email;
|
||||
}
|
||||
|
||||
// set the trigger interval to be a random number between 60 and 120 seconds
|
||||
// this is to avoid all watches firing at once if the server restarts
|
||||
// and the watches synchronise
|
||||
const triggerInterval = randomNumber(60, 120);
|
||||
watch.trigger.schedule.interval = `${triggerInterval}s`;
|
||||
|
||||
const watchModel = {
|
||||
id,
|
||||
upstreamJSON: {
|
||||
id,
|
||||
type: 'json',
|
||||
watch
|
||||
}
|
||||
};
|
||||
|
||||
if (id !== '') {
|
||||
saveWatch(watchModel)
|
||||
.then(() => {
|
||||
this.status.watch = this.STATUS.SAVED;
|
||||
this.config.watcherEditURL =
|
||||
`${chrome.getBasePath()}/app/kibana#/management/elasticsearch/watcher/watches/watch/${id}/edit?_g=()`;
|
||||
deferred.resolve();
|
||||
})
|
||||
.catch((resp) => {
|
||||
this.status.watch = this.STATUS.SAVE_FAILED;
|
||||
deferred.reject(resp);
|
||||
});
|
||||
}
|
||||
} else {
|
||||
this.status.watch = this.STATUS.SAVE_FAILED;
|
||||
deferred.reject();
|
||||
}
|
||||
return deferred.promise;
|
||||
};
|
||||
|
||||
function saveWatch(watchModel) {
|
||||
const basePath = chrome.addBasePath('/api/watcher');
|
||||
const url = `${basePath}/watch/${watchModel.id}`;
|
||||
|
@ -138,19 +49,111 @@ module.service('mlCreateWatchService', function ($http, $q, Private) {
|
|||
});
|
||||
}
|
||||
|
||||
this.isWatcherEnabled = function () {
|
||||
return xpackInfo.get('features.watcher.isAvailable', false);
|
||||
};
|
||||
|
||||
this.loadWatch = function (jobId) {
|
||||
const id = `ml-${jobId}`;
|
||||
const basePath = chrome.addBasePath('/api/watcher');
|
||||
const url = `${basePath}/watch/${id}`;
|
||||
return $http.get(url)
|
||||
.catch(e => {
|
||||
throw e.data.message;
|
||||
class CreateWatchService {
|
||||
constructor() {
|
||||
this.config = {};
|
||||
|
||||
this.STATUS = {
|
||||
SAVE_FAILED: -1,
|
||||
SAVING: 0,
|
||||
SAVED: 1,
|
||||
};
|
||||
|
||||
this.status = {
|
||||
realtimeJob: null,
|
||||
watch: null
|
||||
};
|
||||
}
|
||||
|
||||
reset() {
|
||||
this.status.realtimeJob = null;
|
||||
this.status.watch = null;
|
||||
|
||||
this.config.id = '';
|
||||
this.config.includeEmail = false;
|
||||
this.config.email = '';
|
||||
this.config.interval = '20m';
|
||||
this.config.watcherEditURL = '';
|
||||
this.config.includeInfluencers = false;
|
||||
this.config.threshold = { display: 'critical', val: 75 };
|
||||
}
|
||||
|
||||
createNewWatch = function (jobId) {
|
||||
return $q((resolve, reject) => {
|
||||
this.status.watch = this.STATUS.SAVING;
|
||||
if (jobId !== undefined) {
|
||||
const id = `ml-${jobId}`;
|
||||
this.config.id = id;
|
||||
|
||||
// set specific properties of the the watch
|
||||
watch.input.search.request.body.query.bool.filter[0].term.job_id = jobId;
|
||||
watch.input.search.request.body.query.bool.filter[1].range.timestamp.gte = `now-${this.config.interval}`;
|
||||
watch.input.search.request.body.aggs.bucket_results.filter.range.anomaly_score.gte = this.config.threshold.val;
|
||||
|
||||
if (this.config.includeEmail && this.config.email !== '') {
|
||||
const emails = this.config.email.split(',');
|
||||
emailSection.send_email.email.to = emails;
|
||||
|
||||
// create the html by adding the variables to the compiled email body.
|
||||
emailSection.send_email.email.body.html = compiledEmailBody({
|
||||
serverAddress: chrome.getAppUrl(),
|
||||
influencersSection: ((this.config.includeInfluencers === true) ? emailInfluencersBody : '')
|
||||
});
|
||||
|
||||
// add email section to watch
|
||||
watch.actions.send_email = emailSection.send_email;
|
||||
}
|
||||
|
||||
// set the trigger interval to be a random number between 60 and 120 seconds
|
||||
// this is to avoid all watches firing at once if the server restarts
|
||||
// and the watches synchronize
|
||||
const triggerInterval = randomNumber(60, 120);
|
||||
watch.trigger.schedule.interval = `${triggerInterval}s`;
|
||||
|
||||
const watchModel = {
|
||||
id,
|
||||
upstreamJSON: {
|
||||
id,
|
||||
type: 'json',
|
||||
watch
|
||||
}
|
||||
};
|
||||
|
||||
if (id !== '') {
|
||||
saveWatch(watchModel)
|
||||
.then(() => {
|
||||
this.status.watch = this.STATUS.SAVED;
|
||||
this.config.watcherEditURL =
|
||||
`${chrome.getBasePath()}/app/kibana#/management/elasticsearch/watcher/watches/watch/${id}/edit?_g=()`;
|
||||
resolve();
|
||||
})
|
||||
.catch((resp) => {
|
||||
this.status.watch = this.STATUS.SAVE_FAILED;
|
||||
reject(resp);
|
||||
});
|
||||
}
|
||||
} else {
|
||||
this.status.watch = this.STATUS.SAVE_FAILED;
|
||||
reject();
|
||||
}
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
isWatcherEnabled() {
|
||||
return xpackInfo.get('features.watcher.isAvailable', false);
|
||||
}
|
||||
|
||||
});
|
||||
loadWatch(jobId) {
|
||||
const id = `ml-${jobId}`;
|
||||
const basePath = chrome.addBasePath('/api/watcher');
|
||||
const url = `${basePath}/watch/${id}`;
|
||||
return $http.get(url)
|
||||
.catch(e => {
|
||||
throw e.data.message;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return new CreateWatchService();
|
||||
}
|
||||
|
|
|
@ -37,6 +37,9 @@ import {
|
|||
createResultsUrl,
|
||||
addNewJobToRecentlyAccessed,
|
||||
moveToAdvancedJobCreationProvider } from 'plugins/ml/jobs/new_job/utils/new_job_utils';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { MultiMetricJobServiceProvider } from './create_job_service';
|
||||
import { FullTimeRangeSelectorServiceProvider } from 'plugins/ml/components/full_time_range_selector/full_time_range_selector_service';
|
||||
import template from './create_job.html';
|
||||
|
||||
uiRoutes
|
||||
|
@ -61,10 +64,7 @@ module
|
|||
$route,
|
||||
timefilter,
|
||||
Private,
|
||||
mlJobService,
|
||||
mlMultiMetricJobService,
|
||||
mlMessageBarService,
|
||||
mlFullTimeRangeSelectorService,
|
||||
AppState) {
|
||||
|
||||
timefilter.enableTimeRangeSelector();
|
||||
|
@ -74,6 +74,9 @@ module
|
|||
const moveToAdvancedJobCreation = Private(moveToAdvancedJobCreationProvider);
|
||||
const calculateModelMemoryLimit = Private(CalculateModelMemoryLimitProvider);
|
||||
const chartDataUtils = Private(ChartDataUtilsProvider);
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const mlMultiMetricJobService = Private(MultiMetricJobServiceProvider);
|
||||
const mlFullTimeRangeSelectorService = Private(FullTimeRangeSelectorServiceProvider);
|
||||
$scope.addNewJobToRecentlyAccessed = addNewJobToRecentlyAccessed;
|
||||
|
||||
const stateDefaults = {
|
||||
|
|
|
@ -7,340 +7,339 @@
|
|||
|
||||
|
||||
import _ from 'lodash';
|
||||
import angular from 'angular';
|
||||
|
||||
import { EVENT_RATE_COUNT_FIELD } from 'plugins/ml/jobs/new_job/simple/components/constants/general';
|
||||
import { ML_MEDIAN_PERCENTS } from 'plugins/ml/../common/util/job_utils';
|
||||
import { FieldFormatServiceProvider } from 'plugins/ml/services/field_format_service';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { createJobForSaving } from 'plugins/ml/jobs/new_job/utils/new_job_utils';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.service('mlMultiMetricJobService', function (
|
||||
export function MultiMetricJobServiceProvider(
|
||||
$q,
|
||||
es,
|
||||
timefilter,
|
||||
Private,
|
||||
mlFieldFormatService,
|
||||
mlJobService) {
|
||||
Private) {
|
||||
|
||||
this.chartData = {
|
||||
job: {
|
||||
swimlane: [],
|
||||
line: [],
|
||||
bars: [],
|
||||
earliestTime: Number.MAX_SAFE_INTEGER
|
||||
},
|
||||
detectors: {},
|
||||
percentComplete: 0,
|
||||
loadingDifference: 0,
|
||||
lastLoadTimestamp: null,
|
||||
eventRateHighestValue: 0,
|
||||
chartTicksMargin: { width: 30 },
|
||||
totalResults: 0
|
||||
};
|
||||
this.job = {};
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const fieldFormatService = Private(FieldFormatServiceProvider);
|
||||
|
||||
this.clearChartData = function () {
|
||||
this.chartData.job.swimlane = [];
|
||||
this.chartData.job.line = [];
|
||||
this.chartData.job.bars = [];
|
||||
this.chartData.detectors = {};
|
||||
this.chartData.percentComplete = 0;
|
||||
this.chartData.loadingDifference = 0;
|
||||
this.chartData.eventRateHighestValue = 0;
|
||||
this.chartData.totalResults = 0;
|
||||
class MultiMetricJobService {
|
||||
|
||||
this.job = {};
|
||||
};
|
||||
|
||||
this.getLineChartResults = function (formConfig, thisLoadTimestamp) {
|
||||
const deferred = $q.defer();
|
||||
|
||||
const fieldIds = Object.keys(formConfig.fields).sort();
|
||||
|
||||
this.chartData.job.earliestTime = formConfig.start;
|
||||
|
||||
// move event rate field to the front of the list
|
||||
const idx = _.findIndex(fieldIds, (id) => id === EVENT_RATE_COUNT_FIELD);
|
||||
if(idx !== -1) {
|
||||
fieldIds.splice(idx, 1);
|
||||
fieldIds.splice(0, 0, EVENT_RATE_COUNT_FIELD);
|
||||
constructor() {
|
||||
this.chartData = {
|
||||
job: {
|
||||
swimlane: [],
|
||||
line: [],
|
||||
bars: [],
|
||||
earliestTime: Number.MAX_SAFE_INTEGER
|
||||
},
|
||||
detectors: {},
|
||||
percentComplete: 0,
|
||||
loadingDifference: 0,
|
||||
lastLoadTimestamp: null,
|
||||
eventRateHighestValue: 0,
|
||||
chartTicksMargin: { width: 30 },
|
||||
totalResults: 0
|
||||
};
|
||||
this.job = {};
|
||||
}
|
||||
|
||||
_.each(fieldIds, (fieldId) => {
|
||||
this.chartData.detectors[fieldId] = {
|
||||
line: [],
|
||||
swimlane: [],
|
||||
highestValue: 0
|
||||
};
|
||||
});
|
||||
clearChartData() {
|
||||
this.chartData.job.swimlane = [];
|
||||
this.chartData.job.line = [];
|
||||
this.chartData.job.bars = [];
|
||||
this.chartData.detectors = {};
|
||||
this.chartData.percentComplete = 0;
|
||||
this.chartData.loadingDifference = 0;
|
||||
this.chartData.eventRateHighestValue = 0;
|
||||
this.chartData.totalResults = 0;
|
||||
this.job = {};
|
||||
}
|
||||
|
||||
const searchJson = getSearchJsonFromConfig(formConfig);
|
||||
getLineChartResults(formConfig, thisLoadTimestamp) {
|
||||
return $q((resolve, reject) => {
|
||||
|
||||
es.search(searchJson)
|
||||
.then((resp) => {
|
||||
// if this is the last chart load, wipe all previous chart data
|
||||
if (thisLoadTimestamp === this.chartData.lastLoadTimestamp) {
|
||||
_.each(fieldIds, (fieldId) => {
|
||||
this.chartData.detectors[fieldId] = {
|
||||
line: [],
|
||||
swimlane: [],
|
||||
highestValue: 0
|
||||
};
|
||||
const fieldIds = Object.keys(formConfig.fields).sort();
|
||||
|
||||
if (fieldId !== EVENT_RATE_COUNT_FIELD) {
|
||||
const field = formConfig.fields[fieldId];
|
||||
const aggType = field.agg.type.dslName;
|
||||
this.chartData.detectors[fieldId].fieldFormat = mlFieldFormatService.getFieldFormatFromIndexPattern(
|
||||
formConfig.indexPattern,
|
||||
fieldId,
|
||||
aggType);
|
||||
}
|
||||
this.chartData.job.earliestTime = formConfig.start;
|
||||
|
||||
});
|
||||
} else {
|
||||
deferred.resolve(this.chartData);
|
||||
// move event rate field to the front of the list
|
||||
const idx = _.findIndex(fieldIds, (id) => id === EVENT_RATE_COUNT_FIELD);
|
||||
if(idx !== -1) {
|
||||
fieldIds.splice(idx, 1);
|
||||
fieldIds.splice(0, 0, EVENT_RATE_COUNT_FIELD);
|
||||
}
|
||||
const aggregationsByTime = _.get(resp, ['aggregations', 'times', 'buckets'], []);
|
||||
|
||||
_.each(aggregationsByTime, (dataForTime) => {
|
||||
const time = +dataForTime.key;
|
||||
const date = new Date(time);
|
||||
const docCount = +dataForTime.doc_count;
|
||||
_.each(fieldIds, (fieldId) => {
|
||||
this.chartData.detectors[fieldId] = {
|
||||
line: [],
|
||||
swimlane: [],
|
||||
highestValue: 0
|
||||
};
|
||||
});
|
||||
|
||||
this.chartData.job.swimlane.push({
|
||||
date: date,
|
||||
time: time,
|
||||
value: 0,
|
||||
color: '',
|
||||
percentComplete: 0
|
||||
});
|
||||
this.chartData.job.earliestTime = (time < this.chartData.job.earliestTime) ? time : this.chartData.job.earliestTime;
|
||||
const searchJson = getSearchJsonFromConfig(formConfig);
|
||||
|
||||
// used to draw the x axis labels on first render
|
||||
this.chartData.job.line.push({
|
||||
date: date,
|
||||
time: time,
|
||||
value: null,
|
||||
});
|
||||
es.search(searchJson)
|
||||
.then((resp) => {
|
||||
// if this is the last chart load, wipe all previous chart data
|
||||
if (thisLoadTimestamp === this.chartData.lastLoadTimestamp) {
|
||||
_.each(fieldIds, (fieldId) => {
|
||||
this.chartData.detectors[fieldId] = {
|
||||
line: [],
|
||||
swimlane: [],
|
||||
highestValue: 0
|
||||
};
|
||||
|
||||
_.each(fieldIds, (fieldId) => {
|
||||
let value;
|
||||
if (fieldId === EVENT_RATE_COUNT_FIELD) {
|
||||
value = docCount;
|
||||
} else if (typeof dataForTime[fieldId].value !== 'undefined') {
|
||||
value = dataForTime[fieldId].value;
|
||||
} else if (typeof dataForTime[fieldId].values !== 'undefined') {
|
||||
value = dataForTime[fieldId].values[ML_MEDIAN_PERCENTS];
|
||||
}
|
||||
if (fieldId !== EVENT_RATE_COUNT_FIELD) {
|
||||
const field = formConfig.fields[fieldId];
|
||||
const aggType = field.agg.type.dslName;
|
||||
this.chartData.detectors[fieldId].fieldFormat = fieldFormatService.getFieldFormatFromIndexPattern(
|
||||
formConfig.indexPattern,
|
||||
fieldId,
|
||||
aggType);
|
||||
}
|
||||
|
||||
if (!isFinite(value) || docCount === 0) {
|
||||
value = null;
|
||||
}
|
||||
|
||||
if (this.chartData.detectors[fieldId]) {
|
||||
this.chartData.detectors[fieldId].line.push({
|
||||
date,
|
||||
time,
|
||||
value,
|
||||
});
|
||||
} else {
|
||||
resolve(this.chartData);
|
||||
}
|
||||
const aggregationsByTime = _.get(resp, ['aggregations', 'times', 'buckets'], []);
|
||||
|
||||
// init swimlane
|
||||
this.chartData.detectors[fieldId].swimlane.push({
|
||||
date,
|
||||
time,
|
||||
_.each(aggregationsByTime, (dataForTime) => {
|
||||
const time = +dataForTime.key;
|
||||
const date = new Date(time);
|
||||
const docCount = +dataForTime.doc_count;
|
||||
|
||||
this.chartData.job.swimlane.push({
|
||||
date: date,
|
||||
time: time,
|
||||
value: 0,
|
||||
color: '',
|
||||
percentComplete: 0
|
||||
});
|
||||
this.chartData.job.earliestTime = (time < this.chartData.job.earliestTime) ? time : this.chartData.job.earliestTime;
|
||||
|
||||
if (value !== null) {
|
||||
this.chartData.detectors[fieldId].highestValue =
|
||||
Math.ceil(Math.max(this.chartData.detectors[fieldId].highestValue, Math.abs(value)));
|
||||
}
|
||||
// used to draw the x axis labels on first render
|
||||
this.chartData.job.line.push({
|
||||
date: date,
|
||||
time: time,
|
||||
value: null,
|
||||
});
|
||||
|
||||
}
|
||||
_.each(fieldIds, (fieldId) => {
|
||||
let value;
|
||||
if (fieldId === EVENT_RATE_COUNT_FIELD) {
|
||||
value = docCount;
|
||||
} else if (typeof dataForTime[fieldId].value !== 'undefined') {
|
||||
value = dataForTime[fieldId].value;
|
||||
} else if (typeof dataForTime[fieldId].values !== 'undefined') {
|
||||
value = dataForTime[fieldId].values[ML_MEDIAN_PERCENTS];
|
||||
}
|
||||
|
||||
if (!isFinite(value) || docCount === 0) {
|
||||
value = null;
|
||||
}
|
||||
|
||||
if (this.chartData.detectors[fieldId]) {
|
||||
this.chartData.detectors[fieldId].line.push({
|
||||
date,
|
||||
time,
|
||||
value,
|
||||
});
|
||||
|
||||
// init swimlane
|
||||
this.chartData.detectors[fieldId].swimlane.push({
|
||||
date,
|
||||
time,
|
||||
value: 0,
|
||||
color: '',
|
||||
percentComplete: 0
|
||||
});
|
||||
|
||||
if (value !== null) {
|
||||
this.chartData.detectors[fieldId].highestValue =
|
||||
Math.ceil(Math.max(this.chartData.detectors[fieldId].highestValue, Math.abs(value)));
|
||||
}
|
||||
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
resolve(this.chartData);
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
});
|
||||
|
||||
deferred.resolve(this.chartData);
|
||||
})
|
||||
.catch((resp) => {
|
||||
deferred.reject(resp);
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
};
|
||||
|
||||
function getSearchJsonFromConfig(formConfig) {
|
||||
const interval = formConfig.chartInterval.getInterval().asMilliseconds() + 'ms';
|
||||
// clone the query as we're modifying it
|
||||
const query = _.cloneDeep(formConfig.combinedQuery);
|
||||
|
||||
const json = {
|
||||
'index': formConfig.indexPattern.title,
|
||||
'size': 0,
|
||||
'body': {
|
||||
'query': {},
|
||||
'aggs': {
|
||||
'times': {
|
||||
'date_histogram': {
|
||||
'field': formConfig.timeField,
|
||||
'interval': interval,
|
||||
'min_doc_count': 0,
|
||||
'extended_bounds': {
|
||||
'min': formConfig.start,
|
||||
'max': formConfig.end,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
query.bool.must.push({
|
||||
'range': {
|
||||
[formConfig.timeField]: {
|
||||
'gte': formConfig.start,
|
||||
'lte': formConfig.end,
|
||||
'format': formConfig.format
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// if the data is partitioned, add an additional search term
|
||||
if (formConfig.firstSplitFieldName !== undefined) {
|
||||
query.bool.must.push({
|
||||
term: {
|
||||
[formConfig.splitField.name]: formConfig.firstSplitFieldName
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
json.body.query = query;
|
||||
getJobFromConfig(formConfig) {
|
||||
const job = mlJobService.getBlankJob();
|
||||
job.data_description.time_field = formConfig.timeField;
|
||||
|
||||
if (Object.keys(formConfig.fields).length) {
|
||||
json.body.aggs.times.aggs = {};
|
||||
_.each(formConfig.fields, (field) => {
|
||||
if (field.id !== EVENT_RATE_COUNT_FIELD) {
|
||||
json.body.aggs.times.aggs[field.id] = {
|
||||
[field.agg.type.dslName]: { field: field.name }
|
||||
};
|
||||
|
||||
if (field.agg.type.dslName === 'percentiles') {
|
||||
json.body.aggs.times.aggs[field.id][field.agg.type.dslName].percents = [ML_MEDIAN_PERCENTS];
|
||||
_.each(formConfig.fields, (field, key) => {
|
||||
let func = field.agg.type.mlName;
|
||||
if (formConfig.isSparseData) {
|
||||
if (field.agg.type.dslName === 'count') {
|
||||
func = func.replace(/count/, 'non_zero_count');
|
||||
} else if(field.agg.type.dslName === 'sum') {
|
||||
func = func.replace(/sum/, 'non_null_sum');
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
const dtr = {
|
||||
function: func
|
||||
};
|
||||
|
||||
return json;
|
||||
}
|
||||
dtr.detector_description = func;
|
||||
|
||||
function createJobForSaving(job) {
|
||||
const newJob = angular.copy(job);
|
||||
delete newJob.datafeed_config;
|
||||
return newJob;
|
||||
}
|
||||
|
||||
this.getJobFromConfig = function (formConfig) {
|
||||
const job = mlJobService.getBlankJob();
|
||||
job.data_description.time_field = formConfig.timeField;
|
||||
|
||||
_.each(formConfig.fields, (field, key) => {
|
||||
let func = field.agg.type.mlName;
|
||||
if (formConfig.isSparseData) {
|
||||
if (field.agg.type.dslName === 'count') {
|
||||
func = func.replace(/count/, 'non_zero_count');
|
||||
} else if(field.agg.type.dslName === 'sum') {
|
||||
func = func.replace(/sum/, 'non_null_sum');
|
||||
if (key !== EVENT_RATE_COUNT_FIELD) {
|
||||
dtr.field_name = field.name;
|
||||
dtr.detector_description += `(${field.name})`;
|
||||
}
|
||||
|
||||
if (formConfig.splitField !== undefined) {
|
||||
dtr.partition_field_name = formConfig.splitField.name;
|
||||
}
|
||||
job.analysis_config.detectors.push(dtr);
|
||||
});
|
||||
|
||||
const influencerFields = formConfig.influencerFields.map(f => f.name);
|
||||
if (influencerFields && influencerFields.length) {
|
||||
job.analysis_config.influencers = influencerFields;
|
||||
}
|
||||
const dtr = {
|
||||
function: func
|
||||
|
||||
let query = {
|
||||
match_all: {}
|
||||
};
|
||||
if (formConfig.query.query_string.query !== '*' || formConfig.filters.length) {
|
||||
query = formConfig.combinedQuery;
|
||||
}
|
||||
|
||||
job.analysis_config.bucket_span = formConfig.bucketSpan;
|
||||
|
||||
job.analysis_limits = {
|
||||
model_memory_limit: formConfig.modelMemoryLimit
|
||||
};
|
||||
|
||||
dtr.detector_description = func;
|
||||
delete job.data_description.field_delimiter;
|
||||
delete job.data_description.quote_character;
|
||||
delete job.data_description.time_format;
|
||||
delete job.data_description.format;
|
||||
|
||||
if (key !== EVENT_RATE_COUNT_FIELD) {
|
||||
dtr.field_name = field.name;
|
||||
dtr.detector_description += `(${field.name})`;
|
||||
const indices = formConfig.indexPattern.title.split(',').map(i => i.trim());
|
||||
job.datafeed_config = {
|
||||
query,
|
||||
indices
|
||||
};
|
||||
job.job_id = formConfig.jobId;
|
||||
job.description = formConfig.description;
|
||||
job.groups = formConfig.jobGroups;
|
||||
|
||||
if (formConfig.useDedicatedIndex) {
|
||||
job.results_index_name = job.job_id;
|
||||
}
|
||||
|
||||
if (formConfig.splitField !== undefined) {
|
||||
dtr.partition_field_name = formConfig.splitField.name;
|
||||
}
|
||||
job.analysis_config.detectors.push(dtr);
|
||||
});
|
||||
|
||||
const influencerFields = formConfig.influencerFields.map(f => f.name);
|
||||
if (influencerFields && influencerFields.length) {
|
||||
job.analysis_config.influencers = influencerFields;
|
||||
return job;
|
||||
}
|
||||
|
||||
let query = {
|
||||
match_all: {}
|
||||
};
|
||||
if (formConfig.query.query_string.query !== '*' || formConfig.filters.length) {
|
||||
query = formConfig.combinedQuery;
|
||||
}
|
||||
createJob(formConfig) {
|
||||
return $q((resolve, reject) => {
|
||||
|
||||
job.analysis_config.bucket_span = formConfig.bucketSpan;
|
||||
this.job = this.getJobFromConfig(formConfig);
|
||||
const job = createJobForSaving(this.job);
|
||||
|
||||
job.analysis_limits = {
|
||||
model_memory_limit: formConfig.modelMemoryLimit
|
||||
};
|
||||
// DO THE SAVE
|
||||
mlJobService.saveNewJob(job)
|
||||
.then((resp) => {
|
||||
if (resp.success) {
|
||||
resolve(this.job);
|
||||
} else {
|
||||
reject(resp);
|
||||
}
|
||||
});
|
||||
|
||||
delete job.data_description.field_delimiter;
|
||||
delete job.data_description.quote_character;
|
||||
delete job.data_description.time_format;
|
||||
delete job.data_description.format;
|
||||
|
||||
const indices = formConfig.indexPattern.title.split(',').map(i => i.trim());
|
||||
|
||||
job.datafeed_config = {
|
||||
query,
|
||||
indices
|
||||
};
|
||||
|
||||
job.job_id = formConfig.jobId;
|
||||
job.description = formConfig.description;
|
||||
job.groups = formConfig.jobGroups;
|
||||
|
||||
if (formConfig.useDedicatedIndex) {
|
||||
job.results_index_name = job.job_id;
|
||||
}
|
||||
|
||||
return job;
|
||||
};
|
||||
|
||||
this.createJob = function (formConfig) {
|
||||
const deferred = $q.defer();
|
||||
|
||||
this.job = this.getJobFromConfig(formConfig);
|
||||
const job = createJobForSaving(this.job);
|
||||
|
||||
// DO THE SAVE
|
||||
mlJobService.saveNewJob(job)
|
||||
.then((resp) => {
|
||||
if (resp.success) {
|
||||
deferred.resolve(this.job);
|
||||
} else {
|
||||
deferred.reject(resp);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
return deferred.promise;
|
||||
startDatafeed(formConfig) {
|
||||
const datafeedId = mlJobService.getDatafeedId(formConfig.jobId);
|
||||
return mlJobService.startDatafeed(datafeedId, formConfig.jobId, formConfig.start, formConfig.end);
|
||||
}
|
||||
|
||||
stopDatafeed(formConfig) {
|
||||
const datafeedId = mlJobService.getDatafeedId(formConfig.jobId);
|
||||
return mlJobService.stopDatafeed(datafeedId, formConfig.jobId);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
return new MultiMetricJobService();
|
||||
}
|
||||
|
||||
function getSearchJsonFromConfig(formConfig) {
|
||||
const interval = formConfig.chartInterval.getInterval().asMilliseconds() + 'ms';
|
||||
// clone the query as we're modifying it
|
||||
const query = _.cloneDeep(formConfig.combinedQuery);
|
||||
|
||||
const json = {
|
||||
index: formConfig.indexPattern.title,
|
||||
size: 0,
|
||||
body: {
|
||||
query: {},
|
||||
aggs: {
|
||||
times: {
|
||||
date_histogram: {
|
||||
field: formConfig.timeField,
|
||||
interval: interval,
|
||||
min_doc_count: 0,
|
||||
extended_bounds: {
|
||||
min: formConfig.start,
|
||||
max: formConfig.end,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
this.startDatafeed = function (formConfig) {
|
||||
const datafeedId = mlJobService.getDatafeedId(formConfig.jobId);
|
||||
return mlJobService.startDatafeed(datafeedId, formConfig.jobId, formConfig.start, formConfig.end);
|
||||
};
|
||||
query.bool.must.push({
|
||||
range: {
|
||||
[formConfig.timeField]: {
|
||||
gte: formConfig.start,
|
||||
lte: formConfig.end,
|
||||
format: formConfig.format
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
this.stopDatafeed = function (formConfig) {
|
||||
const datafeedId = mlJobService.getDatafeedId(formConfig.jobId);
|
||||
return mlJobService.stopDatafeed(datafeedId, formConfig.jobId);
|
||||
};
|
||||
// if the data is partitioned, add an additional search term
|
||||
if (formConfig.firstSplitFieldName !== undefined) {
|
||||
query.bool.must.push({
|
||||
term: {
|
||||
[formConfig.splitField.name]: formConfig.firstSplitFieldName
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
});
|
||||
json.body.query = query;
|
||||
|
||||
if (Object.keys(formConfig.fields).length) {
|
||||
json.body.aggs.times.aggs = {};
|
||||
_.each(formConfig.fields, (field) => {
|
||||
if (field.id !== EVENT_RATE_COUNT_FIELD) {
|
||||
json.body.aggs.times.aggs[field.id] = {
|
||||
[field.agg.type.dslName]: { field: field.name }
|
||||
};
|
||||
|
||||
if (field.agg.type.dslName === 'percentiles') {
|
||||
json.body.aggs.times.aggs[field.id][field.agg.type.dslName].percents = [ML_MEDIAN_PERCENTS];
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
return json;
|
||||
}
|
||||
|
|
|
@ -36,6 +36,9 @@ import {
|
|||
createResultsUrl,
|
||||
addNewJobToRecentlyAccessed,
|
||||
moveToAdvancedJobCreationProvider } from 'plugins/ml/jobs/new_job/utils/new_job_utils';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { PopulationJobServiceProvider } from './create_job_service';
|
||||
import { FullTimeRangeSelectorServiceProvider } from 'plugins/ml/components/full_time_range_selector/full_time_range_selector_service';
|
||||
import template from './create_job.html';
|
||||
|
||||
uiRoutes
|
||||
|
@ -62,10 +65,7 @@ module
|
|||
$q,
|
||||
timefilter,
|
||||
Private,
|
||||
mlJobService,
|
||||
mlPopulationJobService,
|
||||
mlMessageBarService,
|
||||
mlFullTimeRangeSelectorService,
|
||||
AppState) {
|
||||
|
||||
timefilter.enableTimeRangeSelector();
|
||||
|
@ -74,6 +74,9 @@ module
|
|||
const MlTimeBuckets = Private(IntervalHelperProvider);
|
||||
const moveToAdvancedJobCreation = Private(moveToAdvancedJobCreationProvider);
|
||||
const chartDataUtils = Private(ChartDataUtilsProvider);
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const mlPopulationJobService = Private(PopulationJobServiceProvider);
|
||||
const mlFullTimeRangeSelectorService = Private(FullTimeRangeSelectorServiceProvider);
|
||||
$scope.addNewJobToRecentlyAccessed = addNewJobToRecentlyAccessed;
|
||||
|
||||
const stateDefaults = {
|
||||
|
|
|
@ -7,193 +7,304 @@
|
|||
|
||||
|
||||
import _ from 'lodash';
|
||||
import angular from 'angular';
|
||||
|
||||
import { EVENT_RATE_COUNT_FIELD } from 'plugins/ml/jobs/new_job/simple/components/constants/general';
|
||||
import { ML_MEDIAN_PERCENTS } from 'plugins/ml/../common/util/job_utils';
|
||||
import { IntervalHelperProvider } from 'plugins/ml/util/ml_time_buckets';
|
||||
import { FieldFormatServiceProvider } from 'plugins/ml/services/field_format_service';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { createJobForSaving } from 'plugins/ml/jobs/new_job/utils/new_job_utils';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.service('mlPopulationJobService', function (
|
||||
export function PopulationJobServiceProvider(
|
||||
$q,
|
||||
es,
|
||||
timefilter,
|
||||
Private,
|
||||
mlFieldFormatService,
|
||||
mlJobService) {
|
||||
Private) {
|
||||
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const TimeBuckets = Private(IntervalHelperProvider);
|
||||
const fieldFormatService = Private(FieldFormatServiceProvider);
|
||||
const OVER_FIELD_EXAMPLES_COUNT = 40;
|
||||
|
||||
this.chartData = {
|
||||
job: {
|
||||
swimlane: [],
|
||||
line: [],
|
||||
bars: [],
|
||||
earliestTime: Number.MAX_SAFE_INTEGER
|
||||
},
|
||||
detectors: {},
|
||||
percentComplete: 0,
|
||||
loadingDifference: 0,
|
||||
lastLoadTimestamp: null,
|
||||
eventRateHighestValue: 0,
|
||||
chartTicksMargin: { width: 30 },
|
||||
totalResults: 0
|
||||
};
|
||||
this.job = {};
|
||||
class PopulationJobService {
|
||||
|
||||
this.clearChartData = function () {
|
||||
this.chartData.job.swimlane = [];
|
||||
this.chartData.job.line = [];
|
||||
this.chartData.job.bars = [];
|
||||
this.chartData.detectors = {};
|
||||
this.chartData.percentComplete = 0;
|
||||
this.chartData.loadingDifference = 0;
|
||||
this.chartData.eventRateHighestValue = 0;
|
||||
this.chartData.totalResults = 0;
|
||||
|
||||
this.job = {};
|
||||
};
|
||||
|
||||
this.getLineChartResults = function (formConfig, thisLoadTimestamp) {
|
||||
const deferred = $q.defer();
|
||||
|
||||
const fieldIds = formConfig.fields.map(f => f.id);
|
||||
|
||||
this.chartData.job.earliestTime = formConfig.start;
|
||||
|
||||
// move event rate field to the front of the list
|
||||
const idx = _.findIndex(fieldIds, (id) => id === EVENT_RATE_COUNT_FIELD);
|
||||
if(idx !== -1) {
|
||||
fieldIds.splice(idx, 1);
|
||||
fieldIds.splice(0, 0, EVENT_RATE_COUNT_FIELD);
|
||||
constructor() {
|
||||
this.chartData = {
|
||||
job: {
|
||||
swimlane: [],
|
||||
line: [],
|
||||
bars: [],
|
||||
earliestTime: Number.MAX_SAFE_INTEGER
|
||||
},
|
||||
detectors: {},
|
||||
percentComplete: 0,
|
||||
loadingDifference: 0,
|
||||
lastLoadTimestamp: null,
|
||||
eventRateHighestValue: 0,
|
||||
chartTicksMargin: { width: 30 },
|
||||
totalResults: 0
|
||||
};
|
||||
this.job = {};
|
||||
}
|
||||
|
||||
fieldIds.forEach((fieldId, i) => {
|
||||
this.chartData.detectors[i] = {
|
||||
line: [],
|
||||
swimlane: [],
|
||||
highestValue: 0
|
||||
};
|
||||
});
|
||||
clearChartData() {
|
||||
this.chartData.job.swimlane = [];
|
||||
this.chartData.job.line = [];
|
||||
this.chartData.job.bars = [];
|
||||
this.chartData.detectors = {};
|
||||
this.chartData.percentComplete = 0;
|
||||
this.chartData.loadingDifference = 0;
|
||||
this.chartData.eventRateHighestValue = 0;
|
||||
this.chartData.totalResults = 0;
|
||||
this.job = {};
|
||||
}
|
||||
|
||||
const searchJson = getSearchJsonFromConfig(formConfig);
|
||||
getLineChartResults(formConfig, thisLoadTimestamp) {
|
||||
return $q((resolve, reject) => {
|
||||
|
||||
es.search(searchJson)
|
||||
.then((resp) => {
|
||||
// if this is the last chart load, wipe all previous chart data
|
||||
if (thisLoadTimestamp === this.chartData.lastLoadTimestamp) {
|
||||
const fieldIds = formConfig.fields.map(f => f.id);
|
||||
|
||||
fieldIds.forEach((fieldId, i) => {
|
||||
this.chartData.detectors[i] = {
|
||||
line: [],
|
||||
swimlane: [],
|
||||
highestValue: 0
|
||||
};
|
||||
this.chartData.job.earliestTime = formConfig.start;
|
||||
|
||||
if (fieldId !== EVENT_RATE_COUNT_FIELD) {
|
||||
const field = formConfig.fields[i];
|
||||
const aggType = field.agg.type.dslName;
|
||||
this.chartData.detectors[i].fieldFormat = mlFieldFormatService.getFieldFormatFromIndexPattern(
|
||||
formConfig.indexPattern,
|
||||
fieldId,
|
||||
aggType);
|
||||
}
|
||||
|
||||
});
|
||||
} else {
|
||||
deferred.resolve(this.chartData);
|
||||
// move event rate field to the front of the list
|
||||
const idx = _.findIndex(fieldIds, (id) => id === EVENT_RATE_COUNT_FIELD);
|
||||
if(idx !== -1) {
|
||||
fieldIds.splice(idx, 1);
|
||||
fieldIds.splice(0, 0, EVENT_RATE_COUNT_FIELD);
|
||||
}
|
||||
const aggregationsByTime = _.get(resp, ['aggregations', 'times', 'buckets'], []);
|
||||
|
||||
_.each(aggregationsByTime, (dataForTime) => {
|
||||
const time = +dataForTime.key;
|
||||
const date = new Date(time);
|
||||
fieldIds.forEach((fieldId, i) => {
|
||||
this.chartData.detectors[i] = {
|
||||
line: [],
|
||||
swimlane: [],
|
||||
highestValue: 0
|
||||
};
|
||||
});
|
||||
|
||||
this.chartData.job.swimlane.push({
|
||||
date: date,
|
||||
time: time,
|
||||
value: 0,
|
||||
color: '',
|
||||
percentComplete: 0
|
||||
});
|
||||
const searchJson = getSearchJsonFromConfig(formConfig, timefilter, TimeBuckets);
|
||||
|
||||
this.chartData.job.earliestTime = (time < this.chartData.job.earliestTime) ? time : this.chartData.job.earliestTime;
|
||||
es.search(searchJson)
|
||||
.then((resp) => {
|
||||
// if this is the last chart load, wipe all previous chart data
|
||||
if (thisLoadTimestamp === this.chartData.lastLoadTimestamp) {
|
||||
|
||||
this.chartData.job.line.push({
|
||||
date: date,
|
||||
time: time,
|
||||
value: null,
|
||||
});
|
||||
fieldIds.forEach((fieldId, i) => {
|
||||
this.chartData.detectors[i] = {
|
||||
line: [],
|
||||
swimlane: [],
|
||||
highestValue: 0
|
||||
};
|
||||
|
||||
fieldIds.forEach((fieldId, i) => {
|
||||
const populationBuckets = _.get(dataForTime, ['population', 'buckets'], []);
|
||||
const values = [];
|
||||
if (fieldId === EVENT_RATE_COUNT_FIELD) {
|
||||
populationBuckets.forEach(b => {
|
||||
// check to see if the data is split.
|
||||
if (b[i] === undefined) {
|
||||
values.push({ label: b.key, value: b.doc_count });
|
||||
} else {
|
||||
// a split is being used, so an additional filter was added to the search
|
||||
values.push({ label: b.key, value: b[i].doc_count });
|
||||
if (fieldId !== EVENT_RATE_COUNT_FIELD) {
|
||||
const field = formConfig.fields[i];
|
||||
const aggType = field.agg.type.dslName;
|
||||
this.chartData.detectors[i].fieldFormat = fieldFormatService.getFieldFormatFromIndexPattern(
|
||||
formConfig.indexPattern,
|
||||
fieldId,
|
||||
aggType);
|
||||
}
|
||||
});
|
||||
} else if (typeof dataForTime.population !== 'undefined') {
|
||||
populationBuckets.forEach(b => {
|
||||
const tempBucket = b[i];
|
||||
let value = null;
|
||||
// check to see if the data is split
|
||||
// if the field has been split, an additional filter and aggregation
|
||||
// has been added to the search in the form of splitValue
|
||||
const tempValue = (tempBucket.value === undefined && tempBucket.splitValue !== undefined) ?
|
||||
tempBucket.splitValue : tempBucket;
|
||||
|
||||
// check to see if values is exists rather than value.
|
||||
// if values exists, the aggregation was median
|
||||
if (tempValue.value === undefined && tempValue.values !== undefined) {
|
||||
value = tempValue.values[ML_MEDIAN_PERCENTS];
|
||||
} else {
|
||||
value = tempValue.value;
|
||||
}
|
||||
values.push({ label: b.key, value: (isFinite(value) ? value : null) });
|
||||
});
|
||||
} else {
|
||||
resolve(this.chartData);
|
||||
}
|
||||
const aggregationsByTime = _.get(resp, ['aggregations', 'times', 'buckets'], []);
|
||||
|
||||
const highestValueField = _.reduce(values, (p, c) => (c.value > p.value) ? c : p, { value: 0 });
|
||||
_.each(aggregationsByTime, (dataForTime) => {
|
||||
const time = +dataForTime.key;
|
||||
const date = new Date(time);
|
||||
|
||||
if (this.chartData.detectors[i]) {
|
||||
this.chartData.detectors[i].line.push({
|
||||
date,
|
||||
time,
|
||||
values,
|
||||
});
|
||||
|
||||
// init swimlane
|
||||
this.chartData.detectors[i].swimlane.push({
|
||||
date,
|
||||
time,
|
||||
this.chartData.job.swimlane.push({
|
||||
date: date,
|
||||
time: time,
|
||||
value: 0,
|
||||
color: '',
|
||||
percentComplete: 0
|
||||
});
|
||||
|
||||
this.chartData.detectors[i].highestValue =
|
||||
Math.ceil(Math.max(this.chartData.detectors[i].highestValue, Math.abs(highestValueField.value)));
|
||||
}
|
||||
});
|
||||
});
|
||||
this.chartData.job.earliestTime = (time < this.chartData.job.earliestTime) ? time : this.chartData.job.earliestTime;
|
||||
|
||||
deferred.resolve(this.chartData);
|
||||
})
|
||||
.catch((resp) => {
|
||||
deferred.reject(resp);
|
||||
this.chartData.job.line.push({
|
||||
date: date,
|
||||
time: time,
|
||||
value: null,
|
||||
});
|
||||
|
||||
fieldIds.forEach((fieldId, i) => {
|
||||
const populationBuckets = _.get(dataForTime, ['population', 'buckets'], []);
|
||||
const values = [];
|
||||
if (fieldId === EVENT_RATE_COUNT_FIELD) {
|
||||
populationBuckets.forEach(b => {
|
||||
// check to see if the data is split.
|
||||
if (b[i] === undefined) {
|
||||
values.push({ label: b.key, value: b.doc_count });
|
||||
} else {
|
||||
// a split is being used, so an additional filter was added to the search
|
||||
values.push({ label: b.key, value: b[i].doc_count });
|
||||
}
|
||||
});
|
||||
} else if (typeof dataForTime.population !== 'undefined') {
|
||||
populationBuckets.forEach(b => {
|
||||
const tempBucket = b[i];
|
||||
let value = null;
|
||||
// check to see if the data is split
|
||||
// if the field has been split, an additional filter and aggregation
|
||||
// has been added to the search in the form of splitValue
|
||||
const tempValue = (tempBucket.value === undefined && tempBucket.splitValue !== undefined) ?
|
||||
tempBucket.splitValue : tempBucket;
|
||||
|
||||
// check to see if values is exists rather than value.
|
||||
// if values exists, the aggregation was median
|
||||
if (tempValue.value === undefined && tempValue.values !== undefined) {
|
||||
value = tempValue.values[ML_MEDIAN_PERCENTS];
|
||||
} else {
|
||||
value = tempValue.value;
|
||||
}
|
||||
values.push({ label: b.key, value: (isFinite(value) ? value : null) });
|
||||
});
|
||||
}
|
||||
|
||||
const highestValueField = _.reduce(values, (p, c) => (c.value > p.value) ? c : p, { value: 0 });
|
||||
|
||||
if (this.chartData.detectors[i]) {
|
||||
this.chartData.detectors[i].line.push({
|
||||
date,
|
||||
time,
|
||||
values,
|
||||
});
|
||||
|
||||
// init swimlane
|
||||
this.chartData.detectors[i].swimlane.push({
|
||||
date,
|
||||
time,
|
||||
value: 0,
|
||||
color: '',
|
||||
percentComplete: 0
|
||||
});
|
||||
|
||||
this.chartData.detectors[i].highestValue =
|
||||
Math.ceil(Math.max(this.chartData.detectors[i].highestValue, Math.abs(highestValueField.value)));
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
resolve(this.chartData);
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
getJobFromConfig(formConfig) {
|
||||
const job = mlJobService.getBlankJob();
|
||||
job.data_description.time_field = formConfig.timeField;
|
||||
|
||||
formConfig.fields.forEach(field => {
|
||||
let func = field.agg.type.mlName;
|
||||
if (formConfig.isSparseData) {
|
||||
if (field.agg.type.dslName === 'count') {
|
||||
func = func.replace(/count/, 'non_zero_count');
|
||||
} else if(field.agg.type.dslName === 'sum') {
|
||||
func = func.replace(/sum/, 'non_null_sum');
|
||||
}
|
||||
}
|
||||
const dtr = {
|
||||
function: func
|
||||
};
|
||||
|
||||
dtr.detector_description = func;
|
||||
|
||||
if (field.id !== EVENT_RATE_COUNT_FIELD) {
|
||||
dtr.field_name = field.name;
|
||||
dtr.detector_description += `(${field.name})`;
|
||||
}
|
||||
|
||||
if (field.splitField !== undefined) {
|
||||
dtr.by_field_name = field.splitField.name;
|
||||
dtr.detector_description += ` by ${dtr.by_field_name}`;
|
||||
}
|
||||
|
||||
if (formConfig.overField !== undefined) {
|
||||
dtr.over_field_name = formConfig.overField.name;
|
||||
dtr.detector_description += ` over ${dtr.over_field_name}`;
|
||||
}
|
||||
// if (formConfig.splitField !== undefined) {
|
||||
// dtr.partition_field_name = formConfig.splitField;
|
||||
// }
|
||||
job.analysis_config.detectors.push(dtr);
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
};
|
||||
const influencerFields = formConfig.influencerFields.map(f => f.name);
|
||||
if (influencerFields && influencerFields.length) {
|
||||
job.analysis_config.influencers = influencerFields;
|
||||
}
|
||||
|
||||
let query = {
|
||||
match_all: {}
|
||||
};
|
||||
if (formConfig.query.query_string.query !== '*' || formConfig.filters.length) {
|
||||
query = formConfig.combinedQuery;
|
||||
}
|
||||
|
||||
job.analysis_config.bucket_span = formConfig.bucketSpan;
|
||||
|
||||
job.analysis_limits = {
|
||||
model_memory_limit: formConfig.modelMemoryLimit
|
||||
};
|
||||
|
||||
delete job.data_description.field_delimiter;
|
||||
delete job.data_description.quote_character;
|
||||
delete job.data_description.time_format;
|
||||
delete job.data_description.format;
|
||||
|
||||
const indices = formConfig.indexPattern.title.split(',').map(i => i.trim());
|
||||
|
||||
job.datafeed_config = {
|
||||
query,
|
||||
indices,
|
||||
};
|
||||
job.job_id = formConfig.jobId;
|
||||
job.description = formConfig.description;
|
||||
job.groups = formConfig.jobGroups;
|
||||
|
||||
if (formConfig.useDedicatedIndex) {
|
||||
job.results_index_name = job.job_id;
|
||||
}
|
||||
|
||||
return job;
|
||||
}
|
||||
|
||||
createJob(formConfig) {
|
||||
return $q((resolve, reject) => {
|
||||
|
||||
this.job = this.getJobFromConfig(formConfig);
|
||||
const job = createJobForSaving(this.job);
|
||||
|
||||
// DO THE SAVE
|
||||
mlJobService.saveNewJob(job)
|
||||
.then((resp) => {
|
||||
if (resp.success) {
|
||||
resolve(this.job);
|
||||
} else {
|
||||
reject(resp);
|
||||
}
|
||||
});
|
||||
|
||||
});
|
||||
}
|
||||
|
||||
startDatafeed(formConfig) {
|
||||
const datafeedId = mlJobService.getDatafeedId(formConfig.jobId);
|
||||
return mlJobService.startDatafeed(datafeedId, formConfig.jobId, formConfig.start, formConfig.end);
|
||||
}
|
||||
|
||||
stopDatafeed(formConfig) {
|
||||
const datafeedId = mlJobService.getDatafeedId(formConfig.jobId);
|
||||
return mlJobService.stopDatafeed(datafeedId, formConfig.jobId);
|
||||
}
|
||||
}
|
||||
|
||||
function getSearchJsonFromConfig(formConfig) {
|
||||
const bounds = timefilter.getActiveBounds();
|
||||
|
@ -207,19 +318,19 @@ module.service('mlPopulationJobService', function (
|
|||
const query = _.cloneDeep(formConfig.combinedQuery);
|
||||
|
||||
const json = {
|
||||
'index': formConfig.indexPattern.title,
|
||||
'size': 0,
|
||||
'body': {
|
||||
'query': {},
|
||||
'aggs': {
|
||||
'times': {
|
||||
'date_histogram': {
|
||||
'field': formConfig.timeField,
|
||||
'interval': interval,
|
||||
'min_doc_count': 0,
|
||||
'extended_bounds': {
|
||||
'min': formConfig.start,
|
||||
'max': formConfig.end,
|
||||
index: formConfig.indexPattern.title,
|
||||
size: 0,
|
||||
body: {
|
||||
query: {},
|
||||
aggs: {
|
||||
times: {
|
||||
date_histogram: {
|
||||
field: formConfig.timeField,
|
||||
interval: interval,
|
||||
min_doc_count: 0,
|
||||
extended_bounds: {
|
||||
min: formConfig.start,
|
||||
max: formConfig.end,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -228,11 +339,11 @@ module.service('mlPopulationJobService', function (
|
|||
};
|
||||
|
||||
query.bool.must.push({
|
||||
'range': {
|
||||
range: {
|
||||
[formConfig.timeField]: {
|
||||
'gte': formConfig.start,
|
||||
'lte': formConfig.end,
|
||||
'format': formConfig.format
|
||||
gte: formConfig.start,
|
||||
lte: formConfig.end,
|
||||
format: formConfig.format
|
||||
}
|
||||
}
|
||||
});
|
||||
|
@ -319,118 +430,5 @@ module.service('mlPopulationJobService', function (
|
|||
return json;
|
||||
}
|
||||
|
||||
function createJobForSaving(job) {
|
||||
const newJob = angular.copy(job);
|
||||
delete newJob.datafeed_config;
|
||||
return newJob;
|
||||
}
|
||||
|
||||
this.getJobFromConfig = function (formConfig) {
|
||||
const job = mlJobService.getBlankJob();
|
||||
job.data_description.time_field = formConfig.timeField;
|
||||
|
||||
formConfig.fields.forEach(field => {
|
||||
let func = field.agg.type.mlName;
|
||||
if (formConfig.isSparseData) {
|
||||
if (field.agg.type.dslName === 'count') {
|
||||
func = func.replace(/count/, 'non_zero_count');
|
||||
} else if(field.agg.type.dslName === 'sum') {
|
||||
func = func.replace(/sum/, 'non_null_sum');
|
||||
}
|
||||
}
|
||||
const dtr = {
|
||||
function: func
|
||||
};
|
||||
|
||||
dtr.detector_description = func;
|
||||
|
||||
if (field.id !== EVENT_RATE_COUNT_FIELD) {
|
||||
dtr.field_name = field.name;
|
||||
dtr.detector_description += `(${field.name})`;
|
||||
}
|
||||
|
||||
if (field.splitField !== undefined) {
|
||||
dtr.by_field_name = field.splitField.name;
|
||||
dtr.detector_description += ` by ${dtr.by_field_name}`;
|
||||
}
|
||||
|
||||
if (formConfig.overField !== undefined) {
|
||||
dtr.over_field_name = formConfig.overField.name;
|
||||
dtr.detector_description += ` over ${dtr.over_field_name}`;
|
||||
}
|
||||
// if (formConfig.splitField !== undefined) {
|
||||
// dtr.partition_field_name = formConfig.splitField;
|
||||
// }
|
||||
job.analysis_config.detectors.push(dtr);
|
||||
});
|
||||
|
||||
const influencerFields = formConfig.influencerFields.map(f => f.name);
|
||||
if (influencerFields && influencerFields.length) {
|
||||
job.analysis_config.influencers = influencerFields;
|
||||
}
|
||||
|
||||
let query = {
|
||||
match_all: {}
|
||||
};
|
||||
if (formConfig.query.query_string.query !== '*' || formConfig.filters.length) {
|
||||
query = formConfig.combinedQuery;
|
||||
}
|
||||
|
||||
job.analysis_config.bucket_span = formConfig.bucketSpan;
|
||||
|
||||
job.analysis_limits = {
|
||||
model_memory_limit: formConfig.modelMemoryLimit
|
||||
};
|
||||
|
||||
delete job.data_description.field_delimiter;
|
||||
delete job.data_description.quote_character;
|
||||
delete job.data_description.time_format;
|
||||
delete job.data_description.format;
|
||||
|
||||
const indices = formConfig.indexPattern.title.split(',').map(i => i.trim());
|
||||
|
||||
job.datafeed_config = {
|
||||
query,
|
||||
indices
|
||||
};
|
||||
|
||||
job.job_id = formConfig.jobId;
|
||||
job.description = formConfig.description;
|
||||
job.groups = formConfig.jobGroups;
|
||||
|
||||
if (formConfig.useDedicatedIndex) {
|
||||
job.results_index_name = job.job_id;
|
||||
}
|
||||
|
||||
return job;
|
||||
};
|
||||
|
||||
this.createJob = function (formConfig) {
|
||||
const deferred = $q.defer();
|
||||
|
||||
this.job = this.getJobFromConfig(formConfig);
|
||||
const job = createJobForSaving(this.job);
|
||||
|
||||
// DO THE SAVE
|
||||
mlJobService.saveNewJob(job)
|
||||
.then((resp) => {
|
||||
if (resp.success) {
|
||||
deferred.resolve(this.job);
|
||||
} else {
|
||||
deferred.reject(resp);
|
||||
}
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
};
|
||||
|
||||
this.startDatafeed = function (formConfig) {
|
||||
const datafeedId = mlJobService.getDatafeedId(formConfig.jobId);
|
||||
return mlJobService.startDatafeed(datafeedId, formConfig.jobId, formConfig.start, formConfig.end);
|
||||
};
|
||||
|
||||
this.stopDatafeed = function (formConfig) {
|
||||
const datafeedId = mlJobService.getDatafeedId(formConfig.jobId);
|
||||
return mlJobService.stopDatafeed(datafeedId, formConfig.jobId);
|
||||
};
|
||||
});
|
||||
return new PopulationJobService();
|
||||
}
|
||||
|
|
|
@ -19,6 +19,9 @@ import { checkLicenseExpired } from 'plugins/ml/license/check_license';
|
|||
import { checkCreateJobsPrivilege } from 'plugins/ml/privilege/check_privilege';
|
||||
import { getIndexPatternWithRoute, getSavedSearchWithRoute } from 'plugins/ml/util/index_utils';
|
||||
import { checkMlNodesAvailable } from 'plugins/ml/ml_nodes_check/check_ml_nodes';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { CreateRecognizerJobsServiceProvider } from './create_job_service';
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
import template from './create_job.html';
|
||||
|
||||
uiRoutes
|
||||
|
@ -42,13 +45,12 @@ module
|
|||
$window,
|
||||
$route,
|
||||
$q,
|
||||
ml,
|
||||
timefilter,
|
||||
Private,
|
||||
mlCreateRecognizerJobsService,
|
||||
mlJobService,
|
||||
mlMessageBarService) {
|
||||
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const mlCreateRecognizerJobsService = Private(CreateRecognizerJobsServiceProvider);
|
||||
timefilter.disableTimeRangeSelector();
|
||||
timefilter.disableAutoRefreshSelector();
|
||||
$scope.tt = timefilter;
|
||||
|
@ -143,9 +145,9 @@ module
|
|||
};
|
||||
|
||||
function loadJobConfigs() {
|
||||
// load the job and datafeed configs as well as the kibana saved objects
|
||||
// from the recognizer endpoint
|
||||
ml.getDataRecognizerModule({ moduleId })
|
||||
// load the job and datafeed configs as well as the kibana saved objects
|
||||
// from the recognizer endpoint
|
||||
$q.when(ml.getDataRecognizerModule({ moduleId }))
|
||||
.then(resp => {
|
||||
// populate the jobs and datafeeds
|
||||
if (resp.jobs && resp.jobs.length) {
|
||||
|
@ -259,7 +261,7 @@ module
|
|||
const tempQuery = (savedSearch.id === undefined) ?
|
||||
undefined : combinedQuery;
|
||||
|
||||
ml.setupDataRecognizerConfig({ moduleId, prefix, groups, query: tempQuery, indexPatternName })
|
||||
$q.when(ml.setupDataRecognizerConfig({ moduleId, prefix, groups, query: tempQuery, indexPatternName }))
|
||||
.then((resp) => {
|
||||
if (resp.jobs) {
|
||||
$scope.formConfig.jobs.forEach((job) => {
|
||||
|
|
|
@ -6,126 +6,49 @@
|
|||
|
||||
|
||||
|
||||
import angular from 'angular';
|
||||
|
||||
import { getQueryFromSavedSearch } from 'plugins/ml/jobs/new_job/utils/new_job_utils';
|
||||
import { SavedObjectsClientProvider } from 'ui/saved_objects';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.service('mlCreateRecognizerJobsService', function (
|
||||
es,
|
||||
Private,
|
||||
$http,
|
||||
$q,
|
||||
chrome,
|
||||
mlJobService) {
|
||||
export function CreateRecognizerJobsServiceProvider(Private, $q) {
|
||||
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const savedObjectsClient = Private(SavedObjectsClientProvider);
|
||||
class CreateRecognizerJobsService {
|
||||
|
||||
this.createJob = function (job, formConfig) {
|
||||
return $q((resolve, reject) => {
|
||||
const newJob = angular.copy(job.jobConfig);
|
||||
const jobId = formConfig.jobLabel + job.id;
|
||||
newJob.job_id = jobId;
|
||||
newJob.groups = formConfig.jobGroups;
|
||||
constructor() {}
|
||||
|
||||
mlJobService.saveNewJob(newJob)
|
||||
.then((resp) => {
|
||||
if (resp.success) {
|
||||
createDatafeed(job, formConfig) {
|
||||
return $q((resolve, reject) => {
|
||||
const jobId = formConfig.jobLabel + job.id;
|
||||
|
||||
mlJobService.saveNewDatafeed(job.datafeedConfig, jobId)
|
||||
.then((resp) => {
|
||||
resolve(resp);
|
||||
} else {
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
}
|
||||
});
|
||||
|
||||
});
|
||||
};
|
||||
|
||||
this.createDatafeed = function (job, formConfig) {
|
||||
return $q((resolve, reject) => {
|
||||
const jobId = formConfig.jobLabel + job.id;
|
||||
|
||||
mlJobService.saveNewDatafeed(job.datafeedConfig, jobId)
|
||||
.then((resp) => {
|
||||
resolve(resp);
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
|
||||
this.startDatafeed = function (datafeedId, jobId, start, end) {
|
||||
return mlJobService.startDatafeed(datafeedId, jobId, start, end);
|
||||
};
|
||||
|
||||
this.stopDatafeed = function (formConfig) {
|
||||
const datafeedId = mlJobService.getDatafeedId(formConfig.jobId);
|
||||
return mlJobService.stopDatafeed(datafeedId, formConfig.jobId);
|
||||
};
|
||||
|
||||
this.checkDatafeedStatus = function (formConfig) {
|
||||
return mlJobService.updateSingleJobDatafeedState(formConfig.jobId);
|
||||
};
|
||||
|
||||
this.loadExistingSavedObjects = function (type) {
|
||||
return savedObjectsClient.find({ type, perPage: 1000 });
|
||||
};
|
||||
|
||||
this.createSavedObject = function (type, obj) {
|
||||
return savedObjectsClient.create(type, obj);
|
||||
};
|
||||
|
||||
this.createSavedObjectWithId = function (type, id, obj) {
|
||||
const basePath = chrome.addBasePath('/api/saved_objects');
|
||||
const url = `${basePath}/${type}/${id}`;
|
||||
|
||||
return $http.post(url, { attributes: obj })
|
||||
.catch(e => {
|
||||
throw e.data.message;
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
this.indexTimeRange = function (indexPattern, formConfig) {
|
||||
return $q((resolve, reject) => {
|
||||
const obj = { success: true, start: { epoch: 0, string: '' }, end: { epoch: 0, string: '' } };
|
||||
startDatafeed(datafeedId, jobId, start, end) {
|
||||
return mlJobService.startDatafeed(datafeedId, jobId, start, end);
|
||||
}
|
||||
|
||||
loadExistingSavedObjects(type) {
|
||||
return savedObjectsClient.find({ type, perPage: 1000 });
|
||||
}
|
||||
|
||||
indexTimeRange(indexPattern, formConfig) {
|
||||
const query = getQueryFromSavedSearch(formConfig);
|
||||
|
||||
es.search({
|
||||
return ml.getTimeFieldRange({
|
||||
index: indexPattern.title,
|
||||
size: 0,
|
||||
body: {
|
||||
query,
|
||||
aggs: {
|
||||
earliest: {
|
||||
min: {
|
||||
field: indexPattern.timeFieldName
|
||||
}
|
||||
},
|
||||
latest: {
|
||||
max: {
|
||||
field: indexPattern.timeFieldName
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
.then((resp) => {
|
||||
if (resp.aggregations && resp.aggregations.earliest && resp.aggregations.latest) {
|
||||
obj.start.epoch = resp.aggregations.earliest.value;
|
||||
obj.start.string = resp.aggregations.earliest.value_as_string;
|
||||
|
||||
obj.end.epoch = resp.aggregations.latest.value;
|
||||
obj.end.string = resp.aggregations.latest.value_as_string;
|
||||
}
|
||||
resolve(obj);
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
|
||||
});
|
||||
timeFieldName: indexPattern.timeFieldName,
|
||||
query
|
||||
});
|
||||
}
|
||||
}
|
||||
return new CreateRecognizerJobsService();
|
||||
}
|
||||
|
|
|
@ -36,6 +36,9 @@ import {
|
|||
createResultsUrl,
|
||||
addNewJobToRecentlyAccessed,
|
||||
moveToAdvancedJobCreationProvider } from 'plugins/ml/jobs/new_job/utils/new_job_utils';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { SingleMetricJobServiceProvider } from './create_job_service';
|
||||
import { FullTimeRangeSelectorServiceProvider } from 'plugins/ml/components/full_time_range_selector/full_time_range_selector_service';
|
||||
|
||||
import template from './create_job.html';
|
||||
|
||||
|
@ -63,10 +66,7 @@ module
|
|||
$q,
|
||||
timefilter,
|
||||
Private,
|
||||
mlJobService,
|
||||
mlSingleMetricJobService,
|
||||
mlMessageBarService,
|
||||
mlFullTimeRangeSelectorService,
|
||||
AppState) {
|
||||
|
||||
timefilter.enableTimeRangeSelector();
|
||||
|
@ -74,6 +74,9 @@ module
|
|||
const msgs = mlMessageBarService;
|
||||
const MlTimeBuckets = Private(IntervalHelperProvider);
|
||||
const moveToAdvancedJobCreation = Private(moveToAdvancedJobCreationProvider);
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const mlSingleMetricJobService = Private(SingleMetricJobServiceProvider);
|
||||
const mlFullTimeRangeSelectorService = Private(FullTimeRangeSelectorServiceProvider);
|
||||
|
||||
const stateDefaults = {
|
||||
mlJobSettings: {}
|
||||
|
|
|
@ -7,471 +7,468 @@
|
|||
|
||||
|
||||
import _ from 'lodash';
|
||||
import angular from 'angular';
|
||||
import 'ui/timefilter';
|
||||
|
||||
import { parseInterval } from 'ui/utils/parse_interval';
|
||||
|
||||
import { ML_MEDIAN_PERCENTS } from 'plugins/ml/../common/util/job_utils';
|
||||
import { calculateTextWidth } from 'plugins/ml/util/string_utils';
|
||||
import { FieldFormatServiceProvider } from 'plugins/ml/services/field_format_service';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { ResultsServiceProvider } from 'plugins/ml/services/results_service';
|
||||
import { createJobForSaving } from 'plugins/ml/jobs/new_job/utils/new_job_utils';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.service('mlSingleMetricJobService', function (
|
||||
export function SingleMetricJobServiceProvider(
|
||||
$q,
|
||||
es,
|
||||
timefilter,
|
||||
Private,
|
||||
mlFieldFormatService,
|
||||
mlJobService,
|
||||
mlResultsService) {
|
||||
Private) {
|
||||
|
||||
this.chartData = {
|
||||
line: [],
|
||||
model: [],
|
||||
swimlane: [],
|
||||
hasBounds: false,
|
||||
percentComplete: 0,
|
||||
highestValue: 0,
|
||||
chartTicksMargin: { width: 30 },
|
||||
totalResults: 0
|
||||
};
|
||||
this.job = {};
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const mlResultsService = Private(ResultsServiceProvider);
|
||||
const fieldFormatService = Private(FieldFormatServiceProvider);
|
||||
|
||||
this.getLineChartResults = function (formConfig) {
|
||||
const deferred = $q.defer();
|
||||
class SingleMetricJobService {
|
||||
|
||||
this.chartData.line = [];
|
||||
this.chartData.model = [];
|
||||
this.chartData.swimlane = [];
|
||||
this.chartData.hasBounds = false;
|
||||
this.chartData.percentComplete = 0;
|
||||
this.chartData.loadingDifference = 0;
|
||||
this.chartData.eventRateHighestValue = 0;
|
||||
this.chartData.totalResults = 0;
|
||||
|
||||
const aggType = formConfig.agg.type.dslName;
|
||||
if (formConfig.field && formConfig.field.id) {
|
||||
this.chartData.fieldFormat = mlFieldFormatService.getFieldFormatFromIndexPattern(
|
||||
formConfig.indexPattern,
|
||||
formConfig.field.id,
|
||||
aggType);
|
||||
} else {
|
||||
delete this.chartData.fieldFormat;
|
||||
}
|
||||
|
||||
const obj = {
|
||||
success: true,
|
||||
results: {}
|
||||
};
|
||||
|
||||
const searchJson = getSearchJsonFromConfig(formConfig);
|
||||
|
||||
es.search(searchJson)
|
||||
.then((resp) => {
|
||||
|
||||
const aggregationsByTime = _.get(resp, ['aggregations', 'times', 'buckets'], []);
|
||||
let highestValue = 0;
|
||||
|
||||
_.each(aggregationsByTime, (dataForTime) => {
|
||||
const time = dataForTime.key;
|
||||
let value = _.get(dataForTime, ['field_value', 'value']);
|
||||
|
||||
if (value === undefined && formConfig.field !== null) {
|
||||
value = _.get(dataForTime, ['field_value', 'values', ML_MEDIAN_PERCENTS]);
|
||||
}
|
||||
|
||||
if (value === undefined && formConfig.field === null) {
|
||||
value = dataForTime.doc_count;
|
||||
}
|
||||
if (!isFinite(value) || dataForTime.doc_count === 0) {
|
||||
value = null;
|
||||
}
|
||||
if (value > highestValue) {
|
||||
highestValue = value;
|
||||
}
|
||||
|
||||
obj.results[time] = {
|
||||
actual: value,
|
||||
};
|
||||
});
|
||||
|
||||
this.chartData.totalResults = resp.hits.total;
|
||||
this.chartData.line = processLineChartResults(obj.results);
|
||||
|
||||
this.chartData.highestValue = Math.ceil(highestValue);
|
||||
// Append extra 10px to width of tick label for highest axis value to allow for tick padding.
|
||||
if (this.chartData.fieldFormat !== undefined) {
|
||||
const highValueFormatted = this.chartData.fieldFormat.convert(this.chartData.highestValue, 'text');
|
||||
this.chartData.chartTicksMargin.width = calculateTextWidth(highValueFormatted, false) + 10;
|
||||
} else {
|
||||
this.chartData.chartTicksMargin.width = calculateTextWidth(this.chartData.highestValue, true) + 10;
|
||||
}
|
||||
|
||||
deferred.resolve(this.chartData);
|
||||
})
|
||||
.catch((resp) => {
|
||||
deferred.reject(resp);
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
};
|
||||
|
||||
function processLineChartResults(data, scale = 1) {
|
||||
const lineData = [];
|
||||
_.each(data, (dataForTime, t) => {
|
||||
const time = +t;
|
||||
const date = new Date(time);
|
||||
lineData.push({
|
||||
date: date,
|
||||
time: time,
|
||||
lower: (dataForTime.modelLower * scale),
|
||||
value: dataForTime.actual,
|
||||
upper: (dataForTime.modelUpper * scale)
|
||||
});
|
||||
});
|
||||
|
||||
return _.sortBy(lineData, 'time');
|
||||
}
|
||||
|
||||
function processSwimlaneResults(bucketScoreData, init) {
|
||||
// create a dataset in format used by the model plot chart.
|
||||
// create empty swimlane dataset
|
||||
// i.e. array of Objects with keys date (JavaScript date), value, lower and upper.
|
||||
const swimlaneData = [];
|
||||
_.each(bucketScoreData, (value, t) => {
|
||||
const time = +t;
|
||||
const date = new Date(time);
|
||||
value = init ? 0 : value;
|
||||
swimlaneData.push({
|
||||
date,
|
||||
time,
|
||||
value,
|
||||
color: ''
|
||||
});
|
||||
});
|
||||
return swimlaneData;
|
||||
}
|
||||
|
||||
function getSearchJsonFromConfig(formConfig) {
|
||||
const interval = formConfig.chartInterval.getInterval().asMilliseconds() + 'ms';
|
||||
// clone the query as we're modifying it
|
||||
const query = _.cloneDeep(formConfig.combinedQuery);
|
||||
|
||||
const json = {
|
||||
'index': formConfig.indexPattern.title,
|
||||
'size': 0,
|
||||
'body': {
|
||||
'query': {},
|
||||
'aggs': {
|
||||
'times': {
|
||||
'date_histogram': {
|
||||
'field': formConfig.timeField,
|
||||
'interval': interval,
|
||||
'min_doc_count': 0,
|
||||
'extended_bounds': {
|
||||
'min': formConfig.start,
|
||||
'max': formConfig.end,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
query.bool.must.push({
|
||||
'range': {
|
||||
[formConfig.timeField]: {
|
||||
'gte': formConfig.start,
|
||||
'lte': formConfig.end,
|
||||
'format': formConfig.format
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
json.body.query = query;
|
||||
|
||||
if (formConfig.field !== null) {
|
||||
json.body.aggs.times.aggs = {
|
||||
'field_value': {
|
||||
[formConfig.agg.type.dslName]: { field: formConfig.field.name }
|
||||
}
|
||||
constructor() {
|
||||
this.chartData = {
|
||||
line: [],
|
||||
model: [],
|
||||
swimlane: [],
|
||||
hasBounds: false,
|
||||
percentComplete: 0,
|
||||
highestValue: 0,
|
||||
chartTicksMargin: { width: 30 },
|
||||
totalResults: 0
|
||||
};
|
||||
this.job = {};
|
||||
}
|
||||
|
||||
return json;
|
||||
}
|
||||
getLineChartResults(formConfig) {
|
||||
return $q((resolve, reject) => {
|
||||
|
||||
function createJobForSaving(job) {
|
||||
const newJob = angular.copy(job);
|
||||
delete newJob.datafeed_config;
|
||||
return newJob;
|
||||
}
|
||||
this.chartData.line = [];
|
||||
this.chartData.model = [];
|
||||
this.chartData.swimlane = [];
|
||||
this.chartData.hasBounds = false;
|
||||
this.chartData.percentComplete = 0;
|
||||
this.chartData.loadingDifference = 0;
|
||||
this.chartData.eventRateHighestValue = 0;
|
||||
this.chartData.totalResults = 0;
|
||||
|
||||
this.getJobFromConfig = function (formConfig) {
|
||||
const job = mlJobService.getBlankJob();
|
||||
job.data_description.time_field = formConfig.timeField;
|
||||
|
||||
let func = formConfig.agg.type.mlName;
|
||||
if (formConfig.isSparseData) {
|
||||
if (formConfig.agg.type.dslName === 'count') {
|
||||
func = func.replace(/count/, 'non_zero_count');
|
||||
} else if(formConfig.agg.type.dslName === 'sum') {
|
||||
func = func.replace(/sum/, 'non_null_sum');
|
||||
}
|
||||
}
|
||||
const dtr = {
|
||||
function: func
|
||||
};
|
||||
|
||||
let query = {
|
||||
match_all: {}
|
||||
};
|
||||
if (formConfig.query.query_string.query !== '*' || formConfig.filters.length) {
|
||||
query = formConfig.combinedQuery;
|
||||
}
|
||||
|
||||
if (formConfig.field && formConfig.field.id) {
|
||||
dtr.field_name = formConfig.field.id;
|
||||
}
|
||||
job.analysis_config.detectors.push(dtr);
|
||||
job.analysis_config.bucket_span = formConfig.bucketSpan;
|
||||
|
||||
job.analysis_limits = {
|
||||
model_memory_limit: formConfig.modelMemoryLimit
|
||||
};
|
||||
|
||||
delete job.data_description.field_delimiter;
|
||||
delete job.data_description.quote_character;
|
||||
delete job.data_description.time_format;
|
||||
delete job.data_description.format;
|
||||
|
||||
const bucketSpanSeconds = parseInterval(formConfig.bucketSpan).asSeconds();
|
||||
|
||||
const indices = formConfig.indexPattern.title.split(',').map(i => i.trim());
|
||||
|
||||
job.datafeed_config = {
|
||||
query,
|
||||
indices,
|
||||
};
|
||||
|
||||
job.job_id = formConfig.jobId;
|
||||
job.description = formConfig.description;
|
||||
job.groups = formConfig.jobGroups;
|
||||
|
||||
job.model_plot_config = {
|
||||
enabled: true
|
||||
};
|
||||
|
||||
if (formConfig.useDedicatedIndex) {
|
||||
job.results_index_name = job.job_id;
|
||||
}
|
||||
|
||||
// Use the original es agg type rather than the ML version
|
||||
// e.g. count rather than high_count
|
||||
const aggType = formConfig.agg.type.dslName;
|
||||
const interval = bucketSpanSeconds * 1000;
|
||||
switch (aggType) {
|
||||
case 'count':
|
||||
job.analysis_config.summary_count_field_name = 'doc_count';
|
||||
|
||||
job.datafeed_config.aggregations = {
|
||||
buckets: {
|
||||
date_histogram: {
|
||||
field: formConfig.timeField,
|
||||
interval: interval
|
||||
},
|
||||
aggregations: {
|
||||
[formConfig.timeField]: {
|
||||
max: {
|
||||
field: formConfig.timeField
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
break;
|
||||
case 'avg':
|
||||
case 'median':
|
||||
case 'sum':
|
||||
case 'min':
|
||||
case 'max':
|
||||
job.analysis_config.summary_count_field_name = 'doc_count';
|
||||
|
||||
job.datafeed_config.aggregations = {
|
||||
buckets: {
|
||||
date_histogram: {
|
||||
field: formConfig.timeField,
|
||||
interval: ((interval / 100) * 10) // use 10% of bucketSpan to allow for better sampling
|
||||
},
|
||||
aggregations: {
|
||||
[dtr.field_name]: {
|
||||
[aggType]: {
|
||||
field: formConfig.field.name
|
||||
}
|
||||
},
|
||||
[formConfig.timeField]: {
|
||||
max: {
|
||||
field: formConfig.timeField
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
break;
|
||||
case 'cardinality':
|
||||
job.analysis_config.summary_count_field_name = 'dc_' + dtr.field_name;
|
||||
|
||||
job.datafeed_config.aggregations = {
|
||||
buckets: {
|
||||
date_histogram: {
|
||||
field: formConfig.timeField,
|
||||
interval: interval
|
||||
},
|
||||
aggregations: {
|
||||
[formConfig.timeField]: {
|
||||
max: {
|
||||
field: formConfig.timeField
|
||||
}
|
||||
},
|
||||
[job.analysis_config.summary_count_field_name]: {
|
||||
[aggType]: {
|
||||
field: formConfig.field.name
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// finally, modify the detector before saving
|
||||
dtr.function = 'non_zero_count';
|
||||
// add a description using the original function name rather 'non_zero_count'
|
||||
// as the user may not be aware it's been changed
|
||||
dtr.detector_description = `${func} (${dtr.field_name})`;
|
||||
delete dtr.field_name;
|
||||
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
console.log('auto created job: ', job);
|
||||
|
||||
return job;
|
||||
};
|
||||
|
||||
this.createJob = function (formConfig) {
|
||||
const deferred = $q.defer();
|
||||
|
||||
this.job = this.getJobFromConfig(formConfig);
|
||||
const job = createJobForSaving(this.job);
|
||||
|
||||
// DO THE SAVE
|
||||
mlJobService.saveNewJob(job)
|
||||
.then((resp) => {
|
||||
if (resp.success) {
|
||||
deferred.resolve(this.job);
|
||||
const aggType = formConfig.agg.type.dslName;
|
||||
if (formConfig.field && formConfig.field.id) {
|
||||
this.chartData.fieldFormat = fieldFormatService.getFieldFormatFromIndexPattern(
|
||||
formConfig.indexPattern,
|
||||
formConfig.field.id,
|
||||
aggType);
|
||||
} else {
|
||||
deferred.reject(resp);
|
||||
delete this.chartData.fieldFormat;
|
||||
}
|
||||
|
||||
const obj = {
|
||||
success: true,
|
||||
results: {}
|
||||
};
|
||||
|
||||
const searchJson = getSearchJsonFromConfig(formConfig);
|
||||
|
||||
es.search(searchJson)
|
||||
.then((resp) => {
|
||||
|
||||
const aggregationsByTime = _.get(resp, ['aggregations', 'times', 'buckets'], []);
|
||||
let highestValue = 0;
|
||||
|
||||
_.each(aggregationsByTime, (dataForTime) => {
|
||||
const time = dataForTime.key;
|
||||
let value = _.get(dataForTime, ['field_value', 'value']);
|
||||
|
||||
if (value === undefined && formConfig.field !== null) {
|
||||
value = _.get(dataForTime, ['field_value', 'values', ML_MEDIAN_PERCENTS]);
|
||||
}
|
||||
|
||||
if (value === undefined && formConfig.field === null) {
|
||||
value = dataForTime.doc_count;
|
||||
}
|
||||
if (!isFinite(value) || dataForTime.doc_count === 0) {
|
||||
value = null;
|
||||
}
|
||||
if (value > highestValue) {
|
||||
highestValue = value;
|
||||
}
|
||||
|
||||
obj.results[time] = {
|
||||
actual: value,
|
||||
};
|
||||
});
|
||||
|
||||
this.chartData.totalResults = resp.hits.total;
|
||||
this.chartData.line = processLineChartResults(obj.results);
|
||||
|
||||
this.chartData.highestValue = Math.ceil(highestValue);
|
||||
// Append extra 10px to width of tick label for highest axis value to allow for tick padding.
|
||||
if (this.chartData.fieldFormat !== undefined) {
|
||||
const highValueFormatted = this.chartData.fieldFormat.convert(this.chartData.highestValue, 'text');
|
||||
this.chartData.chartTicksMargin.width = calculateTextWidth(highValueFormatted, false) + 10;
|
||||
} else {
|
||||
this.chartData.chartTicksMargin.width = calculateTextWidth(this.chartData.highestValue, true) + 10;
|
||||
}
|
||||
|
||||
resolve(this.chartData);
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
};
|
||||
|
||||
this.startDatafeed = function (formConfig) {
|
||||
const datafeedId = mlJobService.getDatafeedId(formConfig.jobId);
|
||||
return mlJobService.startDatafeed(datafeedId, formConfig.jobId, formConfig.start, formConfig.end);
|
||||
};
|
||||
|
||||
this.stopDatafeed = function (formConfig) {
|
||||
const datafeedId = mlJobService.getDatafeedId(formConfig.jobId);
|
||||
return mlJobService.stopDatafeed(datafeedId, formConfig.jobId);
|
||||
};
|
||||
|
||||
this.checkDatafeedState = function (formConfig) {
|
||||
return mlJobService.updateSingleJobDatafeedState(formConfig.jobId);
|
||||
};
|
||||
|
||||
this.loadModelData = function (formConfig) {
|
||||
const deferred = $q.defer();
|
||||
|
||||
let start = formConfig.start;
|
||||
|
||||
if (this.chartData.model.length > 5) {
|
||||
// only load the model since the end of the last time we checked
|
||||
// but discard the last 5 buckets in case the model has changed
|
||||
start = this.chartData.model[this.chartData.model.length - 5].time;
|
||||
for (let i = 0; i < 5; i++) {
|
||||
this.chartData.model.pop();
|
||||
}
|
||||
}
|
||||
|
||||
// Obtain the model plot data, passing 0 for the detectorIndex and empty list of partitioning fields.
|
||||
mlResultsService.getModelPlotOutput(
|
||||
formConfig.jobId,
|
||||
0,
|
||||
[],
|
||||
start,
|
||||
formConfig.end,
|
||||
formConfig.resultsIntervalSeconds + 's',
|
||||
formConfig.agg.type.mlModelPlotAgg
|
||||
)
|
||||
.then(data => {
|
||||
// for count, scale the model upper and lower by the
|
||||
// ratio of chart interval to bucketspan.
|
||||
// this will force the model bounds to be drawn in the correct location
|
||||
let scale = 1;
|
||||
if (formConfig &&
|
||||
(formConfig.agg.type.mlName === 'count' ||
|
||||
formConfig.agg.type.mlName === 'high_count' ||
|
||||
formConfig.agg.type.mlName === 'low_count' ||
|
||||
formConfig.agg.type.mlName === 'distinct_count')) {
|
||||
const chartIntervalSeconds = formConfig.chartInterval.getInterval().asSeconds();
|
||||
const bucketSpan = parseInterval(formConfig.bucketSpan);
|
||||
if (bucketSpan !== null) {
|
||||
scale = chartIntervalSeconds / bucketSpan.asSeconds();
|
||||
getJobFromConfig(formConfig) {
|
||||
const job = mlJobService.getBlankJob();
|
||||
job.data_description.time_field = formConfig.timeField;
|
||||
|
||||
let func = formConfig.agg.type.mlName;
|
||||
if (formConfig.isSparseData) {
|
||||
if (formConfig.agg.type.dslName === 'count') {
|
||||
func = func.replace(/count/, 'non_zero_count');
|
||||
} else if(formConfig.agg.type.dslName === 'sum') {
|
||||
func = func.replace(/sum/, 'non_null_sum');
|
||||
}
|
||||
}
|
||||
const dtr = {
|
||||
function: func
|
||||
};
|
||||
|
||||
let query = {
|
||||
match_all: {}
|
||||
};
|
||||
if (formConfig.query.query_string.query !== '*' || formConfig.filters.length) {
|
||||
query = formConfig.combinedQuery;
|
||||
}
|
||||
|
||||
if (formConfig.field && formConfig.field.id) {
|
||||
dtr.field_name = formConfig.field.id;
|
||||
}
|
||||
job.analysis_config.detectors.push(dtr);
|
||||
job.analysis_config.bucket_span = formConfig.bucketSpan;
|
||||
|
||||
job.analysis_limits = {
|
||||
model_memory_limit: formConfig.modelMemoryLimit
|
||||
};
|
||||
|
||||
delete job.data_description.field_delimiter;
|
||||
delete job.data_description.quote_character;
|
||||
delete job.data_description.time_format;
|
||||
delete job.data_description.format;
|
||||
|
||||
const bucketSpanSeconds = parseInterval(formConfig.bucketSpan).asSeconds();
|
||||
|
||||
const indices = formConfig.indexPattern.title.split(',').map(i => i.trim());
|
||||
job.datafeed_config = {
|
||||
query,
|
||||
indices,
|
||||
};
|
||||
|
||||
job.job_id = formConfig.jobId;
|
||||
job.description = formConfig.description;
|
||||
job.groups = formConfig.jobGroups;
|
||||
|
||||
job.model_plot_config = {
|
||||
enabled: true
|
||||
};
|
||||
|
||||
if (formConfig.useDedicatedIndex) {
|
||||
job.results_index_name = job.job_id;
|
||||
}
|
||||
|
||||
// Use the original es agg type rather than the ML version
|
||||
// e.g. count rather than high_count
|
||||
const aggType = formConfig.agg.type.dslName;
|
||||
const interval = bucketSpanSeconds * 1000;
|
||||
switch (aggType) {
|
||||
case 'count':
|
||||
job.analysis_config.summary_count_field_name = 'doc_count';
|
||||
|
||||
job.datafeed_config.aggregations = {
|
||||
buckets: {
|
||||
date_histogram: {
|
||||
field: formConfig.timeField,
|
||||
interval: interval
|
||||
},
|
||||
aggregations: {
|
||||
[formConfig.timeField]: {
|
||||
max: {
|
||||
field: formConfig.timeField
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
break;
|
||||
case 'avg':
|
||||
case 'median':
|
||||
case 'sum':
|
||||
case 'min':
|
||||
case 'max':
|
||||
job.analysis_config.summary_count_field_name = 'doc_count';
|
||||
|
||||
job.datafeed_config.aggregations = {
|
||||
buckets: {
|
||||
date_histogram: {
|
||||
field: formConfig.timeField,
|
||||
interval: ((interval / 100) * 10) // use 10% of bucketSpan to allow for better sampling
|
||||
},
|
||||
aggregations: {
|
||||
[dtr.field_name]: {
|
||||
[aggType]: {
|
||||
field: formConfig.field.name
|
||||
}
|
||||
},
|
||||
[formConfig.timeField]: {
|
||||
max: {
|
||||
field: formConfig.timeField
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
break;
|
||||
case 'cardinality':
|
||||
job.analysis_config.summary_count_field_name = 'dc_' + dtr.field_name;
|
||||
|
||||
job.datafeed_config.aggregations = {
|
||||
buckets: {
|
||||
date_histogram: {
|
||||
field: formConfig.timeField,
|
||||
interval: interval
|
||||
},
|
||||
aggregations: {
|
||||
[formConfig.timeField]: {
|
||||
max: {
|
||||
field: formConfig.timeField
|
||||
}
|
||||
},
|
||||
[job.analysis_config.summary_count_field_name]: {
|
||||
[aggType]: {
|
||||
field: formConfig.field.name
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// finally, modify the detector before saving
|
||||
dtr.function = 'non_zero_count';
|
||||
// add a description using the original function name rather 'non_zero_count'
|
||||
// as the user may not be aware it's been changed
|
||||
dtr.detector_description = `${func} (${dtr.field_name})`;
|
||||
delete dtr.field_name;
|
||||
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return job;
|
||||
}
|
||||
|
||||
createJob(formConfig) {
|
||||
return $q((resolve, reject) => {
|
||||
|
||||
this.job = this.getJobFromConfig(formConfig);
|
||||
const job = createJobForSaving(this.job);
|
||||
|
||||
// DO THE SAVE
|
||||
mlJobService.saveNewJob(job)
|
||||
.then((resp) => {
|
||||
if (resp.success) {
|
||||
resolve(this.job);
|
||||
} else {
|
||||
reject(resp);
|
||||
}
|
||||
});
|
||||
|
||||
});
|
||||
}
|
||||
|
||||
startDatafeed(formConfig) {
|
||||
const datafeedId = mlJobService.getDatafeedId(formConfig.jobId);
|
||||
return mlJobService.startDatafeed(datafeedId, formConfig.jobId, formConfig.start, formConfig.end);
|
||||
}
|
||||
|
||||
stopDatafeed(formConfig) {
|
||||
const datafeedId = mlJobService.getDatafeedId(formConfig.jobId);
|
||||
return mlJobService.stopDatafeed(datafeedId, formConfig.jobId);
|
||||
}
|
||||
|
||||
checkDatafeedState(formConfig) {
|
||||
return mlJobService.updateSingleJobDatafeedState(formConfig.jobId);
|
||||
}
|
||||
|
||||
loadModelData(formConfig) {
|
||||
return $q((resolve, reject) => {
|
||||
|
||||
let start = formConfig.start;
|
||||
|
||||
if (this.chartData.model.length > 5) {
|
||||
// only load the model since the end of the last time we checked
|
||||
// but discard the last 5 buckets in case the model has changed
|
||||
start = this.chartData.model[this.chartData.model.length - 5].time;
|
||||
for (let i = 0; i < 5; i++) {
|
||||
this.chartData.model.pop();
|
||||
}
|
||||
}
|
||||
|
||||
this.chartData.model = this.chartData.model.concat(processLineChartResults(data.results, scale));
|
||||
// Obtain the model plot data, passing 0 for the detectorIndex and empty list of partitioning fields.
|
||||
mlResultsService.getModelPlotOutput(
|
||||
formConfig.jobId,
|
||||
0,
|
||||
[],
|
||||
start,
|
||||
formConfig.end,
|
||||
formConfig.resultsIntervalSeconds + 's',
|
||||
formConfig.agg.type.mlModelPlotAgg
|
||||
)
|
||||
.then(data => {
|
||||
// for count, scale the model upper and lower by the
|
||||
// ratio of chart interval to bucketspan.
|
||||
// this will force the model bounds to be drawn in the correct location
|
||||
let scale = 1;
|
||||
if (formConfig &&
|
||||
(formConfig.agg.type.mlName === 'count' ||
|
||||
formConfig.agg.type.mlName === 'high_count' ||
|
||||
formConfig.agg.type.mlName === 'low_count' ||
|
||||
formConfig.agg.type.mlName === 'distinct_count')) {
|
||||
const chartIntervalSeconds = formConfig.chartInterval.getInterval().asSeconds();
|
||||
const bucketSpan = parseInterval(formConfig.bucketSpan);
|
||||
if (bucketSpan !== null) {
|
||||
scale = chartIntervalSeconds / bucketSpan.asSeconds();
|
||||
}
|
||||
}
|
||||
|
||||
const lastBucket = this.chartData.model[this.chartData.model.length - 1];
|
||||
const time = (lastBucket !== undefined) ? lastBucket.time : formConfig.start;
|
||||
this.chartData.model = this.chartData.model.concat(processLineChartResults(data.results, scale));
|
||||
|
||||
const pcnt = ((time - formConfig.start + formConfig.resultsIntervalSeconds) / (formConfig.end - formConfig.start) * 100);
|
||||
this.chartData.percentComplete = Math.round(pcnt);
|
||||
const lastBucket = this.chartData.model[this.chartData.model.length - 1];
|
||||
const time = (lastBucket !== undefined) ? lastBucket.time : formConfig.start;
|
||||
|
||||
const pcnt = ((time - formConfig.start + formConfig.resultsIntervalSeconds) / (formConfig.end - formConfig.start) * 100);
|
||||
this.chartData.percentComplete = Math.round(pcnt);
|
||||
|
||||
resolve(this.chartData);
|
||||
})
|
||||
.catch(() => {
|
||||
reject(this.chartData);
|
||||
});
|
||||
|
||||
deferred.resolve(this.chartData);
|
||||
})
|
||||
.catch(() => {
|
||||
deferred.reject(this.chartData);
|
||||
});
|
||||
}
|
||||
|
||||
return deferred.promise;
|
||||
loadSwimlaneData(formConfig) {
|
||||
return $q((resolve) => {
|
||||
|
||||
mlResultsService.getScoresByBucket(
|
||||
[formConfig.jobId],
|
||||
formConfig.start,
|
||||
formConfig.end,
|
||||
formConfig.resultsIntervalSeconds + 's',
|
||||
1
|
||||
)
|
||||
.then((data) => {
|
||||
const jobResults = data.results[formConfig.jobId];
|
||||
this.chartData.swimlane = processSwimlaneResults(jobResults);
|
||||
this.chartData.swimlaneInterval = formConfig.resultsIntervalSeconds * 1000;
|
||||
resolve(this.chartData);
|
||||
})
|
||||
.catch(() => {
|
||||
resolve(this.chartData);
|
||||
});
|
||||
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return new SingleMetricJobService();
|
||||
}
|
||||
|
||||
function processLineChartResults(data, scale = 1) {
|
||||
const lineData = [];
|
||||
_.each(data, (dataForTime, t) => {
|
||||
const time = +t;
|
||||
const date = new Date(time);
|
||||
lineData.push({
|
||||
date: date,
|
||||
time: time,
|
||||
lower: (dataForTime.modelLower * scale),
|
||||
value: dataForTime.actual,
|
||||
upper: (dataForTime.modelUpper * scale)
|
||||
});
|
||||
});
|
||||
|
||||
return _.sortBy(lineData, 'time');
|
||||
}
|
||||
|
||||
function processSwimlaneResults(bucketScoreData, init) {
|
||||
// create a dataset in format used by the model plot chart.
|
||||
// create empty swimlane dataset
|
||||
// i.e. array of Objects with keys date (JavaScript date), value, lower and upper.
|
||||
const swimlaneData = [];
|
||||
_.each(bucketScoreData, (value, t) => {
|
||||
const time = +t;
|
||||
const date = new Date(time);
|
||||
value = init ? 0 : value;
|
||||
swimlaneData.push({
|
||||
date,
|
||||
time,
|
||||
value,
|
||||
color: ''
|
||||
});
|
||||
});
|
||||
return swimlaneData;
|
||||
}
|
||||
|
||||
function getSearchJsonFromConfig(formConfig) {
|
||||
const interval = formConfig.chartInterval.getInterval().asMilliseconds() + 'ms';
|
||||
// clone the query as we're modifying it
|
||||
const query = _.cloneDeep(formConfig.combinedQuery);
|
||||
|
||||
const json = {
|
||||
index: formConfig.indexPattern.title,
|
||||
size: 0,
|
||||
body: {
|
||||
query: {},
|
||||
aggs: {
|
||||
times: {
|
||||
date_histogram: {
|
||||
field: formConfig.timeField,
|
||||
interval: interval,
|
||||
min_doc_count: 0,
|
||||
extended_bounds: {
|
||||
min: formConfig.start,
|
||||
max: formConfig.end,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
this.loadSwimlaneData = function (formConfig) {
|
||||
const deferred = $q.defer();
|
||||
query.bool.must.push({
|
||||
range: {
|
||||
[formConfig.timeField]: {
|
||||
gte: formConfig.start,
|
||||
lte: formConfig.end,
|
||||
format: formConfig.format
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
mlResultsService.getScoresByBucket(
|
||||
[formConfig.jobId],
|
||||
formConfig.start,
|
||||
formConfig.end,
|
||||
formConfig.resultsIntervalSeconds + 's',
|
||||
1
|
||||
)
|
||||
.then((data) => {
|
||||
const jobResults = data.results[formConfig.jobId];
|
||||
this.chartData.swimlane = processSwimlaneResults(jobResults);
|
||||
this.chartData.swimlaneInterval = formConfig.resultsIntervalSeconds * 1000;
|
||||
deferred.resolve(this.chartData);
|
||||
})
|
||||
.catch(() => {
|
||||
deferred.resolve(this.chartData);
|
||||
});
|
||||
json.body.query = query;
|
||||
|
||||
return deferred.promise;
|
||||
};
|
||||
});
|
||||
if (formConfig.field !== null) {
|
||||
json.body.aggs.times.aggs = {
|
||||
field_value: {
|
||||
[formConfig.agg.type.dslName]: { field: formConfig.field.name }
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
return json;
|
||||
}
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
let defaults = {
|
||||
anomaly_detectors: {},
|
||||
|
@ -12,7 +12,7 @@ let defaults = {
|
|||
};
|
||||
let limits = {};
|
||||
|
||||
export function loadNewJobDefaults(ml) {
|
||||
export function loadNewJobDefaults() {
|
||||
return new Promise((resolve) => {
|
||||
ml.mlInfo()
|
||||
.then((resp) => {
|
||||
|
|
|
@ -10,6 +10,7 @@ import _ from 'lodash';
|
|||
import moment from 'moment';
|
||||
import { migrateFilter } from 'ui/courier/data_source/_migrate_filter.js';
|
||||
import { addItemToRecentlyAccessed } from 'plugins/ml/util/recently_accessed';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
|
||||
export function getQueryFromSavedSearch(formConfig) {
|
||||
const must = [];
|
||||
|
@ -103,12 +104,19 @@ export function createResultsUrl(jobIds, start, end, resultsPage) {
|
|||
return path;
|
||||
}
|
||||
|
||||
export function createJobForSaving(job) {
|
||||
const newJob = _.cloneDeep(job);
|
||||
delete newJob.datafeed_config;
|
||||
return newJob;
|
||||
}
|
||||
|
||||
export function addNewJobToRecentlyAccessed(jobId, resultsUrl) {
|
||||
const urlParts = resultsUrl.match(/ml#\/(.+?)(\?.+)/);
|
||||
addItemToRecentlyAccessed(urlParts[1], jobId, urlParts[2]);
|
||||
}
|
||||
|
||||
export function moveToAdvancedJobCreationProvider(mlJobService, $location) {
|
||||
export function moveToAdvancedJobCreationProvider(Private, $location) {
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
return function moveToAdvancedJobCreation(job) {
|
||||
mlJobService.currentJob = job;
|
||||
$location.path('jobs/new_job/advanced');
|
||||
|
|
|
@ -4,13 +4,13 @@
|
|||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
let mlNodeCount = 0;
|
||||
let userHasPermissionToViewMlNodeCount = false;
|
||||
|
||||
export function checkMlNodesAvailable(ml, kbnUrl) {
|
||||
getMlNodeCount(ml).then((nodes) => {
|
||||
export function checkMlNodesAvailable(kbnUrl) {
|
||||
getMlNodeCount().then((nodes) => {
|
||||
if (nodes.count !== undefined && nodes.count > 0) {
|
||||
Promise.resolve();
|
||||
} else {
|
||||
|
@ -20,7 +20,7 @@ export function checkMlNodesAvailable(ml, kbnUrl) {
|
|||
});
|
||||
}
|
||||
|
||||
export function getMlNodeCount(ml) {
|
||||
export function getMlNodeCount() {
|
||||
return new Promise((resolve) => {
|
||||
ml.mlNodeCount()
|
||||
.then((nodes) => {
|
||||
|
|
|
@ -5,8 +5,9 @@
|
|||
*/
|
||||
|
||||
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
export function privilegesProvider(Promise, ml) {
|
||||
export function privilegesProvider() {
|
||||
|
||||
function getPrivileges() {
|
||||
const privileges = {
|
||||
|
|
|
@ -8,79 +8,92 @@
|
|||
|
||||
import _ from 'lodash';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
|
||||
module.service('mlCalendarService', function ($q, ml, mlJobService, mlMessageBarService) {
|
||||
let calendarService = undefined;
|
||||
|
||||
export function CalendarServiceProvider($q, Private, mlMessageBarService) {
|
||||
const msgs = mlMessageBarService;
|
||||
this.calendars = [];
|
||||
// list of calendar ids per job id
|
||||
this.jobCalendars = {};
|
||||
// list of calendar ids per group id
|
||||
this.groupCalendars = {};
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
|
||||
this.loadCalendars = function (jobs) {
|
||||
return $q((resolve, reject) => {
|
||||
let calendars = [];
|
||||
jobs.forEach((j) => {
|
||||
this.jobCalendars[j.job_id] = [];
|
||||
});
|
||||
const groups = {};
|
||||
mlJobService.getJobGroups().forEach((g) => {
|
||||
groups[g.id] = g;
|
||||
});
|
||||
class CalendarService {
|
||||
constructor() {
|
||||
this.calendars = [];
|
||||
// list of calendar ids per job id
|
||||
this.jobCalendars = {};
|
||||
// list of calendar ids per group id
|
||||
this.groupCalendars = {};
|
||||
}
|
||||
|
||||
ml.calendars()
|
||||
.then((resp) => {
|
||||
calendars = resp;
|
||||
// loop through calendars and their job_ids and create jobCalendars
|
||||
// if a group is found, expand it out to its member jobs
|
||||
calendars.forEach((cal) => {
|
||||
cal.job_ids.forEach((id) => {
|
||||
let isGroup = false;
|
||||
// the job_id could be either a job id or a group id
|
||||
if (this.jobCalendars[id] !== undefined) {
|
||||
this.jobCalendars[id].push(cal.calendar_id);
|
||||
} else if (groups[id] !== undefined) {
|
||||
isGroup = true;
|
||||
// expand out the group into its jobs and add each job
|
||||
groups[id].jobs.forEach((j) => {
|
||||
this.jobCalendars[j.job_id].push(cal.calendar_id);
|
||||
});
|
||||
} else {
|
||||
// not a known job or a known group. assume it's a unused group
|
||||
isGroup = true;
|
||||
}
|
||||
|
||||
if (isGroup) {
|
||||
// keep track of calendars per group
|
||||
if (this.groupCalendars[id] === undefined) {
|
||||
this.groupCalendars[id] = [cal.calendar_id];
|
||||
} else {
|
||||
this.groupCalendars[id].push(cal.calendar_id);
|
||||
}
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
// deduplicate as group expansion may have added dupes.
|
||||
_.each(this.jobCalendars, (cal, id) => {
|
||||
this.jobCalendars[id] = _.uniq(cal);
|
||||
});
|
||||
|
||||
this.calendars = calendars;
|
||||
resolve({ calendars });
|
||||
})
|
||||
.catch((err) => {
|
||||
msgs.error('Calendars list could not be retrieved');
|
||||
msgs.error('', err);
|
||||
reject({ calendars, err });
|
||||
loadCalendars(jobs) {
|
||||
return $q((resolve, reject) => {
|
||||
let calendars = [];
|
||||
jobs.forEach((j) => {
|
||||
this.jobCalendars[j.job_id] = [];
|
||||
});
|
||||
const groups = {};
|
||||
mlJobService.getJobGroups().forEach((g) => {
|
||||
groups[g.id] = g;
|
||||
});
|
||||
});
|
||||
};
|
||||
|
||||
// get the list of calendar groups
|
||||
this.getCalendarGroups = function () {
|
||||
return Object.keys(this.groupCalendars).map(gId => ({ id: gId }));
|
||||
};
|
||||
});
|
||||
ml.calendars()
|
||||
.then((resp) => {
|
||||
calendars = resp;
|
||||
// loop through calendars and their job_ids and create jobCalendars
|
||||
// if a group is found, expand it out to its member jobs
|
||||
calendars.forEach((cal) => {
|
||||
cal.job_ids.forEach((id) => {
|
||||
let isGroup = false;
|
||||
// the job_id could be either a job id or a group id
|
||||
if (this.jobCalendars[id] !== undefined) {
|
||||
this.jobCalendars[id].push(cal.calendar_id);
|
||||
} else if (groups[id] !== undefined) {
|
||||
isGroup = true;
|
||||
// expand out the group into its jobs and add each job
|
||||
groups[id].jobs.forEach((j) => {
|
||||
this.jobCalendars[j.job_id].push(cal.calendar_id);
|
||||
});
|
||||
} else {
|
||||
// not a known job or a known group. assume it's a unused group
|
||||
isGroup = true;
|
||||
}
|
||||
|
||||
if (isGroup) {
|
||||
// keep track of calendars per group
|
||||
if (this.groupCalendars[id] === undefined) {
|
||||
this.groupCalendars[id] = [cal.calendar_id];
|
||||
} else {
|
||||
this.groupCalendars[id].push(cal.calendar_id);
|
||||
}
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
// deduplicate as group expansion may have added dupes.
|
||||
_.each(this.jobCalendars, (cal, id) => {
|
||||
this.jobCalendars[id] = _.uniq(cal);
|
||||
});
|
||||
|
||||
this.calendars = calendars;
|
||||
resolve({ calendars });
|
||||
})
|
||||
.catch((err) => {
|
||||
msgs.error('Calendars list could not be retrieved');
|
||||
msgs.error('', err);
|
||||
reject({ calendars, err });
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
// get the list of calendar groups
|
||||
getCalendarGroups() {
|
||||
return Object.keys(this.groupCalendars).map(id => ({ id }));
|
||||
}
|
||||
}
|
||||
|
||||
if (calendarService === undefined) {
|
||||
calendarService = new CalendarService();
|
||||
}
|
||||
return calendarService;
|
||||
}
|
||||
|
|
|
@ -11,124 +11,122 @@ import _ from 'lodash';
|
|||
import 'ui/courier';
|
||||
import { mlFunctionToESAggregation } from 'plugins/ml/../common/util/job_utils';
|
||||
import { getIndexPatternProvider } from 'plugins/ml/util/index_utils';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
|
||||
// Service for accessing FieldFormat objects configured for a Kibana index pattern
|
||||
// for use in formatting the actual and typical values from anomalies.
|
||||
module.service('mlFieldFormatService', function (
|
||||
export function FieldFormatServiceProvider(
|
||||
$q,
|
||||
courier,
|
||||
Private,
|
||||
mlJobService) {
|
||||
|
||||
const indexPatternIdsByJob = {};
|
||||
const formatsByJob = {};
|
||||
|
||||
Private) {
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const getIndexPattern = Private(getIndexPatternProvider);
|
||||
|
||||
// Populate the service with the FieldFormats for the list of jobs with the
|
||||
// specified IDs. List of Kibana index patterns is passed, with a title
|
||||
// attribute set in each pattern which will be compared to the index pattern
|
||||
// configured in the datafeed of each job.
|
||||
// Builds a map of Kibana FieldFormats (ui/field_formats/field_format.js)
|
||||
// against detector index by job ID.
|
||||
this.populateFormats = function (jobIds, indexPatterns) {
|
||||
const deferred = $q.defer();
|
||||
|
||||
// Populate a map of index pattern IDs against job ID, by finding the ID of the index
|
||||
// pattern with a title attribute which matches the index configured in the datafeed.
|
||||
// If a Kibana index pattern has not been created
|
||||
// for this index, then no custom field formatting will occur.
|
||||
_.each(jobIds, (jobId) => {
|
||||
const jobObj = mlJobService.getJob(jobId);
|
||||
const datafeedIndices = jobObj.datafeed_config.indices;
|
||||
const indexPattern = _.find(indexPatterns, (index) => {
|
||||
return _.find(datafeedIndices, (datafeedIndex) => {
|
||||
return index.get('title') === datafeedIndex;
|
||||
});
|
||||
});
|
||||
|
||||
// Check if index pattern has been configured to match the index in datafeed.
|
||||
if (indexPattern !== undefined) {
|
||||
indexPatternIdsByJob[jobId] = indexPattern.id;
|
||||
}
|
||||
});
|
||||
|
||||
const promises = jobIds.map(jobId => $q.all([
|
||||
getFormatsForJob(jobId)
|
||||
]));
|
||||
|
||||
$q.all(promises).then((fmtsByJobByDetector) => {
|
||||
_.each(fmtsByJobByDetector, (formatsByDetector, index) => {
|
||||
formatsByJob[jobIds[index]] = formatsByDetector[0];
|
||||
});
|
||||
|
||||
deferred.resolve(formatsByJob);
|
||||
}).catch(err => {
|
||||
console.log('mlFieldFormatService error populating formats:', err);
|
||||
deferred.reject({ formats: {}, err });
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
|
||||
};
|
||||
|
||||
// Return the FieldFormat to use for formatting values from
|
||||
// the detector from the job with the specified ID.
|
||||
this.getFieldFormat = function (jobId, detectorIndex) {
|
||||
return _.get(formatsByJob, [jobId, detectorIndex]);
|
||||
};
|
||||
|
||||
|
||||
// Utility for returning the FieldFormat from a full populated Kibana index pattern object
|
||||
// containing the list of fields by name with their formats.
|
||||
this.getFieldFormatFromIndexPattern = function (fullIndexPattern, fieldName, esAggName) {
|
||||
// Don't use the field formatter for distinct count detectors as
|
||||
// e.g. distinct_count(clientip) should be formatted as a count, not as an IP address.
|
||||
let fieldFormat = undefined;
|
||||
if (esAggName !== 'cardinality') {
|
||||
const indexPatternFields = _.get(fullIndexPattern, 'fields.byName', []);
|
||||
fieldFormat = _.get(indexPatternFields, [fieldName, 'format']);
|
||||
class FieldFormatService {
|
||||
constructor() {
|
||||
this.indexPatternIdsByJob = {};
|
||||
this.formatsByJob = {};
|
||||
}
|
||||
|
||||
return fieldFormat;
|
||||
};
|
||||
|
||||
function getFormatsForJob(jobId) {
|
||||
const deferred = $q.defer();
|
||||
|
||||
const jobObj = mlJobService.getJob(jobId);
|
||||
const detectors = jobObj.analysis_config.detectors || [];
|
||||
const formatsByDetector = {};
|
||||
|
||||
const indexPatternId = indexPatternIdsByJob[jobId];
|
||||
if (indexPatternId !== undefined) {
|
||||
// Load the full index pattern configuration to obtain the formats of each field.
|
||||
getIndexPattern(indexPatternId)
|
||||
.then((indexPatternData) => {
|
||||
// Store the FieldFormat for each job by detector_index.
|
||||
const fieldsByName = _.get(indexPatternData, 'fields.byName', []);
|
||||
_.each(detectors, (dtr) => {
|
||||
const esAgg = mlFunctionToESAggregation(dtr.function);
|
||||
// distinct_count detectors should fall back to the default
|
||||
// formatter as the values are just counts.
|
||||
if (dtr.field_name !== undefined && esAgg !== 'cardinality') {
|
||||
formatsByDetector[dtr.detector_index] = _.get(fieldsByName, [dtr.field_name, 'format']);
|
||||
}
|
||||
// Populate the service with the FieldFormats for the list of jobs with the
|
||||
// specified IDs. List of Kibana index patterns is passed, with a title
|
||||
// attribute set in each pattern which will be compared to the index pattern
|
||||
// configured in the datafeed of each job.
|
||||
// Builds a map of Kibana FieldFormats (ui/field_formats/field_format.js)
|
||||
// against detector index by job ID.
|
||||
populateFormats(jobIds, indexPatterns) {
|
||||
return $q((resolve, reject) => {
|
||||
// Populate a map of index pattern IDs against job ID, by finding the ID of the index
|
||||
// pattern with a title attribute which matches the index configured in the datafeed.
|
||||
// If a Kibana index pattern has not been created
|
||||
// for this index, then no custom field formatting will occur.
|
||||
_.each(jobIds, (jobId) => {
|
||||
const jobObj = mlJobService.getJob(jobId);
|
||||
const datafeedIndices = jobObj.datafeed_config.indices;
|
||||
const indexPattern = _.find(indexPatterns, (index) => {
|
||||
return _.find(datafeedIndices, (datafeedIndex) => {
|
||||
return index.get('title') === datafeedIndex;
|
||||
});
|
||||
});
|
||||
|
||||
deferred.resolve(formatsByDetector);
|
||||
}).catch(err => {
|
||||
deferred.reject(err);
|
||||
// Check if index pattern has been configured to match the index in datafeed.
|
||||
if (indexPattern !== undefined) {
|
||||
this.indexPatternIdsByJob[jobId] = indexPattern.id;
|
||||
}
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
} else {
|
||||
deferred.resolve(formatsByDetector);
|
||||
const promises = jobIds.map(jobId => $q.all([
|
||||
this.getFormatsForJob(jobId)
|
||||
]));
|
||||
|
||||
$q.all(promises).then((fmtsByJobByDetector) => {
|
||||
_.each(fmtsByJobByDetector, (formatsByDetector, index) => {
|
||||
this.formatsByJob[jobIds[index]] = formatsByDetector[0];
|
||||
});
|
||||
|
||||
resolve(this.formatsByJob);
|
||||
}).catch(err => {
|
||||
console.log('fieldFormatService error populating formats:', err);
|
||||
reject({ formats: {}, err });
|
||||
});
|
||||
|
||||
});
|
||||
}
|
||||
|
||||
// Return the FieldFormat to use for formatting values from
|
||||
// the detector from the job with the specified ID.
|
||||
getFieldFormat(jobId, detectorIndex) {
|
||||
return _.get(this.formatsByJob, [jobId, detectorIndex]);
|
||||
}
|
||||
|
||||
|
||||
// Utility for returning the FieldFormat from a full populated Kibana index pattern object
|
||||
// containing the list of fields by name with their formats.
|
||||
getFieldFormatFromIndexPattern(fullIndexPattern, fieldName, esAggName) {
|
||||
// Don't use the field formatter for distinct count detectors as
|
||||
// e.g. distinct_count(clientip) should be formatted as a count, not as an IP address.
|
||||
let fieldFormat = undefined;
|
||||
if (esAggName !== 'cardinality') {
|
||||
const indexPatternFields = _.get(fullIndexPattern, 'fields.byName', []);
|
||||
fieldFormat = _.get(indexPatternFields, [fieldName, 'format']);
|
||||
}
|
||||
|
||||
return fieldFormat;
|
||||
}
|
||||
|
||||
getFormatsForJob(jobId) {
|
||||
return $q((resolve, reject) => {
|
||||
|
||||
const jobObj = mlJobService.getJob(jobId);
|
||||
const detectors = jobObj.analysis_config.detectors || [];
|
||||
const formatsByDetector = {};
|
||||
|
||||
const indexPatternId = this.indexPatternIdsByJob[jobId];
|
||||
if (indexPatternId !== undefined) {
|
||||
// Load the full index pattern configuration to obtain the formats of each field.
|
||||
getIndexPattern(indexPatternId)
|
||||
.then((indexPatternData) => {
|
||||
// Store the FieldFormat for each job by detector_index.
|
||||
const fieldsByName = _.get(indexPatternData, 'fields.byName', []);
|
||||
_.each(detectors, (dtr) => {
|
||||
const esAgg = mlFunctionToESAggregation(dtr.function);
|
||||
// distinct_count detectors should fall back to the default
|
||||
// formatter as the values are just counts.
|
||||
if (dtr.field_name !== undefined && esAgg !== 'cardinality') {
|
||||
formatsByDetector[dtr.detector_index] = _.get(fieldsByName, [dtr.field_name, 'format']);
|
||||
}
|
||||
});
|
||||
|
||||
resolve(formatsByDetector);
|
||||
}).catch(err => {
|
||||
reject(err);
|
||||
});
|
||||
} else {
|
||||
resolve(formatsByDetector);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
});
|
||||
return new FieldFormatService();
|
||||
}
|
||||
|
|
|
@ -1,57 +0,0 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License;
|
||||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
// Service for carrying out queries to obtain data
|
||||
// specific to fields in Elasticsearch indices.
|
||||
|
||||
export function FieldsServiceProvider(es, ml) {
|
||||
|
||||
// Obtains the cardinality of one or more fields.
|
||||
// Returns an Object whose keys are the names of the fields,
|
||||
// with values equal to the cardinality of the field.
|
||||
function getCardinalityOfFields(
|
||||
index,
|
||||
types,
|
||||
fieldNames,
|
||||
query,
|
||||
timeFieldName,
|
||||
earliestMs,
|
||||
latestMs) {
|
||||
|
||||
return ml.getCardinalityOfFields({
|
||||
index,
|
||||
types,
|
||||
fieldNames,
|
||||
query,
|
||||
timeFieldName,
|
||||
earliestMs,
|
||||
latestMs
|
||||
});
|
||||
}
|
||||
|
||||
// Returns the range of the specified time field.
|
||||
// Returns an Object containing start and end properties,
|
||||
// holding the value as an epoch (ms since the Unix epoch)
|
||||
// and as a formatted string.
|
||||
function getTimeFieldRange(
|
||||
index,
|
||||
timeFieldName,
|
||||
query) {
|
||||
|
||||
return ml.getTimeFieldRange({
|
||||
index,
|
||||
timeFieldName,
|
||||
query
|
||||
});
|
||||
}
|
||||
|
||||
return {
|
||||
getCardinalityOfFields,
|
||||
getTimeFieldRange
|
||||
};
|
||||
}
|
|
@ -11,155 +11,150 @@
|
|||
import _ from 'lodash';
|
||||
|
||||
import { ML_RESULTS_INDEX_PATTERN } from 'plugins/ml/constants/index_patterns';
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.service('mlForecastService', function ($q, es, ml) {
|
||||
export function ForecastServiceProvider(es, $q) {
|
||||
|
||||
// Gets a basic summary of the most recently run forecasts for the specified
|
||||
// job, with results at or later than the supplied timestamp.
|
||||
// Extra query object can be supplied, or pass null if no additional query.
|
||||
// Returned response contains a forecasts property, which is an array of objects
|
||||
// containing id, earliest and latest keys.
|
||||
this.getForecastsSummary = function (
|
||||
function getForecastsSummary(
|
||||
job,
|
||||
query,
|
||||
earliestMs,
|
||||
maxResults
|
||||
) {
|
||||
const deferred = $q.defer();
|
||||
const obj = {
|
||||
success: true,
|
||||
forecasts: []
|
||||
};
|
||||
return $q((resolve, reject) => {
|
||||
const obj = {
|
||||
success: true,
|
||||
forecasts: []
|
||||
};
|
||||
|
||||
// Build the criteria to use in the bool filter part of the request.
|
||||
// Add criteria for the job ID, result type and earliest time, plus
|
||||
// the additional query if supplied.
|
||||
const filterCriteria = [
|
||||
{
|
||||
term: { result_type: 'model_forecast_request_stats' }
|
||||
},
|
||||
{
|
||||
term: { job_id: job.job_id }
|
||||
},
|
||||
{
|
||||
range: {
|
||||
timestamp: {
|
||||
gte: earliestMs,
|
||||
format: 'epoch_millis'
|
||||
}
|
||||
}
|
||||
}
|
||||
];
|
||||
|
||||
if (query) {
|
||||
filterCriteria.push(query);
|
||||
}
|
||||
|
||||
es.search({
|
||||
index: ML_RESULTS_INDEX_PATTERN,
|
||||
size: maxResults,
|
||||
body: {
|
||||
query: {
|
||||
bool: {
|
||||
filter: filterCriteria
|
||||
}
|
||||
// Build the criteria to use in the bool filter part of the request.
|
||||
// Add criteria for the job ID, result type and earliest time, plus
|
||||
// the additional query if supplied.
|
||||
const filterCriteria = [
|
||||
{
|
||||
term: { result_type: 'model_forecast_request_stats' }
|
||||
},
|
||||
sort: [
|
||||
{ forecast_create_timestamp: { 'order': 'desc' } }
|
||||
]
|
||||
}
|
||||
})
|
||||
.then((resp) => {
|
||||
if (resp.hits.total !== 0) {
|
||||
_.each(resp.hits.hits, (hit) => {
|
||||
obj.forecasts.push(hit._source);
|
||||
});
|
||||
{
|
||||
term: { job_id: job.job_id }
|
||||
},
|
||||
{
|
||||
range: {
|
||||
timestamp: {
|
||||
gte: earliestMs,
|
||||
format: 'epoch_millis'
|
||||
}
|
||||
}
|
||||
}
|
||||
];
|
||||
|
||||
deferred.resolve(obj);
|
||||
if (query) {
|
||||
filterCriteria.push(query);
|
||||
}
|
||||
|
||||
es.search({
|
||||
index: ML_RESULTS_INDEX_PATTERN,
|
||||
size: maxResults,
|
||||
body: {
|
||||
query: {
|
||||
bool: {
|
||||
filter: filterCriteria
|
||||
}
|
||||
},
|
||||
sort: [
|
||||
{ forecast_create_timestamp: { 'order': 'desc' } }
|
||||
]
|
||||
}
|
||||
})
|
||||
.catch((resp) => {
|
||||
deferred.reject(resp);
|
||||
});
|
||||
.then((resp) => {
|
||||
if (resp.hits.total !== 0) {
|
||||
obj.forecasts = resp.hits.hits.map(hit => hit._source);
|
||||
}
|
||||
|
||||
return deferred.promise;
|
||||
};
|
||||
resolve(obj);
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
// Obtains the earliest and latest timestamps for the forecast data from
|
||||
// the forecast with the specified ID.
|
||||
// Returned response contains earliest and latest properties which are the
|
||||
// timestamps of the first and last model_forecast results.
|
||||
this.getForecastDateRange = function (job, forecastId) {
|
||||
function getForecastDateRange(job, forecastId) {
|
||||
|
||||
const deferred = $q.defer();
|
||||
const obj = {
|
||||
success: true,
|
||||
earliest: null,
|
||||
latest: null
|
||||
};
|
||||
return $q((resolve, reject) => {
|
||||
const obj = {
|
||||
success: true,
|
||||
earliest: null,
|
||||
latest: null
|
||||
};
|
||||
|
||||
// Build the criteria to use in the bool filter part of the request.
|
||||
// Add criteria for the job ID, forecast ID, result type and time range.
|
||||
const filterCriteria = [{
|
||||
query_string: {
|
||||
query: 'result_type:model_forecast',
|
||||
analyze_wildcard: true
|
||||
}
|
||||
},
|
||||
{
|
||||
term: { job_id: job.job_id }
|
||||
},
|
||||
{
|
||||
term: { forecast_id: forecastId }
|
||||
}];
|
||||
// Build the criteria to use in the bool filter part of the request.
|
||||
// Add criteria for the job ID, forecast ID, result type and time range.
|
||||
const filterCriteria = [{
|
||||
query_string: {
|
||||
query: 'result_type:model_forecast',
|
||||
analyze_wildcard: true
|
||||
}
|
||||
},
|
||||
{
|
||||
term: { job_id: job.job_id }
|
||||
},
|
||||
{
|
||||
term: { forecast_id: forecastId }
|
||||
}];
|
||||
|
||||
// TODO - add in criteria for detector index and entity fields (by, over, partition)
|
||||
// once forecasting with these parameters is supported.
|
||||
// TODO - add in criteria for detector index and entity fields (by, over, partition)
|
||||
// once forecasting with these parameters is supported.
|
||||
|
||||
es.search({
|
||||
index: ML_RESULTS_INDEX_PATTERN,
|
||||
size: 0,
|
||||
body: {
|
||||
query: {
|
||||
bool: {
|
||||
filter: filterCriteria
|
||||
}
|
||||
},
|
||||
aggs: {
|
||||
earliest: {
|
||||
min: {
|
||||
field: 'timestamp'
|
||||
es.search({
|
||||
index: ML_RESULTS_INDEX_PATTERN,
|
||||
size: 0,
|
||||
body: {
|
||||
query: {
|
||||
bool: {
|
||||
filter: filterCriteria
|
||||
}
|
||||
},
|
||||
latest: {
|
||||
max: {
|
||||
field: 'timestamp'
|
||||
aggs: {
|
||||
earliest: {
|
||||
min: {
|
||||
field: 'timestamp'
|
||||
}
|
||||
},
|
||||
latest: {
|
||||
max: {
|
||||
field: 'timestamp'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
.then((resp) => {
|
||||
obj.earliest = _.get(resp, 'aggregations.earliest.value', null);
|
||||
obj.latest = _.get(resp, 'aggregations.latest.value', null);
|
||||
if (obj.earliest === null || obj.latest === null) {
|
||||
deferred.reject(resp);
|
||||
} else {
|
||||
deferred.resolve(obj);
|
||||
}
|
||||
})
|
||||
.catch((resp) => {
|
||||
deferred.reject(resp);
|
||||
});
|
||||
.then((resp) => {
|
||||
obj.earliest = _.get(resp, 'aggregations.earliest.value', null);
|
||||
obj.latest = _.get(resp, 'aggregations.latest.value', null);
|
||||
if (obj.earliest === null || obj.latest === null) {
|
||||
reject(resp);
|
||||
} else {
|
||||
resolve(obj);
|
||||
}
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
// Obtains the requested forecast model data for the forecast with the specified ID.
|
||||
this.getForecastData = function (
|
||||
function getForecastData(
|
||||
job,
|
||||
detectorIndex,
|
||||
forecastId,
|
||||
|
@ -198,184 +193,192 @@ module.service('mlForecastService', function ($q, es, ml) {
|
|||
}
|
||||
}
|
||||
|
||||
const deferred = $q.defer();
|
||||
const obj = {
|
||||
success: true,
|
||||
results: {}
|
||||
};
|
||||
|
||||
// Build the criteria to use in the bool filter part of the request.
|
||||
// Add criteria for the job ID, forecast ID, detector index, result type and time range.
|
||||
const filterCriteria = [{
|
||||
query_string: {
|
||||
query: 'result_type:model_forecast',
|
||||
analyze_wildcard: true
|
||||
}
|
||||
},
|
||||
{
|
||||
term: { job_id: job.job_id }
|
||||
},
|
||||
{
|
||||
term: { forecast_id: forecastId }
|
||||
},
|
||||
{
|
||||
term: { detector_index: detectorIndex }
|
||||
},
|
||||
{
|
||||
range: {
|
||||
timestamp: {
|
||||
gte: earliestMs,
|
||||
lte: latestMs,
|
||||
format: 'epoch_millis'
|
||||
}
|
||||
}
|
||||
}];
|
||||
|
||||
|
||||
// Add in term queries for each of the specified criteria.
|
||||
_.each(criteriaFields, (criteria) => {
|
||||
filterCriteria.push({
|
||||
term: {
|
||||
[criteria.fieldName]: criteria.fieldValue
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
|
||||
// If an aggType object has been passed in, use it.
|
||||
// Otherwise default to avg, min and max aggs for the
|
||||
// forecast prediction, upper and lower
|
||||
const forecastAggs = (aggType === undefined) ?
|
||||
{ avg: 'avg', max: 'max', min: 'min' } :
|
||||
{
|
||||
avg: aggType.avg,
|
||||
max: aggType.max,
|
||||
min: aggType.min
|
||||
return $q((resolve, reject) => {
|
||||
const obj = {
|
||||
success: true,
|
||||
results: {}
|
||||
};
|
||||
|
||||
es.search({
|
||||
index: ML_RESULTS_INDEX_PATTERN,
|
||||
size: 0,
|
||||
body: {
|
||||
query: {
|
||||
bool: {
|
||||
filter: filterCriteria
|
||||
// Build the criteria to use in the bool filter part of the request.
|
||||
// Add criteria for the job ID, forecast ID, detector index, result type and time range.
|
||||
const filterCriteria = [{
|
||||
query_string: {
|
||||
query: 'result_type:model_forecast',
|
||||
analyze_wildcard: true
|
||||
}
|
||||
},
|
||||
{
|
||||
term: { job_id: job.job_id }
|
||||
},
|
||||
{
|
||||
term: { forecast_id: forecastId }
|
||||
},
|
||||
{
|
||||
term: { detector_index: detectorIndex }
|
||||
},
|
||||
{
|
||||
range: {
|
||||
timestamp: {
|
||||
gte: earliestMs,
|
||||
lte: latestMs,
|
||||
format: 'epoch_millis'
|
||||
}
|
||||
},
|
||||
aggs: {
|
||||
times: {
|
||||
date_histogram: {
|
||||
field: 'timestamp',
|
||||
interval: interval,
|
||||
min_doc_count: 1
|
||||
},
|
||||
aggs: {
|
||||
prediction: {
|
||||
[forecastAggs.avg]: {
|
||||
field: 'forecast_prediction'
|
||||
}
|
||||
}
|
||||
}];
|
||||
|
||||
|
||||
// Add in term queries for each of the specified criteria.
|
||||
_.each(criteriaFields, (criteria) => {
|
||||
filterCriteria.push({
|
||||
term: {
|
||||
[criteria.fieldName]: criteria.fieldValue
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
|
||||
// If an aggType object has been passed in, use it.
|
||||
// Otherwise default to avg, min and max aggs for the
|
||||
// forecast prediction, upper and lower
|
||||
const forecastAggs = (aggType === undefined) ?
|
||||
{ avg: 'avg', max: 'max', min: 'min' } :
|
||||
{
|
||||
avg: aggType.avg,
|
||||
max: aggType.max,
|
||||
min: aggType.min
|
||||
};
|
||||
|
||||
es.search({
|
||||
index: ML_RESULTS_INDEX_PATTERN,
|
||||
size: 0,
|
||||
body: {
|
||||
query: {
|
||||
bool: {
|
||||
filter: filterCriteria
|
||||
}
|
||||
},
|
||||
aggs: {
|
||||
times: {
|
||||
date_histogram: {
|
||||
field: 'timestamp',
|
||||
interval: interval,
|
||||
min_doc_count: 1
|
||||
},
|
||||
forecastUpper: {
|
||||
[forecastAggs.max]: {
|
||||
field: 'forecast_upper'
|
||||
}
|
||||
},
|
||||
forecastLower: {
|
||||
[forecastAggs.min]: {
|
||||
field: 'forecast_lower'
|
||||
aggs: {
|
||||
prediction: {
|
||||
[forecastAggs.avg]: {
|
||||
field: 'forecast_prediction'
|
||||
}
|
||||
},
|
||||
forecastUpper: {
|
||||
[forecastAggs.max]: {
|
||||
field: 'forecast_upper'
|
||||
}
|
||||
},
|
||||
forecastLower: {
|
||||
[forecastAggs.min]: {
|
||||
field: 'forecast_lower'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
.then((resp) => {
|
||||
const aggregationsByTime = _.get(resp, ['aggregations', 'times', 'buckets'], []);
|
||||
_.each(aggregationsByTime, (dataForTime) => {
|
||||
const time = dataForTime.key;
|
||||
obj.results[time] = {
|
||||
prediction: _.get(dataForTime, ['prediction', 'value']),
|
||||
forecastUpper: _.get(dataForTime, ['forecastUpper', 'value']),
|
||||
forecastLower: _.get(dataForTime, ['forecastLower', 'value'])
|
||||
};
|
||||
})
|
||||
.then((resp) => {
|
||||
const aggregationsByTime = _.get(resp, ['aggregations', 'times', 'buckets'], []);
|
||||
_.each(aggregationsByTime, (dataForTime) => {
|
||||
const time = dataForTime.key;
|
||||
obj.results[time] = {
|
||||
prediction: _.get(dataForTime, ['prediction', 'value']),
|
||||
forecastUpper: _.get(dataForTime, ['forecastUpper', 'value']),
|
||||
forecastLower: _.get(dataForTime, ['forecastLower', 'value'])
|
||||
};
|
||||
});
|
||||
|
||||
resolve(obj);
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
|
||||
deferred.resolve(obj);
|
||||
})
|
||||
.catch((resp) => {
|
||||
deferred.reject(resp);
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
// Runs a forecast
|
||||
this.runForecast = function (jobId, duration) {
|
||||
function runForecast(jobId, duration) {
|
||||
console.log('ML forecast service run forecast with duration:', duration);
|
||||
const deferred = $q.defer();
|
||||
return $q((resolve, reject) => {
|
||||
|
||||
ml.forecast({
|
||||
jobId,
|
||||
duration
|
||||
})
|
||||
.then((resp) => {
|
||||
deferred.resolve(resp);
|
||||
}).catch((err) => {
|
||||
deferred.reject(err);
|
||||
});
|
||||
return deferred.promise;
|
||||
};
|
||||
ml.forecast({
|
||||
jobId,
|
||||
duration
|
||||
})
|
||||
.then((resp) => {
|
||||
resolve(resp);
|
||||
}).catch((err) => {
|
||||
reject(err);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
// Gets stats for a forecast that has been run on the specified job.
|
||||
// Returned response contains a stats property, including
|
||||
// forecast_progress (a value from 0 to 1),
|
||||
// and forecast_status ('finished' when complete) properties.
|
||||
this.getForecastRequestStats = function (job, forecastId) {
|
||||
const deferred = $q.defer();
|
||||
const obj = {
|
||||
success: true,
|
||||
stats: {}
|
||||
};
|
||||
function getForecastRequestStats(job, forecastId) {
|
||||
return $q((resolve, reject) => {
|
||||
const obj = {
|
||||
success: true,
|
||||
stats: {}
|
||||
};
|
||||
|
||||
// Build the criteria to use in the bool filter part of the request.
|
||||
// Add criteria for the job ID, result type and earliest time.
|
||||
const filterCriteria = [{
|
||||
query_string: {
|
||||
query: 'result_type:model_forecast_request_stats',
|
||||
analyze_wildcard: true
|
||||
}
|
||||
},
|
||||
{
|
||||
term: { job_id: job.job_id }
|
||||
},
|
||||
{
|
||||
term: { forecast_id: forecastId }
|
||||
}];
|
||||
// Build the criteria to use in the bool filter part of the request.
|
||||
// Add criteria for the job ID, result type and earliest time.
|
||||
const filterCriteria = [{
|
||||
query_string: {
|
||||
query: 'result_type:model_forecast_request_stats',
|
||||
analyze_wildcard: true
|
||||
}
|
||||
},
|
||||
{
|
||||
term: { job_id: job.job_id }
|
||||
},
|
||||
{
|
||||
term: { forecast_id: forecastId }
|
||||
}];
|
||||
|
||||
es.search({
|
||||
index: ML_RESULTS_INDEX_PATTERN,
|
||||
size: 1,
|
||||
body: {
|
||||
query: {
|
||||
bool: {
|
||||
filter: filterCriteria
|
||||
es.search({
|
||||
index: ML_RESULTS_INDEX_PATTERN,
|
||||
size: 1,
|
||||
body: {
|
||||
query: {
|
||||
bool: {
|
||||
filter: filterCriteria
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
.then((resp) => {
|
||||
if (resp.hits.total !== 0) {
|
||||
obj.stats = _.first(resp.hits.hits)._source;
|
||||
}
|
||||
deferred.resolve(obj);
|
||||
})
|
||||
.catch((resp) => {
|
||||
deferred.reject(resp);
|
||||
});
|
||||
.then((resp) => {
|
||||
if (resp.hits.total !== 0) {
|
||||
obj.stats = _.first(resp.hits.hits)._source;
|
||||
}
|
||||
resolve(obj);
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
});
|
||||
}
|
||||
|
||||
return {
|
||||
getForecastsSummary,
|
||||
getForecastDateRange,
|
||||
getForecastData,
|
||||
runForecast,
|
||||
getForecastRequestStats
|
||||
};
|
||||
|
||||
});
|
||||
}
|
||||
|
|
|
@ -8,43 +8,39 @@
|
|||
|
||||
// service for interacting with the server
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
import chrome from 'ui/chrome';
|
||||
import 'isomorphic-fetch';
|
||||
|
||||
import { addSystemApiHeader } from 'ui/system_api';
|
||||
|
||||
module.service('prlHttpService', function ($http, $q) {
|
||||
|
||||
// request function returns a promise
|
||||
// once resolved, just the data response is returned
|
||||
this.request = function (options) {
|
||||
export function http(options) {
|
||||
return new Promise((resolve, reject) => {
|
||||
if(options && options.url) {
|
||||
let url = '';
|
||||
url = url + (options.url || '');
|
||||
const headers = addSystemApiHeader({});
|
||||
const allHeaders = (options.headers === undefined) ?
|
||||
headers :
|
||||
Object.assign(options.headers, headers);
|
||||
const headers = addSystemApiHeader({
|
||||
'Content-Type': 'application/json',
|
||||
'kbn-version': chrome.getXsrfToken(),
|
||||
...options.headers
|
||||
});
|
||||
|
||||
const allHeaders = (options.headers === undefined) ? headers : { ...options.headers, ...headers };
|
||||
const body = (options.data === undefined) ? null : JSON.stringify(options.data);
|
||||
|
||||
const deferred = $q.defer();
|
||||
|
||||
$http({
|
||||
url: url,
|
||||
fetch(url, {
|
||||
method: (options.method || 'GET'),
|
||||
headers: (allHeaders),
|
||||
params: (options.params || {}),
|
||||
data: (options.data || null)
|
||||
credentials: 'same-origin',
|
||||
body,
|
||||
})
|
||||
.then(function successCallback(response) {
|
||||
deferred.resolve(response.data);
|
||||
}, function errorCallback(response) {
|
||||
deferred.reject(response.data);
|
||||
.then((resp) => {
|
||||
resolve(resp.json());
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
} else {
|
||||
reject();
|
||||
}
|
||||
};
|
||||
|
||||
});
|
||||
|
||||
});
|
||||
}
|
||||
|
|
170
x-pack/plugins/ml/public/services/job_messages_service.js
Normal file
170
x-pack/plugins/ml/public/services/job_messages_service.js
Normal file
|
@ -0,0 +1,170 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License;
|
||||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// Service for carrying out Elasticsearch queries to obtain data for the
|
||||
// Ml Results dashboards.
|
||||
import { ML_NOTIFICATION_INDEX_PATTERN } from 'plugins/ml/constants/index_patterns';
|
||||
|
||||
export function JobMessagesServiceProvider(es, $q) {
|
||||
// search for audit messages, jobId is optional.
|
||||
// without it, all jobs will be listed.
|
||||
// fromRange should be a string formatted in ES time units. e.g. 12h, 1d, 7d
|
||||
function getJobAuditMessages(fromRange, jobId) {
|
||||
return $q((resolve, reject) => {
|
||||
let jobFilter = {};
|
||||
// if no jobId specified, load all of the messages
|
||||
if (jobId !== undefined) {
|
||||
jobFilter = {
|
||||
bool: {
|
||||
should: [
|
||||
{
|
||||
term: {
|
||||
job_id: '' // catch system messages
|
||||
}
|
||||
},
|
||||
{
|
||||
term: {
|
||||
job_id: jobId // messages for specified jobId
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
let timeFilter = {};
|
||||
if (fromRange !== undefined && fromRange !== '') {
|
||||
timeFilter = {
|
||||
range: {
|
||||
timestamp: {
|
||||
gte: `now-${fromRange}`,
|
||||
lte: 'now'
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
es.search({
|
||||
index: ML_NOTIFICATION_INDEX_PATTERN,
|
||||
ignore_unavailable: true,
|
||||
size: 1000,
|
||||
body:
|
||||
{
|
||||
sort: [
|
||||
{ timestamp: { order: 'asc' } },
|
||||
{ job_id: { order: 'asc' } }
|
||||
],
|
||||
query: {
|
||||
bool: {
|
||||
filter: [
|
||||
{
|
||||
bool: {
|
||||
must_not: {
|
||||
term: {
|
||||
level: 'activity'
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
jobFilter,
|
||||
timeFilter
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
.then((resp) => {
|
||||
let messages = [];
|
||||
if (resp.hits.total !== 0) {
|
||||
messages = resp.hits.hits.map(hit => hit._source);
|
||||
}
|
||||
resolve({ messages });
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
// search highest, most recent audit messages for all jobs for the last 24hrs.
|
||||
function getAuditMessagesSummary() {
|
||||
return $q((resolve, reject) => {
|
||||
es.search({
|
||||
index: ML_NOTIFICATION_INDEX_PATTERN,
|
||||
ignore_unavailable: true,
|
||||
size: 0,
|
||||
body: {
|
||||
query: {
|
||||
bool: {
|
||||
filter: {
|
||||
range: {
|
||||
timestamp: {
|
||||
gte: 'now-1d'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
aggs: {
|
||||
levelsPerJob: {
|
||||
terms: {
|
||||
field: 'job_id',
|
||||
},
|
||||
aggs: {
|
||||
levels: {
|
||||
terms: {
|
||||
field: 'level',
|
||||
},
|
||||
aggs: {
|
||||
latestMessage: {
|
||||
terms: {
|
||||
field: 'message.raw',
|
||||
size: 1,
|
||||
order: {
|
||||
latestMessage: 'desc'
|
||||
}
|
||||
},
|
||||
aggs: {
|
||||
latestMessage: {
|
||||
max: {
|
||||
field: 'timestamp'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
.then((resp) => {
|
||||
let messagesPerJob = [];
|
||||
if (resp.hits.total !== 0 &&
|
||||
resp.aggregations &&
|
||||
resp.aggregations.levelsPerJob &&
|
||||
resp.aggregations.levelsPerJob.buckets &&
|
||||
resp.aggregations.levelsPerJob.buckets.length) {
|
||||
messagesPerJob = resp.aggregations.levelsPerJob.buckets;
|
||||
}
|
||||
resolve({ messagesPerJob });
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
return {
|
||||
getJobAuditMessages,
|
||||
getAuditMessagesSummary
|
||||
};
|
||||
}
|
File diff suppressed because it is too large
Load diff
|
@ -8,34 +8,30 @@
|
|||
|
||||
import _ from 'lodash';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
module.service('mlESMappingService', function ($q, ml) {
|
||||
|
||||
// Returns the mapping type of the specified field.
|
||||
// Accepts fieldName containing dots representing a nested sub-field.
|
||||
this.getFieldTypeFromMapping = function (index, fieldName) {
|
||||
return $q((resolve, reject) => {
|
||||
if (index !== '') {
|
||||
ml.getFieldCaps({ index, fields: [fieldName] })
|
||||
.then((resp) => {
|
||||
let fieldType = '';
|
||||
_.each(resp.fields, (field) => {
|
||||
_.each(field, (type) => {
|
||||
if (fieldType === '') {
|
||||
fieldType = type.type;
|
||||
}
|
||||
});
|
||||
// Returns the mapping type of the specified field.
|
||||
// Accepts fieldName containing dots representing a nested sub-field.
|
||||
export function getFieldTypeFromMapping(index, fieldName) {
|
||||
return new Promise((resolve, reject) => {
|
||||
if (index !== '') {
|
||||
ml.getFieldCaps({ index, fields: [fieldName] })
|
||||
.then((resp) => {
|
||||
let fieldType = '';
|
||||
_.each(resp.fields, (field) => {
|
||||
_.each(field, (type) => {
|
||||
if (fieldType === '') {
|
||||
fieldType = type.type;
|
||||
}
|
||||
});
|
||||
resolve(fieldType);
|
||||
})
|
||||
.catch((error) => {
|
||||
reject(error);
|
||||
});
|
||||
} else {
|
||||
reject();
|
||||
}
|
||||
});
|
||||
};
|
||||
});
|
||||
resolve(fieldType);
|
||||
})
|
||||
.catch((error) => {
|
||||
reject(error);
|
||||
});
|
||||
} else {
|
||||
reject();
|
||||
}
|
||||
});
|
||||
}
|
||||
|
|
|
@ -7,142 +7,139 @@
|
|||
|
||||
|
||||
import { pick } from 'lodash';
|
||||
import './http_service';
|
||||
import chrome from 'ui/chrome';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
import { http } from './http_service';
|
||||
|
||||
module.service('ml', function (prlHttpService) {
|
||||
const http = prlHttpService;
|
||||
const basePath = chrome.addBasePath('/api/ml');
|
||||
const basePath = chrome.addBasePath('/api/ml');
|
||||
|
||||
this.jobs = function (obj) {
|
||||
export const ml = {
|
||||
jobs(obj) {
|
||||
const jobId = (obj && obj.jobId) ? `/${obj.jobId}` : '';
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/anomaly_detectors${jobId}`,
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.jobStats = function (obj) {
|
||||
jobStats(obj) {
|
||||
const jobId = (obj && obj.jobId) ? `/${obj.jobId}` : '';
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/anomaly_detectors${jobId}/_stats`,
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.addJob = function (obj) {
|
||||
return http.request({
|
||||
addJob(obj) {
|
||||
return http({
|
||||
url: `${basePath}/anomaly_detectors/${obj.jobId}`,
|
||||
method: 'PUT',
|
||||
data: obj.job
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.openJob = function (obj) {
|
||||
return http.request({
|
||||
openJob(obj) {
|
||||
return http({
|
||||
url: `${basePath}/anomaly_detectors/${obj.jobId}/_open`,
|
||||
method: 'POST'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.closeJob = function (obj) {
|
||||
return http.request({
|
||||
closeJob(obj) {
|
||||
return http({
|
||||
url: `${basePath}/anomaly_detectors/${obj.jobId}/_close`,
|
||||
method: 'POST'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.forceCloseJob = function (obj) {
|
||||
return http.request({
|
||||
forceCloseJob(obj) {
|
||||
return http({
|
||||
url: `${basePath}/anomaly_detectors/${obj.jobId}/_close?force=true`,
|
||||
method: 'POST'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.deleteJob = function (obj) {
|
||||
return http.request({
|
||||
deleteJob(obj) {
|
||||
return http({
|
||||
url: `${basePath}/anomaly_detectors/${obj.jobId}`,
|
||||
method: 'DELETE'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.forceDeleteJob = function (obj) {
|
||||
return http.request({
|
||||
forceDeleteJob(obj) {
|
||||
return http({
|
||||
url: `${basePath}/anomaly_detectors/${obj.jobId}?force=true`,
|
||||
method: 'DELETE'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.updateJob = function (obj) {
|
||||
return http.request({
|
||||
updateJob(obj) {
|
||||
return http({
|
||||
url: `${basePath}/anomaly_detectors/${obj.jobId}/_update`,
|
||||
method: 'POST',
|
||||
data: obj.job
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.estimateBucketSpan = function (obj) {
|
||||
return http.request({
|
||||
estimateBucketSpan(obj) {
|
||||
return http({
|
||||
url: `${basePath}/validate/estimate_bucket_span`,
|
||||
method: 'POST',
|
||||
data: obj
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.validateJob = function (obj) {
|
||||
return http.request({
|
||||
validateJob(obj) {
|
||||
return http({
|
||||
url: `${basePath}/validate/job`,
|
||||
method: 'POST',
|
||||
data: obj
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.datafeeds = function (obj) {
|
||||
datafeeds(obj) {
|
||||
const datafeedId = (obj && obj.datafeedId) ? `/${obj.datafeedId}` : '';
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/datafeeds${datafeedId}`,
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.datafeedStats = function (obj) {
|
||||
datafeedStats(obj) {
|
||||
const datafeedId = (obj && obj.datafeedId) ? `/${obj.datafeedId}` : '';
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/datafeeds${datafeedId}/_stats`,
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.addDatafeed = function (obj) {
|
||||
return http.request({
|
||||
addDatafeed(obj) {
|
||||
return http({
|
||||
url: `${basePath}/datafeeds/${obj.datafeedId}`,
|
||||
method: 'PUT',
|
||||
data: obj.datafeedConfig
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.updateDatafeed = function (obj) {
|
||||
return http.request({
|
||||
updateDatafeed(obj) {
|
||||
return http({
|
||||
url: `${basePath}/datafeeds/${obj.datafeedId}/_update`,
|
||||
method: 'POST',
|
||||
data: obj.datafeedConfig
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.deleteDatafeed = function (obj) {
|
||||
return http.request({
|
||||
deleteDatafeed(obj) {
|
||||
return http({
|
||||
url: `${basePath}/datafeeds/${obj.datafeedId}`,
|
||||
method: 'DELETE'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.forceDeleteDatafeed = function (obj) {
|
||||
return http.request({
|
||||
forceDeleteDatafeed(obj) {
|
||||
return http({
|
||||
url: `${basePath}/datafeeds/${obj.datafeedId}?force=true`,
|
||||
method: 'DELETE'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.startDatafeed = function (obj) {
|
||||
startDatafeed(obj) {
|
||||
const data = {};
|
||||
if(obj.start !== undefined) {
|
||||
data.start = obj.start;
|
||||
|
@ -150,78 +147,78 @@ module.service('ml', function (prlHttpService) {
|
|||
if(obj.end !== undefined) {
|
||||
data.end = obj.end;
|
||||
}
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/datafeeds/${obj.datafeedId}/_start`,
|
||||
method: 'POST',
|
||||
data
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.stopDatafeed = function (obj) {
|
||||
return http.request({
|
||||
stopDatafeed(obj) {
|
||||
return http({
|
||||
url: `${basePath}/datafeeds/${obj.datafeedId}/_stop`,
|
||||
method: 'POST'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.datafeedPreview = function (obj) {
|
||||
return http.request({
|
||||
datafeedPreview(obj) {
|
||||
return http({
|
||||
url: `${basePath}/datafeeds/${obj.datafeedId}/_preview`,
|
||||
method: 'GET'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.validateDetector = function (obj) {
|
||||
return http.request({
|
||||
validateDetector(obj) {
|
||||
return http({
|
||||
url: `${basePath}/anomaly_detectors/_validate/detector`,
|
||||
method: 'POST',
|
||||
data: obj.detector
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.forecast = function (obj) {
|
||||
forecast(obj) {
|
||||
const data = {};
|
||||
if(obj.duration !== undefined) {
|
||||
data.duration = obj.duration;
|
||||
}
|
||||
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/anomaly_detectors/${obj.jobId}/_forecast`,
|
||||
method: 'POST',
|
||||
data
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.overallBuckets = function (obj) {
|
||||
overallBuckets(obj) {
|
||||
const data = pick(obj, [
|
||||
'topN',
|
||||
'bucketSpan',
|
||||
'start',
|
||||
'end'
|
||||
]);
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/anomaly_detectors/${obj.jobId}/results/overall_buckets`,
|
||||
method: 'POST',
|
||||
data
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.checkPrivilege = function (obj) {
|
||||
return http.request({
|
||||
checkPrivilege(obj) {
|
||||
return http({
|
||||
url: `${basePath}/_has_privileges`,
|
||||
method: 'POST',
|
||||
data: obj
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.getNotificationSettings = function () {
|
||||
return http.request({
|
||||
getNotificationSettings() {
|
||||
return http({
|
||||
url: `${basePath}/notification_settings`,
|
||||
method: 'GET'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.getFieldCaps = function (obj) {
|
||||
getFieldCaps(obj) {
|
||||
const data = {};
|
||||
if(obj.index !== undefined) {
|
||||
data.index = obj.index;
|
||||
|
@ -229,28 +226,28 @@ module.service('ml', function (prlHttpService) {
|
|||
if(obj.fields !== undefined) {
|
||||
data.fields = obj.fields;
|
||||
}
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/indices/field_caps`,
|
||||
method: 'POST',
|
||||
data
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.recognizeIndex = function (obj) {
|
||||
return http.request({
|
||||
recognizeIndex(obj) {
|
||||
return http({
|
||||
url: `${basePath}/modules/recognize/${obj.indexPatternTitle}`,
|
||||
method: 'GET'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.getDataRecognizerModule = function (obj) {
|
||||
return http.request({
|
||||
getDataRecognizerModule(obj) {
|
||||
return http({
|
||||
url: `${basePath}/modules/get_module/${obj.moduleId}`,
|
||||
method: 'GET'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.setupDataRecognizerConfig = function (obj) {
|
||||
setupDataRecognizerConfig(obj) {
|
||||
const data = pick(obj, [
|
||||
'prefix',
|
||||
'groups',
|
||||
|
@ -258,14 +255,14 @@ module.service('ml', function (prlHttpService) {
|
|||
'query'
|
||||
]);
|
||||
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/modules/setup/${obj.moduleId}`,
|
||||
method: 'POST',
|
||||
data
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.getVisualizerFieldStats = function (obj) {
|
||||
getVisualizerFieldStats(obj) {
|
||||
const data = pick(obj, [
|
||||
'query',
|
||||
'timeFieldName',
|
||||
|
@ -277,14 +274,14 @@ module.service('ml', function (prlHttpService) {
|
|||
'maxExamples'
|
||||
]);
|
||||
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/data_visualizer/get_field_stats/${obj.indexPatternTitle}`,
|
||||
method: 'POST',
|
||||
data
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.getVisualizerOverallStats = function (obj) {
|
||||
getVisualizerOverallStats(obj) {
|
||||
const data = pick(obj, [
|
||||
'query',
|
||||
'timeFieldName',
|
||||
|
@ -295,61 +292,60 @@ module.service('ml', function (prlHttpService) {
|
|||
'nonAggregatableFields'
|
||||
]);
|
||||
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/data_visualizer/get_overall_stats/${obj.indexPatternTitle}`,
|
||||
method: 'POST',
|
||||
data
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.calendars = function (obj) {
|
||||
calendars(obj) {
|
||||
const calendarId = (obj && obj.calendarId) ? `/${obj.calendarId}` : '';
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/calendars${calendarId}`,
|
||||
method: 'GET'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
|
||||
this.addCalendar = function (obj) {
|
||||
return http.request({
|
||||
addCalendar(obj) {
|
||||
return http({
|
||||
url: `${basePath}/calendars`,
|
||||
method: 'PUT',
|
||||
data: obj
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.updateCalendar = function (obj) {
|
||||
updateCalendar(obj) {
|
||||
const calendarId = (obj && obj.calendarId) ? `/${obj.calendarId}` : '';
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/calendars${calendarId}`,
|
||||
method: 'PUT',
|
||||
data: obj
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.deleteCalendar = function (obj) {
|
||||
return http.request({
|
||||
deleteCalendar(obj) {
|
||||
return http({
|
||||
url: `${basePath}/calendars/${obj.calendarId}`,
|
||||
method: 'DELETE'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.mlNodeCount = function () {
|
||||
return http.request({
|
||||
mlNodeCount() {
|
||||
return http({
|
||||
url: `${basePath}/ml_node_count`,
|
||||
method: 'GET'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.mlInfo = function () {
|
||||
return http.request({
|
||||
mlInfo() {
|
||||
return http({
|
||||
url: `${basePath}/info`,
|
||||
method: 'GET'
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.calculateModelMemoryLimit = function (obj) {
|
||||
calculateModelMemoryLimit(obj) {
|
||||
const data = pick(obj, [
|
||||
'indexPattern',
|
||||
'splitFieldName',
|
||||
|
@ -361,14 +357,14 @@ module.service('ml', function (prlHttpService) {
|
|||
'latestMs'
|
||||
]);
|
||||
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/validate/calculate_model_memory_limit`,
|
||||
method: 'POST',
|
||||
data
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.getCardinalityOfFields = function (obj) {
|
||||
getCardinalityOfFields(obj) {
|
||||
const data = pick(obj, [
|
||||
'index',
|
||||
'types',
|
||||
|
@ -379,25 +375,24 @@ module.service('ml', function (prlHttpService) {
|
|||
'latestMs'
|
||||
]);
|
||||
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/fields_service/field_cardinality`,
|
||||
method: 'POST',
|
||||
data
|
||||
});
|
||||
};
|
||||
},
|
||||
|
||||
this.getTimeFieldRange = function (obj) {
|
||||
getTimeFieldRange(obj) {
|
||||
const data = pick(obj, [
|
||||
'index',
|
||||
'timeFieldName',
|
||||
'query'
|
||||
]);
|
||||
|
||||
return http.request({
|
||||
return http({
|
||||
url: `${basePath}/fields_service/time_field_range`,
|
||||
method: 'POST',
|
||||
data
|
||||
});
|
||||
};
|
||||
|
||||
});
|
||||
}
|
||||
};
|
||||
|
|
|
@ -1,52 +0,0 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License;
|
||||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
// service for copying text to the users clipboard
|
||||
// can only work when triggered via a user event, as part of an onclick or ng-click
|
||||
// returns success
|
||||
// e.g. mlClipboardService.copy("this could be abused!");
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.service('mlClipboardService', function () {
|
||||
|
||||
function copyTextToClipboard(text) {
|
||||
const textArea = document.createElement('textarea');
|
||||
textArea.style.position = 'fixed';
|
||||
textArea.style.top = 0;
|
||||
textArea.style.left = 0;
|
||||
textArea.style.width = '2em';
|
||||
textArea.style.height = '2em';
|
||||
textArea.style.padding = 0;
|
||||
textArea.style.border = 'none';
|
||||
textArea.style.outline = 'none';
|
||||
textArea.style.boxShadow = 'none';
|
||||
textArea.style.background = 'transparent';
|
||||
textArea.value = text;
|
||||
|
||||
document.body.appendChild(textArea);
|
||||
|
||||
textArea.select();
|
||||
|
||||
let successful = false;
|
||||
try {
|
||||
successful = document.execCommand('copy');
|
||||
const msg = successful ? 'successful' : 'unsuccessful';
|
||||
console.log('Copying text command was ' + msg);
|
||||
} catch (err) {
|
||||
console.log('Oops, unable to copy');
|
||||
}
|
||||
|
||||
document.body.removeChild(textArea);
|
||||
return successful;
|
||||
}
|
||||
|
||||
this.copy = copyTextToClipboard;
|
||||
});
|
||||
|
|
@ -1,176 +0,0 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License;
|
||||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
// Service for carrying out Elasticsearch queries to obtain data for the
|
||||
// Ml Results dashboards.
|
||||
import _ from 'lodash';
|
||||
|
||||
import { ML_NOTIFICATION_INDEX_PATTERN } from 'plugins/ml/constants/index_patterns';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.service('mlNotificationService', function ($q, es) {
|
||||
|
||||
// search for audit messages, jobId is optional.
|
||||
// without it, all jobs will be listed.
|
||||
// fromRange should be a string formatted in ES time units. e.g. 12h, 1d, 7d
|
||||
this.getJobAuditMessages = function (fromRange, jobId) {
|
||||
const deferred = $q.defer();
|
||||
const messages = [];
|
||||
|
||||
let jobFilter = {};
|
||||
// if no jobId specified, load all of the messages
|
||||
if (jobId !== undefined) {
|
||||
jobFilter = {
|
||||
'bool': {
|
||||
'should': [
|
||||
{
|
||||
'term': {
|
||||
'job_id': '' // catch system messages
|
||||
}
|
||||
},
|
||||
{
|
||||
'term': {
|
||||
'job_id': jobId // messages for specified jobId
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
let timeFilter = {};
|
||||
if (fromRange !== undefined && fromRange !== '') {
|
||||
timeFilter = {
|
||||
'range': {
|
||||
'timestamp': {
|
||||
'gte': 'now-' + fromRange,
|
||||
'lte': 'now'
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
es.search({
|
||||
index: ML_NOTIFICATION_INDEX_PATTERN,
|
||||
ignore_unavailable: true,
|
||||
size: 1000,
|
||||
body:
|
||||
{
|
||||
sort: [
|
||||
{ 'timestamp': { 'order': 'asc' } },
|
||||
{ 'job_id': { 'order': 'asc' } }
|
||||
],
|
||||
'query': {
|
||||
'bool': {
|
||||
'filter': [
|
||||
{
|
||||
'bool': {
|
||||
'must_not': {
|
||||
'term': {
|
||||
'level': 'activity'
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
jobFilter,
|
||||
timeFilter
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
.then((resp) => {
|
||||
if (resp.hits.total !== 0) {
|
||||
_.each(resp.hits.hits, (hit) => {
|
||||
messages.push(hit._source);
|
||||
});
|
||||
}
|
||||
deferred.resolve({ messages });
|
||||
})
|
||||
.catch((resp) => {
|
||||
deferred.reject(resp);
|
||||
});
|
||||
return deferred.promise;
|
||||
};
|
||||
|
||||
// search highest, most recent audit messages for all jobs for the last 24hrs.
|
||||
this.getAuditMessagesSummary = function () {
|
||||
const deferred = $q.defer();
|
||||
const aggs = [];
|
||||
|
||||
es.search({
|
||||
index: ML_NOTIFICATION_INDEX_PATTERN,
|
||||
ignore_unavailable: true,
|
||||
size: 0,
|
||||
body: {
|
||||
'query': {
|
||||
'bool': {
|
||||
'filter': {
|
||||
'range': {
|
||||
'timestamp': {
|
||||
'gte': 'now-1d'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
'aggs': {
|
||||
'levelsPerJob': {
|
||||
'terms': {
|
||||
'field': 'job_id',
|
||||
},
|
||||
'aggs': {
|
||||
'levels': {
|
||||
'terms': {
|
||||
'field': 'level',
|
||||
},
|
||||
'aggs': {
|
||||
'latestMessage': {
|
||||
'terms': {
|
||||
'field': 'message.raw',
|
||||
'size': 1,
|
||||
'order': {
|
||||
'latestMessage': 'desc'
|
||||
}
|
||||
},
|
||||
'aggs': {
|
||||
'latestMessage': {
|
||||
'max': {
|
||||
'field': 'timestamp'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
.then((resp) => {
|
||||
if (resp.hits.total !== 0 &&
|
||||
resp.aggregations &&
|
||||
resp.aggregations.levelsPerJob &&
|
||||
resp.aggregations.levelsPerJob.buckets &&
|
||||
resp.aggregations.levelsPerJob.buckets.length) {
|
||||
_.each(resp.aggregations.levelsPerJob.buckets, (agg) => {
|
||||
aggs.push(agg);
|
||||
});
|
||||
}
|
||||
deferred.resolve({ messagesPerJob: aggs });
|
||||
})
|
||||
.catch((resp) => {
|
||||
deferred.reject(resp);
|
||||
});
|
||||
return deferred.promise;
|
||||
};
|
||||
|
||||
});
|
|
@ -14,16 +14,14 @@ import { ML_MEDIAN_PERCENTS } from 'plugins/ml/../common/util/job_utils';
|
|||
import { escapeForElasticsearchQuery } from 'plugins/ml/util/string_utils';
|
||||
import { ML_RESULTS_INDEX_PATTERN } from 'plugins/ml/constants/index_patterns';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
module.service('mlResultsService', function ($q, es, ml) {
|
||||
|
||||
// Obtains the maximum bucket anomaly scores by job ID and time.
|
||||
// Pass an empty array or ['*'] to search over all job IDs.
|
||||
// Returned response contains a results property, with a key for job
|
||||
// which has results for the specified time range.
|
||||
this.getScoresByBucket = function (jobIds, earliestMs, latestMs, interval, maxResults) {
|
||||
export function ResultsServiceProvider($q, es) {
|
||||
// Obtains the maximum bucket anomaly scores by job ID and time.
|
||||
// Pass an empty array or ['*'] to search over all job IDs.
|
||||
// Returned response contains a results property, with a key for job
|
||||
// which has results for the specified time range.
|
||||
function getScoresByBucket(jobIds, earliestMs, latestMs, interval, maxResults) {
|
||||
return $q((resolve, reject) => {
|
||||
const obj = {
|
||||
success: true,
|
||||
|
@ -141,13 +139,13 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
// Obtains a list of scheduled events by job ID and time.
|
||||
// Pass an empty array or ['*'] to search over all job IDs.
|
||||
// Returned response contains a events property, which will only
|
||||
// contains keys for jobs which have scheduled events for the specified time range.
|
||||
this.getScheduledEventsByBucket = function (
|
||||
function getScheduledEventsByBucket(
|
||||
jobIds,
|
||||
earliestMs,
|
||||
latestMs,
|
||||
|
@ -256,14 +254,14 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
// Obtains the top influencers, by maximum influencer score, for the specified index, time range and job ID(s).
|
||||
// Pass an empty array or ['*'] to search over all job IDs.
|
||||
// Returned response contains an influencers property, with a key for each of the influencer field names,
|
||||
// whose value is an array of objects containing influencerFieldValue, maxAnomalyScore and sumAnomalyScore keys.
|
||||
this.getTopInfluencers = function (jobIds, earliestMs, latestMs, maxFieldNames, maxFieldValues) {
|
||||
function getTopInfluencers(jobIds, earliestMs, latestMs, maxFieldNames, maxFieldValues) {
|
||||
return $q((resolve, reject) => {
|
||||
const obj = { success: true, influencers: {} };
|
||||
|
||||
|
@ -385,21 +383,20 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
// Obtains the top influencer field values, by maximum anomaly score, for a
|
||||
// particular index, field name and job ID(s).
|
||||
// Pass an empty array or ['*'] to search over all job IDs.
|
||||
// Returned response contains a results property, which is an array of objects
|
||||
// containing influencerFieldValue, maxAnomalyScore and sumAnomalyScore keys.
|
||||
this.getTopInfluencerValues = function (jobIds, influencerFieldName, earliestMs, latestMs, maxResults) {
|
||||
function getTopInfluencerValues(jobIds, influencerFieldName, earliestMs, latestMs, maxResults) {
|
||||
return $q((resolve, reject) => {
|
||||
const obj = { success: true, results: [] };
|
||||
|
||||
// Build the criteria to use in the bool filter part of the request.
|
||||
// Adds criteria for the time range plus any specified job IDs.
|
||||
const boolCriteria = [];
|
||||
boolCriteria.push({
|
||||
const boolCriteria = [{
|
||||
range: {
|
||||
timestamp: {
|
||||
gte: earliestMs,
|
||||
|
@ -407,7 +404,8 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
format: 'epoch_millis'
|
||||
}
|
||||
}
|
||||
});
|
||||
}];
|
||||
|
||||
if (jobIds && jobIds.length > 0 && !(jobIds.length === 1 && jobIds[0] === '*')) {
|
||||
let jobIdFilterStr = '';
|
||||
_.each(jobIds, (jobId, i) => {
|
||||
|
@ -487,12 +485,12 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
// Obtains the overall bucket scores for the specified job ID(s).
|
||||
// Pass ['*'] to search over all job IDs.
|
||||
// Returned response contains a results property as an object of max score by time.
|
||||
this.getOverallBucketScores = function (jobIds, topN, earliestMs, latestMs, interval) {
|
||||
function getOverallBucketScores(jobIds, topN, earliestMs, latestMs, interval) {
|
||||
return $q((resolve, reject) => {
|
||||
const obj = { success: true, results: {} };
|
||||
|
||||
|
@ -518,14 +516,14 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
// Obtains the maximum score by influencer_field_value and by time for the specified job ID(s)
|
||||
// (pass an empty array or ['*'] to search over all job IDs), and specified influencer field
|
||||
// values (pass an empty array to search over all field values).
|
||||
// Returned response contains a results property with influencer field values keyed
|
||||
// against max score by time.
|
||||
this.getInfluencerValueMaxScoreByTime = function (
|
||||
function getInfluencerValueMaxScoreByTime(
|
||||
jobIds,
|
||||
influencerFieldName,
|
||||
influencerFieldValues,
|
||||
|
@ -666,13 +664,13 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
// Obtains the definition of the category with the specified ID and job ID.
|
||||
// Returned response contains four properties - categoryId, regex, examples
|
||||
// and terms (space delimited String of the common tokens matched in values of the category).
|
||||
this.getCategoryDefinition = function (jobId, categoryId) {
|
||||
function getCategoryDefinition(jobId, categoryId) {
|
||||
return $q((resolve, reject) => {
|
||||
const obj = { success: true, categoryId: categoryId, terms: null, regex: null, examples: [] };
|
||||
|
||||
|
@ -704,14 +702,14 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
// Obtains the categorization examples for the categories with the specified IDs
|
||||
// from the given index and job ID.
|
||||
// Returned response contains two properties - jobId and
|
||||
// examplesByCategoryId (list of examples against categoryId).
|
||||
this.getCategoryExamples = function (jobId, categoryIds, maxExamples) {
|
||||
function getCategoryExamples(jobId, categoryIds, maxExamples) {
|
||||
return $q((resolve, reject) => {
|
||||
const obj = { success: true, jobId: jobId, examplesByCategoryId: {} };
|
||||
|
||||
|
@ -747,7 +745,7 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
// Queries Elasticsearch to obtain record level results containing the influencers
|
||||
|
@ -755,7 +753,7 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
// Pass an empty array or ['*'] to search over all job IDs.
|
||||
// Returned response contains a records property, with each record containing
|
||||
// only the fields job_id, detector_index, record_score and influencers.
|
||||
this.getRecordInfluencers = function (jobIds, threshold, earliestMs, latestMs, maxResults) {
|
||||
function getRecordInfluencers(jobIds, threshold, earliestMs, latestMs, maxResults) {
|
||||
return $q((resolve, reject) => {
|
||||
const obj = { success: true, records: [] };
|
||||
|
||||
|
@ -851,7 +849,7 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
// Queries Elasticsearch to obtain the record level results containing the specified influencer(s),
|
||||
|
@ -860,7 +858,7 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
// 'fieldValue' properties. The influencer array uses 'should' for the nested bool query,
|
||||
// so this returns record level results which have at least one of the influencers.
|
||||
// Pass an empty array or ['*'] to search over all job IDs.
|
||||
this.getRecordsForInfluencer = function (jobIds, influencers, threshold, earliestMs, latestMs, maxResults) {
|
||||
function getRecordsForInfluencer(jobIds, influencers, threshold, earliestMs, latestMs, maxResults) {
|
||||
return $q((resolve, reject) => {
|
||||
const obj = { success: true, records: [] };
|
||||
|
||||
|
@ -957,7 +955,7 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
},
|
||||
sort: [
|
||||
{ record_score: { order: 'desc' } }
|
||||
],
|
||||
]
|
||||
}
|
||||
})
|
||||
.then((resp) => {
|
||||
|
@ -972,13 +970,13 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
// Queries Elasticsearch to obtain the record level results for the specified job and detector,
|
||||
// time range, record score threshold, and whether to only return results containing influencers.
|
||||
// An additional, optional influencer field name and value may also be provided.
|
||||
this.getRecordsForDetector = function (
|
||||
function getRecordsForDetector(
|
||||
jobId,
|
||||
detectorIndex,
|
||||
checkForInfluencers,
|
||||
|
@ -1098,22 +1096,22 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
// Queries Elasticsearch to obtain all the record level results for the specified job(s), time range,
|
||||
// and record score threshold.
|
||||
// Pass an empty array or ['*'] to search over all job IDs.
|
||||
// Returned response contains a records property, which is an array of the matching results.
|
||||
this.getRecords = function (jobIds, threshold, earliestMs, latestMs, maxResults) {
|
||||
function getRecords(jobIds, threshold, earliestMs, latestMs, maxResults) {
|
||||
return this.getRecordsForInfluencer(jobIds, [], threshold, earliestMs, latestMs, maxResults);
|
||||
};
|
||||
}
|
||||
|
||||
// Queries Elasticsearch to obtain the record level results matching the given criteria,
|
||||
// for the specified job(s), time range, and record score threshold.
|
||||
// criteriaFields parameter must be an array, with each object in the array having 'fieldName'
|
||||
// 'fieldValue' properties.
|
||||
// Pass an empty array or ['*'] to search over all job IDs.
|
||||
this.getRecordsForCriteria = function (jobIds, criteriaFields, threshold, earliestMs, latestMs, maxResults) {
|
||||
function getRecordsForCriteria(jobIds, criteriaFields, threshold, earliestMs, latestMs, maxResults) {
|
||||
return $q((resolve, reject) => {
|
||||
const obj = { success: true, records: [] };
|
||||
|
||||
|
@ -1202,7 +1200,7 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
// Queries Elasticsearch to obtain metric aggregation results.
|
||||
|
@ -1213,7 +1211,7 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
// Extra query object can be supplied, or pass null if no additional query
|
||||
// to that built from the supplied entity fields.
|
||||
// Returned response contains a results property containing the requested aggregation.
|
||||
this.getMetricData = function (
|
||||
function getMetricData(
|
||||
index,
|
||||
types,
|
||||
entityFields,
|
||||
|
@ -1364,7 +1362,7 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
// Queries Elasticsearch to obtain event rate data i.e. the count
|
||||
// of documents over time.
|
||||
|
@ -1372,7 +1370,7 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
// Extra query object can be supplied, or pass null if no additional query.
|
||||
// Returned response contains a results property, which is an object
|
||||
// of document counts against time (epoch millis).
|
||||
this.getEventRateData = function (
|
||||
function getEventRateData(
|
||||
index,
|
||||
query,
|
||||
timeFieldName,
|
||||
|
@ -1440,9 +1438,9 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
this.getModelPlotOutput = function (
|
||||
function getModelPlotOutput(
|
||||
jobId,
|
||||
detectorIndex,
|
||||
criteriaFields,
|
||||
|
@ -1584,13 +1582,13 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
};
|
||||
}
|
||||
|
||||
// Queries Elasticsearch to obtain the max record score over time for the specified job,
|
||||
// criteria, time range, and aggregation interval.
|
||||
// criteriaFields parameter must be an array, with each object in the array having 'fieldName'
|
||||
// 'fieldValue' properties.
|
||||
this.getRecordMaxScoreByTime = function (jobId, criteriaFields, earliestMs, latestMs, interval) {
|
||||
function getRecordMaxScoreByTime(jobId, criteriaFields, earliestMs, latestMs, interval) {
|
||||
return $q((resolve, reject) => {
|
||||
const obj = {
|
||||
success: true,
|
||||
|
@ -1698,6 +1696,26 @@ module.service('mlResultsService', function ($q, es, ml) {
|
|||
reject(resp);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
return {
|
||||
getScoresByBucket,
|
||||
getScheduledEventsByBucket,
|
||||
getTopInfluencers,
|
||||
getTopInfluencerValues,
|
||||
getOverallBucketScores,
|
||||
getInfluencerValueMaxScoreByTime,
|
||||
getCategoryDefinition,
|
||||
getCategoryExamples,
|
||||
getRecordInfluencers,
|
||||
getRecordsForInfluencer,
|
||||
getRecordsForDetector,
|
||||
getRecords,
|
||||
getRecordsForCriteria,
|
||||
getMetricData,
|
||||
getEventRateData,
|
||||
getModelPlotOutput,
|
||||
getRecordMaxScoreByTime
|
||||
};
|
||||
|
||||
});
|
||||
}
|
||||
|
|
|
@ -17,6 +17,7 @@ import { checkLicense } from 'plugins/ml/license/check_license';
|
|||
import { checkGetJobsPrivilege, checkPermission } from 'plugins/ml/privilege/check_privilege';
|
||||
import { getMlNodeCount, mlNodesAvailable } from 'plugins/ml/ml_nodes_check/check_ml_nodes';
|
||||
import { buttonsEnabledChecks } from 'plugins/ml/settings/scheduled_events/calendars_list/buttons_enabled_checks';
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
import template from './calendars_list.html';
|
||||
|
||||
|
@ -39,9 +40,9 @@ module.controller('MlCalendarsList',
|
|||
$filter,
|
||||
$route,
|
||||
$location,
|
||||
$q,
|
||||
pagerFactory,
|
||||
Private,
|
||||
ml,
|
||||
timefilter,
|
||||
mlConfirmModalService) {
|
||||
|
||||
|
@ -116,7 +117,7 @@ module.controller('MlCalendarsList',
|
|||
title: `Delete calendar`
|
||||
})
|
||||
.then(() => {
|
||||
ml.deleteCalendar({ calendarId })
|
||||
$q.when(ml.deleteCalendar({ calendarId }))
|
||||
.then(loadCalendars)
|
||||
.catch((error) => {
|
||||
console.log(error);
|
||||
|
@ -126,7 +127,7 @@ module.controller('MlCalendarsList',
|
|||
};
|
||||
|
||||
function loadCalendars() {
|
||||
ml.calendars()
|
||||
$q.when(ml.calendars())
|
||||
.then((resp) => {
|
||||
calendars = resp;
|
||||
$scope.pager = pagerFactory.create(calendars.length, PAGE_SIZE, 1);
|
||||
|
|
|
@ -18,6 +18,9 @@ import uiRoutes from 'ui/routes';
|
|||
import { checkLicense } from 'plugins/ml/license/check_license';
|
||||
import { checkGetJobsPrivilege } from 'plugins/ml/privilege/check_privilege';
|
||||
import { checkMlNodesAvailable } from 'plugins/ml/ml_nodes_check/check_ml_nodes';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { CalendarServiceProvider } from 'plugins/ml/services/calendar_service';
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
import template from './create_calendar.html';
|
||||
|
||||
|
@ -47,13 +50,14 @@ module.controller('MlCreateCalendar',
|
|||
$scope,
|
||||
$route,
|
||||
$location,
|
||||
ml,
|
||||
$q,
|
||||
timefilter,
|
||||
mlMessageBarService,
|
||||
mlJobService,
|
||||
mlCalendarService) {
|
||||
Private) {
|
||||
const msgs = mlMessageBarService;
|
||||
msgs.clear();
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const mlCalendarService = Private(CalendarServiceProvider);
|
||||
|
||||
const calendarId = $route.current.params.calendarId;
|
||||
$scope.isNewCalendar = (calendarId === undefined);
|
||||
|
@ -137,8 +141,8 @@ module.controller('MlCreateCalendar',
|
|||
|
||||
if (validateCalendarId(calendar.calendarId, $scope.validation.checks)) {
|
||||
$scope.saveLock = true;
|
||||
const saveFunc = $scope.isNewCalendar ? ml.addCalendar : ml.updateCalendar;
|
||||
saveFunc(calendar)
|
||||
const saveFunc = $scope.isNewCalendar ? (c => ml.addCalendar(c)) : (c => ml.updateCalendar(c));
|
||||
$q.when(saveFunc(calendar))
|
||||
.then(() => {
|
||||
$location.path('settings/calendars_list');
|
||||
$scope.saveLock = false;
|
||||
|
|
|
@ -32,6 +32,7 @@ import { isJobVersionGte } from '../../../common/util/job_utils';
|
|||
import { parseInterval } from '../../../common/util/parse_interval';
|
||||
import { Modal } from './modal';
|
||||
import { PROGRESS_STATES } from './progress_states';
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
|
||||
const FORECAST_JOB_MIN_VERSION = '6.1.0'; // Forecasting only allowed for jobs created >= 6.1.0.
|
||||
const FORECASTS_VIEW_MAX = 5; // Display links to a maximum of 5 forecasts.
|
||||
|
@ -122,7 +123,7 @@ class ForecastingModal extends Component {
|
|||
jobOpeningState: PROGRESS_STATES.WAITING
|
||||
});
|
||||
|
||||
this.props.jobService.openJob(this.props.job.job_id)
|
||||
this.props.mlJobService.openJob(this.props.job.job_id)
|
||||
.then(() => {
|
||||
// If open was successful run the forecast, then close the job again.
|
||||
this.setState({
|
||||
|
@ -159,7 +160,7 @@ class ForecastingModal extends Component {
|
|||
// formats accepted by Kibana (w, M, y) are not valid formats in Elasticsearch.
|
||||
const durationInSeconds = parseInterval(this.state.newForecastDuration).asSeconds();
|
||||
|
||||
this.props.forecastService.runForecast(this.props.job.job_id, `${durationInSeconds}s`)
|
||||
this.props.mlForecastService.runForecast(this.props.job.job_id, `${durationInSeconds}s`)
|
||||
.then((resp) => {
|
||||
// Endpoint will return { acknowledged:true, id: <now timestamp> } before forecast is complete.
|
||||
// So wait for results and then refresh the dashboard to the end of the forecast.
|
||||
|
@ -179,7 +180,7 @@ class ForecastingModal extends Component {
|
|||
let previousProgress = 0;
|
||||
let noProgressMs = 0;
|
||||
this.forecastChecker = setInterval(() => {
|
||||
this.props.forecastService.getForecastRequestStats(this.props.job, forecastId)
|
||||
this.props.mlForecastService.getForecastRequestStats(this.props.job, forecastId)
|
||||
.then((resp) => {
|
||||
// Get the progress (stats value is between 0 and 1).
|
||||
const progress = _.get(resp, ['stats', 'forecast_progress'], previousProgress);
|
||||
|
@ -197,7 +198,7 @@ class ForecastingModal extends Component {
|
|||
|
||||
if (closeJobAfterRunning === true) {
|
||||
this.setState({ jobClosingState: PROGRESS_STATES.WAITING });
|
||||
this.props.jobService.closeJob(this.props.job.job_id)
|
||||
this.props.mlJobService.closeJob(this.props.job.job_id)
|
||||
.then(() => {
|
||||
this.setState({
|
||||
jobClosingState: PROGRESS_STATES.DONE
|
||||
|
@ -262,7 +263,7 @@ class ForecastingModal extends Component {
|
|||
forecast_status: FORECAST_REQUEST_STATE.FINISHED
|
||||
}
|
||||
};
|
||||
this.props.forecastService.getForecastsSummary(
|
||||
this.props.mlForecastService.getForecastsSummary(
|
||||
job,
|
||||
statusFinishedQuery,
|
||||
bounds.min.valueOf(),
|
||||
|
@ -281,14 +282,15 @@ class ForecastingModal extends Component {
|
|||
// of partitioning fields.
|
||||
const entityFieldNames = this.props.entities.map(entity => entity.fieldName);
|
||||
if (entityFieldNames.length > 0) {
|
||||
this.props.fieldsService.getCardinalityOfFields(
|
||||
job.datafeed_config.indices,
|
||||
job.datafeed_config.types,
|
||||
entityFieldNames,
|
||||
job.datafeed_config.query,
|
||||
job.data_description.time_field,
|
||||
job.data_counts.earliest_record_timestamp,
|
||||
job.data_counts.latest_record_timestamp)
|
||||
ml.getCardinalityOfFields({
|
||||
index: job.datafeed_config.indices,
|
||||
types: job.datafeed_config.types,
|
||||
fieldNames: entityFieldNames,
|
||||
query: job.datafeed_config.query,
|
||||
timeFieldName: job.data_description.time_field,
|
||||
earliestMs: job.data_counts.earliest_record_timestamp,
|
||||
latestMs: job.data_counts.latest_record_timestamp
|
||||
})
|
||||
.then((results) => {
|
||||
let numPartitions = 1;
|
||||
Object.values(results).forEach((cardinality) => {
|
||||
|
@ -397,9 +399,8 @@ ForecastingModal.propTypes = {
|
|||
job: PropTypes.object,
|
||||
detectorIndex: PropTypes.number,
|
||||
entities: PropTypes.array,
|
||||
forecastService: PropTypes.object.isRequired,
|
||||
jobService: PropTypes.object.isRequired,
|
||||
fieldsService: PropTypes.object.isRequired,
|
||||
mlForecastService: PropTypes.object.isRequired,
|
||||
mlJobService: PropTypes.object.isRequired,
|
||||
loadForForecastId: PropTypes.func,
|
||||
};
|
||||
|
||||
|
|
|
@ -10,24 +10,23 @@ import 'ngreact';
|
|||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml', ['react']);
|
||||
|
||||
import { FieldsServiceProvider } from 'plugins/ml/services/fields_service';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { ForecastServiceProvider } from 'plugins/ml/services/forecast_service';
|
||||
import { ForecastingModal } from './forecasting_modal';
|
||||
|
||||
module.directive('mlForecastingModal', function ($injector, Private) {
|
||||
const forecastService = $injector.get('mlForecastService');
|
||||
const jobService = $injector.get('mlJobService');
|
||||
const fieldsService = Private(FieldsServiceProvider);
|
||||
module.directive('mlForecastingModal', function ($injector) {
|
||||
const Private = $injector.get('Private');
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const mlForecastService = Private(ForecastServiceProvider);
|
||||
const timefilter = $injector.get('timefilter');
|
||||
const reactDirective = $injector.get('reactDirective');
|
||||
|
||||
return reactDirective(
|
||||
ForecastingModal,
|
||||
undefined,
|
||||
{ restrict: 'E' },
|
||||
{
|
||||
forecastService,
|
||||
jobService,
|
||||
fieldsService,
|
||||
mlForecastService,
|
||||
mlJobService,
|
||||
timefilter
|
||||
}
|
||||
);
|
||||
|
|
|
@ -31,6 +31,7 @@ import ContextChartMask from 'plugins/ml/timeseriesexplorer/context_chart_mask';
|
|||
import { findNearestChartPointToTime } from 'plugins/ml/timeseriesexplorer/timeseriesexplorer_utils';
|
||||
import 'plugins/ml/filters/format_value';
|
||||
import { mlEscape } from 'plugins/ml/util/string_utils';
|
||||
import { FieldFormatServiceProvider } from 'plugins/ml/services/field_format_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
@ -38,15 +39,15 @@ const module = uiModules.get('apps/ml');
|
|||
module.directive('mlTimeseriesChart', function (
|
||||
$compile,
|
||||
$timeout,
|
||||
Private,
|
||||
timefilter,
|
||||
mlAnomaliesTableService,
|
||||
mlFieldFormatService,
|
||||
formatValueFilter,
|
||||
Private,
|
||||
mlChartTooltipService) {
|
||||
|
||||
function link(scope, element) {
|
||||
|
||||
const mlFieldFormatService = Private(FieldFormatServiceProvider);
|
||||
// Key dimensions for the viz and constituent charts.
|
||||
let svgWidth = angular.element('.results-container').width();
|
||||
const focusZoomPanelHeight = 25;
|
||||
|
|
|
@ -8,19 +8,19 @@
|
|||
|
||||
import _ from 'lodash';
|
||||
|
||||
import { FieldsServiceProvider } from 'plugins/ml/services/fields_service';
|
||||
import { ml } from 'plugins/ml/services/ml_api_service';
|
||||
import { isModelPlotEnabled } from 'plugins/ml/../common/util/job_utils';
|
||||
import { buildConfigFromDetector } from 'plugins/ml/util/chart_config_builder';
|
||||
import { ResultsServiceProvider } from 'plugins/ml/services/results_service';
|
||||
|
||||
import { uiModules } from 'ui/modules';
|
||||
const module = uiModules.get('apps/ml');
|
||||
|
||||
module.service('mlTimeSeriesSearchService', function (
|
||||
$q,
|
||||
$timeout,
|
||||
Private,
|
||||
es,
|
||||
mlResultsService) {
|
||||
Private) {
|
||||
|
||||
const mlResultsService = Private(ResultsServiceProvider);
|
||||
|
||||
this.getMetricData = function (job, detectorIndex, entityFields, earliestMs, latestMs, interval) {
|
||||
if (isModelPlotEnabled(job, detectorIndex, entityFields)) {
|
||||
|
@ -63,40 +63,40 @@ module.service('mlTimeSeriesSearchService', function (
|
|||
interval
|
||||
);
|
||||
} else {
|
||||
const deferred = $q.defer();
|
||||
const obj = {
|
||||
success: true,
|
||||
results: {}
|
||||
};
|
||||
return $q((resolve, reject) => {
|
||||
const obj = {
|
||||
success: true,
|
||||
results: {}
|
||||
};
|
||||
|
||||
const chartConfig = buildConfigFromDetector(job, detectorIndex);
|
||||
const chartConfig = buildConfigFromDetector(job, detectorIndex);
|
||||
|
||||
mlResultsService.getMetricData(
|
||||
chartConfig.datafeedConfig.indices,
|
||||
chartConfig.datafeedConfig.types,
|
||||
entityFields,
|
||||
chartConfig.datafeedConfig.query,
|
||||
chartConfig.metricFunction,
|
||||
chartConfig.metricFieldName,
|
||||
chartConfig.timeField,
|
||||
earliestMs,
|
||||
latestMs,
|
||||
interval
|
||||
)
|
||||
.then((resp) => {
|
||||
_.each(resp.results, (value, time) => {
|
||||
obj.results[time] = {
|
||||
'actual': value
|
||||
};
|
||||
mlResultsService.getMetricData(
|
||||
chartConfig.datafeedConfig.indices,
|
||||
chartConfig.datafeedConfig.types,
|
||||
entityFields,
|
||||
chartConfig.datafeedConfig.query,
|
||||
chartConfig.metricFunction,
|
||||
chartConfig.metricFieldName,
|
||||
chartConfig.timeField,
|
||||
earliestMs,
|
||||
latestMs,
|
||||
interval
|
||||
)
|
||||
.then((resp) => {
|
||||
_.each(resp.results, (value, time) => {
|
||||
obj.results[time] = {
|
||||
'actual': value
|
||||
};
|
||||
});
|
||||
|
||||
resolve(obj);
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
|
||||
deferred.resolve(obj);
|
||||
})
|
||||
.catch((resp) => {
|
||||
deferred.reject(resp);
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
});
|
||||
}
|
||||
|
||||
};
|
||||
|
@ -106,54 +106,54 @@ module.service('mlTimeSeriesSearchService', function (
|
|||
// Queries Elasticsearch if necessary to obtain the distinct count of entities
|
||||
// for which data is being plotted.
|
||||
this.getChartDetails = function (job, detectorIndex, entityFields, earliestMs, latestMs) {
|
||||
const deferred = $q.defer();
|
||||
const obj = { success: true, results: { functionLabel: '', entityData: { entities: [] } } };
|
||||
return $q((resolve, reject) => {
|
||||
const obj = { success: true, results: { functionLabel: '', entityData: { entities: [] } } };
|
||||
|
||||
const chartConfig = buildConfigFromDetector(job, detectorIndex);
|
||||
let functionLabel = chartConfig.metricFunction;
|
||||
if (chartConfig.metricFieldName !== undefined) {
|
||||
functionLabel += ' ';
|
||||
functionLabel += chartConfig.metricFieldName;
|
||||
}
|
||||
obj.results.functionLabel = functionLabel;
|
||||
const chartConfig = buildConfigFromDetector(job, detectorIndex);
|
||||
let functionLabel = chartConfig.metricFunction;
|
||||
if (chartConfig.metricFieldName !== undefined) {
|
||||
functionLabel += ' ';
|
||||
functionLabel += chartConfig.metricFieldName;
|
||||
}
|
||||
obj.results.functionLabel = functionLabel;
|
||||
|
||||
const blankEntityFields = _.filter(entityFields, (entity) => {
|
||||
return entity.fieldValue.length === 0;
|
||||
});
|
||||
const blankEntityFields = _.filter(entityFields, (entity) => {
|
||||
return entity.fieldValue.length === 0;
|
||||
});
|
||||
|
||||
// Look to see if any of the entity fields have defined values
|
||||
// (i.e. blank input), and if so obtain the cardinality.
|
||||
if (blankEntityFields.length === 0) {
|
||||
obj.results.entityData.count = 1;
|
||||
obj.results.entityData.entities = entityFields;
|
||||
deferred.resolve(obj);
|
||||
} else {
|
||||
const entityFieldNames = _.map(blankEntityFields, 'fieldName');
|
||||
const fieldsService = Private(FieldsServiceProvider);
|
||||
fieldsService.getCardinalityOfFields(
|
||||
chartConfig.datafeedConfig.indices,
|
||||
chartConfig.datafeedConfig.types,
|
||||
entityFieldNames,
|
||||
chartConfig.datafeedConfig.query,
|
||||
chartConfig.timeField,
|
||||
earliestMs,
|
||||
latestMs)
|
||||
.then((results) => {
|
||||
_.each(blankEntityFields, (field) => {
|
||||
obj.results.entityData.entities.push({
|
||||
fieldName: field.fieldName,
|
||||
cardinality: _.get(results, field.fieldName, 0)
|
||||
});
|
||||
});
|
||||
|
||||
deferred.resolve(obj);
|
||||
// Look to see if any of the entity fields have defined values
|
||||
// (i.e. blank input), and if so obtain the cardinality.
|
||||
if (blankEntityFields.length === 0) {
|
||||
obj.results.entityData.count = 1;
|
||||
obj.results.entityData.entities = entityFields;
|
||||
resolve(obj);
|
||||
} else {
|
||||
const entityFieldNames = _.map(blankEntityFields, 'fieldName');
|
||||
ml.getCardinalityOfFields({
|
||||
index: chartConfig.datafeedConfig.indices,
|
||||
types: chartConfig.datafeedConfig.types,
|
||||
fieldNames: entityFieldNames,
|
||||
query: chartConfig.datafeedConfig.query,
|
||||
timeFieldName: chartConfig.timeField,
|
||||
earliestMs,
|
||||
latestMs
|
||||
})
|
||||
.catch((resp) => {
|
||||
deferred.reject(resp);
|
||||
});
|
||||
}
|
||||
.then((results) => {
|
||||
_.each(blankEntityFields, (field) => {
|
||||
obj.results.entityData.entities.push({
|
||||
fieldName: field.fieldName,
|
||||
cardinality: _.get(results, field.fieldName, 0)
|
||||
});
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
resolve(obj);
|
||||
})
|
||||
.catch((resp) => {
|
||||
reject(resp);
|
||||
});
|
||||
}
|
||||
|
||||
});
|
||||
};
|
||||
|
||||
});
|
||||
|
|
|
@ -16,10 +16,6 @@ import _ from 'lodash';
|
|||
import moment from 'moment';
|
||||
|
||||
import 'plugins/ml/components/anomalies_table';
|
||||
import 'plugins/ml/services/field_format_service';
|
||||
import 'plugins/ml/services/forecast_service';
|
||||
import 'plugins/ml/services/job_service';
|
||||
import 'plugins/ml/services/results_service';
|
||||
|
||||
import { notify } from 'ui/notify';
|
||||
import uiRoutes from 'ui/routes';
|
||||
|
@ -42,8 +38,12 @@ import {
|
|||
processScheduledEventsForChart } from 'plugins/ml/timeseriesexplorer/timeseriesexplorer_utils';
|
||||
import { refreshIntervalWatcher } from 'plugins/ml/util/refresh_interval_watcher';
|
||||
import { IntervalHelperProvider, getBoundsRoundedToInterval } from 'plugins/ml/util/ml_time_buckets';
|
||||
import { ResultsServiceProvider } from 'plugins/ml/services/results_service';
|
||||
import template from './timeseriesexplorer.html';
|
||||
import { getMlNodeCount } from 'plugins/ml/ml_nodes_check/check_ml_nodes';
|
||||
import { JobServiceProvider } from 'plugins/ml/services/job_service';
|
||||
import { FieldFormatServiceProvider } from 'plugins/ml/services/field_format_service';
|
||||
import { ForecastServiceProvider } from 'plugins/ml/services/forecast_service';
|
||||
|
||||
uiRoutes
|
||||
.when('/timeseriesexplorer/?', {
|
||||
|
@ -63,20 +63,12 @@ module.controller('MlTimeSeriesExplorerController', function (
|
|||
$scope,
|
||||
$route,
|
||||
$timeout,
|
||||
$compile,
|
||||
$modal,
|
||||
Private,
|
||||
$q,
|
||||
es,
|
||||
timefilter,
|
||||
AppState,
|
||||
mlJobService,
|
||||
mlResultsService,
|
||||
mlJobSelectService,
|
||||
mlTimeSeriesSearchService,
|
||||
mlForecastService,
|
||||
mlAnomaliesTableService,
|
||||
mlFieldFormatService) {
|
||||
mlAnomaliesTableService) {
|
||||
|
||||
$scope.timeFieldName = 'timestamp';
|
||||
timefilter.enableTimeRangeSelector();
|
||||
|
@ -86,6 +78,10 @@ module.controller('MlTimeSeriesExplorerController', function (
|
|||
const ANOMALIES_MAX_RESULTS = 500;
|
||||
const MAX_SCHEDULED_EVENTS = 10; // Max number of scheduled events displayed per bucket.
|
||||
const TimeBuckets = Private(IntervalHelperProvider);
|
||||
const mlResultsService = Private(ResultsServiceProvider);
|
||||
const mlJobService = Private(JobServiceProvider);
|
||||
const mlFieldFormatService = Private(FieldFormatServiceProvider);
|
||||
const mlForecastService = Private(ForecastServiceProvider);
|
||||
|
||||
$scope.jobPickerSelections = [];
|
||||
$scope.selectedJob;
|
||||
|
|
44
x-pack/plugins/ml/public/util/clipboard_utils.js
Normal file
44
x-pack/plugins/ml/public/util/clipboard_utils.js
Normal file
|
@ -0,0 +1,44 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License;
|
||||
* you may not use this file except in compliance with the Elastic License.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
// service for copying text to the users clipboard
|
||||
// can only work when triggered via a user event, as part of an onclick or ng-click
|
||||
// returns success
|
||||
// e.g. mlClipboardService.copy("this could be abused!");
|
||||
|
||||
export function copyTextToClipboard(text) {
|
||||
const textArea = document.createElement('textarea');
|
||||
textArea.style.position = 'fixed';
|
||||
textArea.style.top = 0;
|
||||
textArea.style.left = 0;
|
||||
textArea.style.width = '2em';
|
||||
textArea.style.height = '2em';
|
||||
textArea.style.padding = 0;
|
||||
textArea.style.border = 'none';
|
||||
textArea.style.outline = 'none';
|
||||
textArea.style.boxShadow = 'none';
|
||||
textArea.style.background = 'transparent';
|
||||
textArea.value = text;
|
||||
|
||||
document.body.appendChild(textArea);
|
||||
|
||||
textArea.select();
|
||||
|
||||
let successful = false;
|
||||
try {
|
||||
successful = document.execCommand('copy');
|
||||
const msg = successful ? 'successful' : 'unsuccessful';
|
||||
console.log('Copying text command was ' + msg);
|
||||
} catch (err) {
|
||||
console.log('Oops, unable to copy');
|
||||
}
|
||||
|
||||
document.body.removeChild(textArea);
|
||||
return successful;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue