[8.x] [Auto Import] Use larger number of samples on the backend (#196233) (#196386)

# Backport

This will backport the following commits from `main` to `8.x`:
- [[Auto Import] Use larger number of samples on the backend
(#196233)](https://github.com/elastic/kibana/pull/196233)

<!--- Backport version: 9.4.3 -->

### Questions ?
Please refer to the [Backport tool
documentation](https://github.com/sqren/backport)

<!--BACKPORT [{"author":{"name":"Ilya
Nikokoshev","email":"ilya.nikokoshev@elastic.co"},"sourceCommit":{"committedDate":"2024-10-15T16:22:05Z","message":"[Auto
Import] Use larger number of samples on the backend (#196233)\n\n##
Release Notes\r\n\r\nAutomatic Import now analyses larger number of
samples to generate an\r\nintegration.\r\n\r\n## Summary\r\n\r\nCloses
https://github.com/elastic/security-team/issues/9844\r\n\r\n**Added:
Backend Sampling**\r\n\r\nWe pass 100 rows (these numeric values are
adjustable) to the backend\r\n[^1]\r\n\r\n[^1]: As before,
deterministically selected on the frontend,
see\r\nhttps://github.com/elastic/kibana/pull/191598\r\n\r\n\r\nThe
Categorization chain now processes the samples in batches,\r\nperforming
after initial categorization a number of review cycles (but\r\nnot more
than 5, tuned so that we stay under the 2 minute limit for a\r\nsingle
API call).\r\n\r\nTo decide when to stop processing we keep the list of
_stable_ samples\r\nas follows:\r\n\r\n1. The list is initially
empty.\r\n2. For each review we select a random subset of 40 samples,
preferring\r\nto pick up the not-stable samples.\r\n3. After each review
– when the LLM potentially gives us new or changes\r\nthe old processors
– we compare the new pipeline results with the old\r\npipeline
results.\r\n4. Those reviewed samples that did not change their
categorization are\r\nadded to the stable list.\r\n5. Any samples that
have changed their categorization are removed from\r\nthe stable
list.\r\n6. If all samples are stable, we finish
processing.\r\n\r\n**Removed: User Notification**\r\n\r\nUsing 100
samples provides a balance between expected complexity and\r\ntime
budget we work with. We might want to change it in the
future,\r\npossibly dynamically, making the specific number of no
importance to the\r\nuser. Thus we remove the truncation
notification.\r\n\r\n**Unchanged:**\r\n\r\n- No batching is made in the
related chain: it seems to work as-is.\r\n\r\n**Refactored:**\r\n\r\n-
We centralize the sizing constants in
the\r\n`x-pack/plugins/integration_assistant/common/constants.ts`
file.\r\n- We remove the unused state key `formattedSamples` and
combine\r\n`modelJSONInput` back into `modelInput`.\r\n\r\n> [!NOTE]
\r\n> I had difficulty generating new graph diagrams, so they
remain\r\nunchanged.","sha":"fc3ce5475a73aad1abdbf857bc8787cd0f10aaed","branchLabelMapping":{"^v9.0.0$":"main","^v8.16.0$":"8.x","^v(\\d+).(\\d+).\\d+$":"$1.$2"}},"sourcePullRequest":{"labels":["release_note:enhancement","enhancement","v9.0.0","backport:prev-minor","8.16
candidate","Team:Security-Scalability","Feature:AutomaticImport"],"title":"[Auto
Import] Use larger number of samples on the
backend","number":196233,"url":"https://github.com/elastic/kibana/pull/196233","mergeCommit":{"message":"[Auto
Import] Use larger number of samples on the backend (#196233)\n\n##
Release Notes\r\n\r\nAutomatic Import now analyses larger number of
samples to generate an\r\nintegration.\r\n\r\n## Summary\r\n\r\nCloses
https://github.com/elastic/security-team/issues/9844\r\n\r\n**Added:
Backend Sampling**\r\n\r\nWe pass 100 rows (these numeric values are
adjustable) to the backend\r\n[^1]\r\n\r\n[^1]: As before,
deterministically selected on the frontend,
see\r\nhttps://github.com/elastic/kibana/pull/191598\r\n\r\n\r\nThe
Categorization chain now processes the samples in batches,\r\nperforming
after initial categorization a number of review cycles (but\r\nnot more
than 5, tuned so that we stay under the 2 minute limit for a\r\nsingle
API call).\r\n\r\nTo decide when to stop processing we keep the list of
_stable_ samples\r\nas follows:\r\n\r\n1. The list is initially
empty.\r\n2. For each review we select a random subset of 40 samples,
preferring\r\nto pick up the not-stable samples.\r\n3. After each review
– when the LLM potentially gives us new or changes\r\nthe old processors
– we compare the new pipeline results with the old\r\npipeline
results.\r\n4. Those reviewed samples that did not change their
categorization are\r\nadded to the stable list.\r\n5. Any samples that
have changed their categorization are removed from\r\nthe stable
list.\r\n6. If all samples are stable, we finish
processing.\r\n\r\n**Removed: User Notification**\r\n\r\nUsing 100
samples provides a balance between expected complexity and\r\ntime
budget we work with. We might want to change it in the
future,\r\npossibly dynamically, making the specific number of no
importance to the\r\nuser. Thus we remove the truncation
notification.\r\n\r\n**Unchanged:**\r\n\r\n- No batching is made in the
related chain: it seems to work as-is.\r\n\r\n**Refactored:**\r\n\r\n-
We centralize the sizing constants in
the\r\n`x-pack/plugins/integration_assistant/common/constants.ts`
file.\r\n- We remove the unused state key `formattedSamples` and
combine\r\n`modelJSONInput` back into `modelInput`.\r\n\r\n> [!NOTE]
\r\n> I had difficulty generating new graph diagrams, so they
remain\r\nunchanged.","sha":"fc3ce5475a73aad1abdbf857bc8787cd0f10aaed"}},"sourceBranch":"main","suggestedTargetBranches":[],"targetPullRequestStates":[{"branch":"main","label":"v9.0.0","branchLabelMappingKey":"^v9.0.0$","isSourceBranch":true,"state":"MERGED","url":"https://github.com/elastic/kibana/pull/196233","number":196233,"mergeCommit":{"message":"[Auto
Import] Use larger number of samples on the backend (#196233)\n\n##
Release Notes\r\n\r\nAutomatic Import now analyses larger number of
samples to generate an\r\nintegration.\r\n\r\n## Summary\r\n\r\nCloses
https://github.com/elastic/security-team/issues/9844\r\n\r\n**Added:
Backend Sampling**\r\n\r\nWe pass 100 rows (these numeric values are
adjustable) to the backend\r\n[^1]\r\n\r\n[^1]: As before,
deterministically selected on the frontend,
see\r\nhttps://github.com/elastic/kibana/pull/191598\r\n\r\n\r\nThe
Categorization chain now processes the samples in batches,\r\nperforming
after initial categorization a number of review cycles (but\r\nnot more
than 5, tuned so that we stay under the 2 minute limit for a\r\nsingle
API call).\r\n\r\nTo decide when to stop processing we keep the list of
_stable_ samples\r\nas follows:\r\n\r\n1. The list is initially
empty.\r\n2. For each review we select a random subset of 40 samples,
preferring\r\nto pick up the not-stable samples.\r\n3. After each review
– when the LLM potentially gives us new or changes\r\nthe old processors
– we compare the new pipeline results with the old\r\npipeline
results.\r\n4. Those reviewed samples that did not change their
categorization are\r\nadded to the stable list.\r\n5. Any samples that
have changed their categorization are removed from\r\nthe stable
list.\r\n6. If all samples are stable, we finish
processing.\r\n\r\n**Removed: User Notification**\r\n\r\nUsing 100
samples provides a balance between expected complexity and\r\ntime
budget we work with. We might want to change it in the
future,\r\npossibly dynamically, making the specific number of no
importance to the\r\nuser. Thus we remove the truncation
notification.\r\n\r\n**Unchanged:**\r\n\r\n- No batching is made in the
related chain: it seems to work as-is.\r\n\r\n**Refactored:**\r\n\r\n-
We centralize the sizing constants in
the\r\n`x-pack/plugins/integration_assistant/common/constants.ts`
file.\r\n- We remove the unused state key `formattedSamples` and
combine\r\n`modelJSONInput` back into `modelInput`.\r\n\r\n> [!NOTE]
\r\n> I had difficulty generating new graph diagrams, so they
remain\r\nunchanged.","sha":"fc3ce5475a73aad1abdbf857bc8787cd0f10aaed"}}]}]
BACKPORT-->

Co-authored-by: Ilya Nikokoshev <ilya.nikokoshev@elastic.co>
This commit is contained in:
Kibana Machine 2024-10-16 05:30:09 +11:00 committed by GitHub
parent 51b835992e
commit a4938bc3ca
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
31 changed files with 534 additions and 190 deletions

View file

@ -162,7 +162,6 @@ export const testPipelineInvalidEcs: { pipelineResults: object[]; errors: object
export const categorizationTestState = {
rawSamples: ['{"test1": "test1"}'],
samples: ['{ "test1": "test1" }'],
formattedSamples: '{"test1": "test1"}',
ecsTypes: 'testtypes',
ecsCategories: 'testcategories',
exAnswer: 'testanswer',
@ -173,9 +172,8 @@ export const categorizationTestState = {
previousError: 'testprevious',
previousInvalidCategorization: 'testinvalid',
pipelineResults: [{ test: 'testresult' }],
finalized: false,
hasTriedOnce: false,
reviewed: false,
previousPipelineResults: [{ test: 'testresult' }],
lastReviewedSamples: [],
currentPipeline: { test: 'testpipeline' },
currentProcessors: [
{
@ -193,6 +191,9 @@ export const categorizationTestState = {
initialPipeline: categorizationInitialPipeline,
results: { test: 'testresults' },
samplesFormat: { name: SamplesFormatName.Values.json },
stableSamples: [],
reviewCount: 0,
finalized: false,
};
export const categorizationMockProcessors = [

View file

@ -140,7 +140,6 @@ export const testPipelineValidResult: { pipelineResults: object[]; errors: objec
export const relatedTestState = {
rawSamples: ['{"test1": "test1"}'],
samples: ['{ "test1": "test1" }'],
formattedSamples: '{"test1": "test1"}',
ecs: 'testtypes',
exAnswer: 'testanswer',
packageName: 'testpackage',

View file

@ -36,3 +36,11 @@ export enum GenerationErrorCode {
UNSUPPORTED_LOG_SAMPLES_FORMAT = 'unsupported-log-samples-format',
UNPARSEABLE_CSV_DATA = 'unparseable-csv-data',
}
// Size limits
export const FRONTEND_SAMPLE_ROWS = 100;
export const LOG_FORMAT_DETECTION_SAMPLE_ROWS = 5;
export const CATEGORIZATION_INITIAL_BATCH_SIZE = 60;
export const CATEROGIZATION_REVIEW_BATCH_SIZE = 40;
export const CATEGORIZATION_REVIEW_MAX_CYCLES = 5;
export const CATEGORIZATION_RECURSION_LIMIT = 50;

View file

@ -21,6 +21,8 @@ export {
} from './api/analyze_logs/analyze_logs_route.gen';
export { CelInputRequestBody, CelInputResponse } from './api/cel/cel_input_route.gen';
export { partialShuffleArray } from './utils';
export type {
DataStream,
InputType,

View file

@ -11,7 +11,6 @@ import { TestProvider } from '../../../../../mocks/test_provider';
import { parseNDJSON, parseJSONArray, SampleLogsInput } from './sample_logs_input';
import { ActionsProvider } from '../../state';
import { mockActions } from '../../mocks/state';
import { mockServices } from '../../../../../services/mocks/services';
const wrapper: React.FC<React.PropsWithChildren<{}>> = ({ children }) => (
<TestProvider>
@ -165,25 +164,6 @@ describe('SampleLogsInput', () => {
samplesFormat: { name: 'json', json_path: [] },
});
});
describe('when the file has too many rows', () => {
const tooLargeLogsSample = Array(6).fill(logsSampleRaw).join(','); // 12 entries
beforeEach(async () => {
await changeFile(input, new File([`[${tooLargeLogsSample}]`], 'test.json', { type }));
});
it('should truncate the logs sample', () => {
expect(mockActions.setIntegrationSettings).toBeCalledWith({
logSamples: tooLargeLogsSample.split(',').slice(0, 2),
samplesFormat: { name: 'json', json_path: [] },
});
});
it('should add a notification toast', () => {
expect(mockServices.notifications.toasts.addInfo).toBeCalledWith(
`The logs sample has been truncated to 10 rows.`
);
});
});
});
describe('when the file is a json array under a key', () => {
@ -236,25 +216,6 @@ describe('SampleLogsInput', () => {
samplesFormat: { name: 'ndjson', multiline: false },
});
});
describe('when the file has too many rows', () => {
const tooLargeLogsSample = Array(6).fill(simpleNDJSON).join('\n'); // 12 entries
beforeEach(async () => {
await changeFile(input, new File([tooLargeLogsSample], 'test.json', { type }));
});
it('should truncate the logs sample', () => {
expect(mockActions.setIntegrationSettings).toBeCalledWith({
logSamples: tooLargeLogsSample.split('\n').slice(0, 2),
samplesFormat: { name: 'ndjson', multiline: false },
});
});
it('should add a notification toast', () => {
expect(mockServices.notifications.toasts.addInfo).toBeCalledWith(
`The logs sample has been truncated to 10 rows.`
);
});
});
});
describe('when the file is a an ndjson with a single record', () => {

View file

@ -8,14 +8,12 @@
import React, { useCallback, useState } from 'react';
import { EuiCallOut, EuiFilePicker, EuiFormRow, EuiSpacer, EuiText } from '@elastic/eui';
import { isPlainObject } from 'lodash/fp';
import { useKibana } from '@kbn/kibana-react-plugin/public';
import type { IntegrationSettings } from '../../types';
import * as i18n from './translations';
import { useActions } from '../../state';
import type { SamplesFormat } from '../../../../../../common';
import { partialShuffleArray } from './utils';
const MaxLogsSampleRows = 10;
import { partialShuffleArray } from '../../../../../../common';
import { FRONTEND_SAMPLE_ROWS } from '../../../../../../common/constants';
/**
* Parse the logs sample file content as newiline-delimited JSON (NDJSON).
@ -83,8 +81,8 @@ export const parseJSONArray = (
* @returns Whether the array was truncated.
*/
function trimShuffleLogsSample<T>(array: T[]): boolean {
const willTruncate = array.length > MaxLogsSampleRows;
const numElements = willTruncate ? MaxLogsSampleRows : array.length;
const willTruncate = array.length > FRONTEND_SAMPLE_ROWS;
const numElements = willTruncate ? FRONTEND_SAMPLE_ROWS : array.length;
partialShuffleArray(array, 1, numElements);
@ -215,7 +213,6 @@ interface SampleLogsInputProps {
}
export const SampleLogsInput = React.memo<SampleLogsInputProps>(({ integrationSettings }) => {
const { notifications } = useKibana().services;
const { setIntegrationSettings } = useActions();
const [isParsing, setIsParsing] = useState(false);
const [sampleFileError, setSampleFileError] = useState<string>();
@ -266,11 +263,7 @@ export const SampleLogsInput = React.memo<SampleLogsInputProps>(({ integrationSe
return;
}
const { samplesFormat, logSamples, isTruncated } = prepareResult;
if (isTruncated) {
notifications?.toasts.addInfo(i18n.LOGS_SAMPLE_TRUNCATED(MaxLogsSampleRows));
}
const { samplesFormat, logSamples } = prepareResult;
setIntegrationSettings({
...integrationSettings,
@ -293,7 +286,7 @@ export const SampleLogsInput = React.memo<SampleLogsInputProps>(({ integrationSe
reader.readAsText(logsSampleFile);
},
[integrationSettings, setIntegrationSettings, notifications?.toasts, setIsParsing]
[integrationSettings, setIntegrationSettings, setIsParsing]
);
return (
<EuiFormRow

View file

@ -110,11 +110,6 @@ export const LOGS_SAMPLE_DESCRIPTION = i18n.translate(
defaultMessage: 'Drag and drop a file or Browse files.',
}
);
export const LOGS_SAMPLE_TRUNCATED = (maxRows: number) =>
i18n.translate('xpack.integrationAssistant.step.dataStream.logsSample.truncatedWarning', {
values: { maxRows },
defaultMessage: `The logs sample has been truncated to {maxRows} rows.`,
});
export const LOGS_SAMPLE_ERROR = {
CAN_NOT_READ: i18n.translate(
'xpack.integrationAssistant.step.dataStream.logsSample.errorCanNotRead',

View file

@ -11,6 +11,8 @@ import { combineProcessors } from '../../util/processors';
import { CATEGORIZATION_EXAMPLE_PROCESSORS } from './constants';
import { CATEGORIZATION_MAIN_PROMPT } from './prompts';
import type { CategorizationNodeParams } from './types';
import { selectResults } from './util';
import { CATEGORIZATION_INITIAL_BATCH_SIZE } from '../../../common/constants';
export async function handleCategorization({
state,
@ -19,8 +21,15 @@ export async function handleCategorization({
const categorizationMainPrompt = CATEGORIZATION_MAIN_PROMPT;
const outputParser = new JsonOutputParser();
const categorizationMainGraph = categorizationMainPrompt.pipe(model).pipe(outputParser);
const [pipelineResults, _] = selectResults(
state.pipelineResults,
CATEGORIZATION_INITIAL_BATCH_SIZE,
new Set(state.stableSamples)
);
const currentProcessors = (await categorizationMainGraph.invoke({
pipeline_results: JSON.stringify(state.pipelineResults, null, 2),
pipeline_results: JSON.stringify(pipelineResults, null, 2),
example_processors: CATEGORIZATION_EXAMPLE_PROCESSORS,
ex_answer: state?.exAnswer,
ecs_categories: state?.ecsCategories,
@ -36,7 +45,7 @@ export async function handleCategorization({
return {
currentPipeline,
currentProcessors,
hasTriedOnce: true,
lastReviewedSamples: [],
lastExecutedChain: 'categorization',
};
}

View file

@ -4,6 +4,7 @@
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/
export const ECS_CATEGORIES = {
api: 'Covers events from API calls, including those from OS and network protocols. Allowed event.type combinations: access, admin, allowed, change, creation, deletion, denied, end, info, start, user',
authentication:

View file

@ -39,7 +39,6 @@ export async function handleErrors({
return {
currentPipeline,
currentProcessors,
reviewed: false,
lastExecutedChain: 'error',
};
}

View file

@ -25,6 +25,7 @@ import { handleReview } from './review';
import { handleCategorization } from './categorization';
import { handleErrors } from './errors';
import { handleInvalidCategorization } from './invalid';
import { handleUpdateStableSamples } from './stable';
import { testPipeline, combineProcessors } from '../../util';
import {
ActionsClientChatOpenAI,
@ -39,6 +40,7 @@ jest.mock('./errors');
jest.mock('./review');
jest.mock('./categorization');
jest.mock('./invalid');
jest.mock('./stable');
jest.mock('../../util/pipeline', () => ({
testPipeline: jest.fn(),
@ -74,7 +76,8 @@ describe('runCategorizationGraph', () => {
return {
currentPipeline,
currentProcessors,
reviewed: false,
stableSamples: [],
reviewCount: 0,
finalized: false,
lastExecutedChain: 'categorization',
};
@ -90,7 +93,8 @@ describe('runCategorizationGraph', () => {
return {
currentPipeline,
currentProcessors,
reviewed: false,
stableSamples: [],
reviewCount: 0,
finalized: false,
lastExecutedChain: 'error',
};
@ -106,7 +110,8 @@ describe('runCategorizationGraph', () => {
return {
currentPipeline,
currentProcessors,
reviewed: false,
stableSamples: [],
reviewCount: 0,
finalized: false,
lastExecutedChain: 'invalidCategorization',
};
@ -122,11 +127,29 @@ describe('runCategorizationGraph', () => {
return {
currentProcessors,
currentPipeline,
reviewed: true,
stableSamples: [],
reviewCount: 0,
finalized: false,
lastExecutedChain: 'review',
};
});
// After the review it should route to modelOutput and finish.
(handleUpdateStableSamples as jest.Mock)
.mockResolvedValueOnce({
stableSamples: [],
finalized: false,
lastExecutedChain: 'handleUpdateStableSamples',
})
.mockResolvedValueOnce({
stableSamples: [],
finalized: false,
lastExecutedChain: 'handleUpdateStableSamples',
})
.mockResolvedValueOnce({
stableSamples: [0],
finalized: false,
lastExecutedChain: 'handleUpdateStableSamples',
});
});
it('Ensures that the graph compiles', async () => {

View file

@ -10,7 +10,7 @@ import { StateGraph, END, START } from '@langchain/langgraph';
import { SamplesFormat } from '../../../common';
import type { CategorizationState } from '../../types';
import { handleValidatePipeline } from '../../util/graph';
import { formatSamples, prefixSamples } from '../../util/samples';
import { prefixSamples } from '../../util/samples';
import { handleCategorization } from './categorization';
import { CATEGORIZATION_EXAMPLE_ANSWER, ECS_CATEGORIES, ECS_TYPES } from './constants';
import { handleErrors } from './errors';
@ -18,6 +18,8 @@ import { handleInvalidCategorization } from './invalid';
import { handleReview } from './review';
import type { CategorizationBaseNodeParams, CategorizationGraphParams } from './types';
import { handleCategorizationValidation } from './validate';
import { handleUpdateStableSamples } from './stable';
import { CATEGORIZATION_REVIEW_MAX_CYCLES } from '../../../common/constants';
const graphState: StateGraphArgs<CategorizationState>['channels'] = {
lastExecutedChain: {
@ -32,10 +34,6 @@ const graphState: StateGraphArgs<CategorizationState>['channels'] = {
value: (x: string[], y?: string[]) => y ?? x,
default: () => [],
},
formattedSamples: {
value: (x: string, y?: string) => y ?? x,
default: () => '',
},
ecsTypes: {
value: (x: string, y?: string) => y ?? x,
default: () => '',
@ -60,13 +58,13 @@ const graphState: StateGraphArgs<CategorizationState>['channels'] = {
value: (x: boolean, y?: boolean) => y ?? x,
default: () => false,
},
reviewed: {
value: (x: boolean, y?: boolean) => y ?? x,
default: () => false,
stableSamples: {
value: (x: number[], y: number[]) => y ?? x,
default: () => [],
},
hasTriedOnce: {
value: (x: boolean, y?: boolean) => y ?? x,
default: () => false,
reviewCount: {
value: (x: number, y: number) => y ?? x,
default: () => 0,
},
errors: {
value: (x: object, y?: object) => y ?? x,
@ -80,6 +78,14 @@ const graphState: StateGraphArgs<CategorizationState>['channels'] = {
value: (x: object[], y?: object[]) => y ?? x,
default: () => [{}],
},
previousPipelineResults: {
value: (x: object[], y?: object[]) => y ?? x,
default: () => [{}],
},
lastReviewedSamples: {
value: (x: number[], y: number[]) => y ?? x,
default: () => [],
},
currentPipeline: {
value: (x: object, y?: object) => y ?? x,
default: () => ({}),
@ -110,33 +116,22 @@ const graphState: StateGraphArgs<CategorizationState>['channels'] = {
},
};
function modelJSONInput({ state }: CategorizationBaseNodeParams): Partial<CategorizationState> {
const samples = prefixSamples(state);
const formattedSamples = formatSamples(samples);
function modelInput({ state }: CategorizationBaseNodeParams): Partial<CategorizationState> {
let samples: string[];
if (state.samplesFormat.name === 'json' || state.samplesFormat.name === 'ndjson') {
samples = prefixSamples(state);
} else {
samples = state.rawSamples;
}
const initialPipeline = JSON.parse(JSON.stringify(state.currentPipeline));
return {
exAnswer: JSON.stringify(CATEGORIZATION_EXAMPLE_ANSWER, null, 2),
ecsCategories: JSON.stringify(ECS_CATEGORIES, null, 2),
ecsTypes: JSON.stringify(ECS_TYPES, null, 2),
samples,
formattedSamples,
initialPipeline,
finalized: false,
reviewed: false,
lastExecutedChain: 'modelJSONInput',
};
}
function modelInput({ state }: CategorizationBaseNodeParams): Partial<CategorizationState> {
const initialPipeline = JSON.parse(JSON.stringify(state.currentPipeline));
return {
exAnswer: JSON.stringify(CATEGORIZATION_EXAMPLE_ANSWER, null, 2),
ecsCategories: JSON.stringify(ECS_CATEGORIES, null, 2),
ecsTypes: JSON.stringify(ECS_TYPES, null, 2),
samples: state.rawSamples,
initialPipeline,
finalized: false,
reviewed: false,
stableSamples: [],
lastExecutedChain: 'modelInput',
};
}
@ -152,16 +147,9 @@ function modelOutput({ state }: CategorizationBaseNodeParams): Partial<Categoriz
};
}
function modelRouter({ state }: CategorizationBaseNodeParams): string {
if (state.samplesFormat.name === 'json' || state.samplesFormat.name === 'ndjson') {
return 'modelJSONInput';
}
return 'modelInput';
}
function validationRouter({ state }: CategorizationBaseNodeParams): string {
if (Object.keys(state.currentProcessors).length === 0) {
if (state.hasTriedOnce || state.reviewed) {
if (state.stableSamples.length === state.pipelineResults.length) {
return 'modelOutput';
}
return 'categorization';
@ -171,24 +159,27 @@ function validationRouter({ state }: CategorizationBaseNodeParams): string {
function chainRouter({ state }: CategorizationBaseNodeParams): string {
if (Object.keys(state.currentProcessors).length === 0) {
if (state.hasTriedOnce || state.reviewed) {
if (state.stableSamples.length === state.pipelineResults.length) {
return 'modelOutput';
}
}
if (Object.keys(state.errors).length > 0) {
return 'errors';
}
if (Object.keys(state.invalidCategorization).length > 0) {
return 'invalidCategorization';
}
if (!state.reviewed) {
if (
state.stableSamples.length < state.pipelineResults.length &&
state.reviewCount < CATEGORIZATION_REVIEW_MAX_CYCLES
) {
return 'review';
}
if (!state.finalized) {
return 'modelOutput';
}
return END;
return 'modelOutput';
}
export async function getCategorizationGraph({ client, model }: CategorizationGraphParams) {
@ -196,7 +187,6 @@ export async function getCategorizationGraph({ client, model }: CategorizationGr
channels: graphState,
})
.addNode('modelInput', (state: CategorizationState) => modelInput({ state }))
.addNode('modelJSONInput', (state: CategorizationState) => modelJSONInput({ state }))
.addNode('modelOutput', (state: CategorizationState) => modelOutput({ state }))
.addNode('handleCategorization', (state: CategorizationState) =>
handleCategorization({ state, model })
@ -204,6 +194,9 @@ export async function getCategorizationGraph({ client, model }: CategorizationGr
.addNode('handleValidatePipeline', (state: CategorizationState) =>
handleValidatePipeline({ state, client })
)
.addNode('handleUpdateStableSamples', (state: CategorizationState) =>
handleUpdateStableSamples({ state })
)
.addNode('handleCategorizationValidation', (state: CategorizationState) =>
handleCategorizationValidation({ state })
)
@ -212,19 +205,16 @@ export async function getCategorizationGraph({ client, model }: CategorizationGr
)
.addNode('handleErrors', (state: CategorizationState) => handleErrors({ state, model }))
.addNode('handleReview', (state: CategorizationState) => handleReview({ state, model }))
.addConditionalEdges(START, (state: CategorizationState) => modelRouter({ state }), {
modelJSONInput: 'modelJSONInput',
modelInput: 'modelInput', // For Non JSON input samples
})
.addEdge(START, 'modelInput')
.addEdge('modelOutput', END)
.addEdge('modelJSONInput', 'handleValidatePipeline')
.addEdge('modelInput', 'handleValidatePipeline')
.addEdge('handleCategorization', 'handleValidatePipeline')
.addEdge('handleInvalidCategorization', 'handleValidatePipeline')
.addEdge('handleErrors', 'handleValidatePipeline')
.addEdge('handleReview', 'handleValidatePipeline')
.addEdge('handleValidatePipeline', 'handleUpdateStableSamples')
.addConditionalEdges(
'handleValidatePipeline',
'handleUpdateStableSamples',
(state: CategorizationState) => validationRouter({ state }),
{
modelOutput: 'modelOutput',

View file

@ -39,7 +39,6 @@ export async function handleInvalidCategorization({
return {
currentPipeline,
currentProcessors,
reviewed: false,
lastExecutedChain: 'invalidCategorization',
};
}

View file

@ -12,6 +12,8 @@ import type { CategorizationNodeParams } from './types';
import type { SimplifiedProcessors, SimplifiedProcessor, CategorizationState } from '../../types';
import { combineProcessors } from '../../util/processors';
import { ECS_EVENT_TYPES_PER_CATEGORY } from './constants';
import { selectResults } from './util';
import { CATEROGIZATION_REVIEW_BATCH_SIZE } from '../../../common/constants';
export async function handleReview({
state,
@ -21,9 +23,15 @@ export async function handleReview({
const outputParser = new JsonOutputParser();
const categorizationReview = categorizationReviewPrompt.pipe(model).pipe(outputParser);
const [pipelineResults, selectedIndices] = selectResults(
state.pipelineResults,
CATEROGIZATION_REVIEW_BATCH_SIZE,
new Set(state.stableSamples)
);
const currentProcessors = (await categorizationReview.invoke({
current_processors: JSON.stringify(state.currentProcessors, null, 2),
pipeline_results: JSON.stringify(state.pipelineResults, null, 2),
pipeline_results: JSON.stringify(pipelineResults, null, 2),
previous_invalid_categorization: state.previousInvalidCategorization,
previous_error: state.previousError,
ex_answer: state?.exAnswer,
@ -41,7 +49,8 @@ export async function handleReview({
return {
currentPipeline,
currentProcessors,
reviewed: true,
reviewCount: state.reviewCount + 1,
lastReviewedSamples: selectedIndices,
lastExecutedChain: 'review',
};
}

View file

@ -0,0 +1,43 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/
import type { CategorizationState } from '../../types';
import type { CategorizationBaseNodeParams } from './types';
import { diffCategorization } from './util';
/**
* Updates the stable samples in the categorization state.
*
* Example: If the pipeline results are [A, B, C, D], the previous pipeline results are [A, X, C, D],
* the previously stable samples are {0, 1} and the last reviewed samples are {1, 2}, then 1 will be removed from
* the list of stable samples and 2 will be added to the list of stable samples. The new set will be {0, 2}.
*
* @param {CategorizationBaseNodeParams} params - The parameters containing the current state.
* @returns {Partial<CategorizationState>} - The updated categorization state with new stable samples,
* cleared last reviewed samples, and the last executed chain set to 'handleUpdateStableSamples'.
*/
export function handleUpdateStableSamples({
state,
}: CategorizationBaseNodeParams): Partial<CategorizationState> {
if (state.previousPipelineResults.length === 0) {
return {};
}
const diff = diffCategorization(state.pipelineResults, state.previousPipelineResults);
const newStableSamples = Array.from(
new Set<number>(
[...state.stableSamples, ...state.lastReviewedSamples].filter((x) => !diff.has(x))
)
);
return {
stableSamples: newStableSamples,
lastReviewedSamples: [],
lastExecutedChain: 'handleUpdateStableSamples',
};
}

View file

@ -0,0 +1,270 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/
import { selectResults, diffCategorization, stringArraysEqual } from './util';
import { partialShuffleArray } from '../../../common';
import type { PipelineResult } from './validate';
// Mock the partialShuffleArray function
jest.mock('../../../common', () => ({
partialShuffleArray: jest.fn(),
}));
describe('selectResults', () => {
const mockPartialShuffleArray = partialShuffleArray as jest.MockedFunction<
typeof partialShuffleArray
>;
beforeEach(() => {
mockPartialShuffleArray.mockClear();
});
it('should return the correct number of samples and their indices', () => {
const pipelineResults = [
{ event: { category: ['1'] } },
{ event: { category: ['2'] } },
{ event: { category: ['3'] } },
] satisfies PipelineResult[];
const maxSamples = 2;
mockPartialShuffleArray.mockImplementation((array, numSamples) => {
// Mock implementation that does not actually shuffle
return array;
});
const [selectedResults, indices] = selectResults(pipelineResults, maxSamples, new Set());
expect(selectedResults).toHaveLength(maxSamples);
expect(indices).toHaveLength(maxSamples);
expect(indices).toEqual([0, 1]);
expect(selectedResults).toEqual([pipelineResults[0], pipelineResults[1]]);
});
it('should return all results if maxSamples is greater than the number of pipelineResults', () => {
const pipelineResults: PipelineResult[] = [
{ event: { category: ['1'] } },
{ event: { category: ['2'] } },
];
const maxSamples = 5;
mockPartialShuffleArray.mockImplementation((array, numSamples) => {
// Mock implementation that does not actually shuffle
return array;
});
const [selectedResults, indices] = selectResults(pipelineResults, maxSamples, new Set());
expect(selectedResults).toHaveLength(pipelineResults.length);
expect(indices).toHaveLength(pipelineResults.length);
expect(indices).toEqual([0, 1]);
expect(selectedResults).toEqual(pipelineResults);
});
it('should call partialShuffleArray with correct arguments', () => {
const pipelineResults: PipelineResult[] = [
{ event: { category: ['1'] } },
{ event: { category: ['2'] } },
{ event: { category: ['3'] } },
];
selectResults(pipelineResults, 2, new Set());
expect(mockPartialShuffleArray).toHaveBeenCalledWith([0, 1], 0, 2);
});
it('should handle avoiding indices', () => {
const pipelineResults = [
{ event: { category: ['1'] } },
{ event: { category: ['2'] } },
{ event: { category: ['3'] } },
] satisfies PipelineResult[];
const maxSamples = 2;
mockPartialShuffleArray.mockImplementation((array, numSamples) => {
// Mock implementation that does not actually shuffle
return array;
});
const [selectedResults, indices] = selectResults(pipelineResults, maxSamples, new Set());
expect(selectedResults).toHaveLength(maxSamples);
expect(indices).toHaveLength(maxSamples);
expect(indices).toEqual([0, 1]);
expect(selectedResults).toEqual([pipelineResults[0], pipelineResults[1]]);
});
// Mock the partialShuffleArray function
jest.mock('../../../common', () => ({
partialShuffleArray: jest.fn(),
}));
describe('selectResults', () => {
beforeEach(() => {
mockPartialShuffleArray.mockClear();
});
it('should return the correct number of samples and their indices', () => {
const pipelineResults = [
{ event: { category: ['1'] } },
{ event: { category: ['2'] } },
{ event: { category: ['3'] } },
] satisfies PipelineResult[];
const maxSamples = 2;
mockPartialShuffleArray.mockImplementation((array, numSamples) => {
// Mock implementation that does not actually shuffle
return array;
});
const [selectedResults, indices] = selectResults(pipelineResults, maxSamples, new Set());
expect(selectedResults).toHaveLength(maxSamples);
expect(indices).toHaveLength(maxSamples);
expect(indices).toEqual([0, 1]);
expect(selectedResults).toEqual([pipelineResults[0], pipelineResults[1]]);
});
it('should return all results if maxSamples is greater than the number of pipelineResults', () => {
const pipelineResults: PipelineResult[] = [
{ event: { category: ['1'] } },
{ event: { category: ['2'] } },
];
const maxSamples = 5;
mockPartialShuffleArray.mockImplementation((array, numSamples) => {
// Mock implementation that does not actually shuffle
return array;
});
const [selectedResults, indices] = selectResults(pipelineResults, maxSamples, new Set());
expect(selectedResults).toHaveLength(pipelineResults.length);
expect(indices).toHaveLength(pipelineResults.length);
expect(indices).toEqual([0, 1]);
expect(selectedResults).toEqual(pipelineResults);
});
it('should call partialShuffleArray with correct arguments', () => {
const pipelineResults: PipelineResult[] = [
{ event: { category: ['1'] } },
{ event: { category: ['2'] } },
{ event: { category: ['3'] } },
];
selectResults(pipelineResults, 2, new Set());
expect(mockPartialShuffleArray).toHaveBeenCalledWith([0, 1], 0, 2);
});
it('should handle avoiding indices', () => {
const pipelineResults = [
{ event: { category: ['1'] } },
{ event: { category: ['2'] } },
{ event: { category: ['3'] } },
] satisfies PipelineResult[];
const maxSamples = 2;
mockPartialShuffleArray.mockImplementation((array, numSamples) => {
// Mock implementation that does not actually shuffle
return array;
});
const [selectedResults, indices] = selectResults(pipelineResults, maxSamples, new Set([1]));
expect(selectedResults).toHaveLength(maxSamples);
expect(indices).toHaveLength(maxSamples);
expect(indices).toEqual([0, 2]);
expect(selectedResults).toEqual([pipelineResults[0], pipelineResults[2]]);
});
});
describe('diffPipelineResults', () => {
it('should return an empty set if there are no differences', () => {
const pipelineResults: PipelineResult[] = [
{ event: { category: ['1'], type: ['type1'] } },
{ event: { category: ['2'], type: ['type2'] } },
];
const previousPipelineResults: PipelineResult[] = [
{ event: { category: ['1'], type: ['type1'] } },
{ event: { category: ['2'], type: ['type2'] } },
];
const result = diffCategorization(pipelineResults, previousPipelineResults);
expect(result).toEqual(new Set());
});
it('should return a set of indices where the categories differ', () => {
const pipelineResults: PipelineResult[] = [
{ event: { category: ['1'], type: ['type1'] } },
{ event: { category: ['2'], type: ['type2'] } },
];
const previousPipelineResults: PipelineResult[] = [
{ event: { category: ['1'], type: ['type1'] } },
{ event: { category: ['3'], type: ['type2'] } },
];
const result = diffCategorization(pipelineResults, previousPipelineResults);
expect(result).toEqual(new Set([1]));
});
it('should return a set of indices where the types differ', () => {
const pipelineResults: PipelineResult[] = [
{ event: { category: ['1'], type: ['type1'] } },
{ event: { category: ['2'], type: ['type2'] } },
];
const previousPipelineResults: PipelineResult[] = [
{ event: { category: ['1'], type: ['type1'] } },
{ event: { category: ['2'], type: ['type3'] } },
];
const result = diffCategorization(pipelineResults, previousPipelineResults);
expect(result).toEqual(new Set([1]));
});
it('should return a set of indices where both categories and types differ', () => {
const pipelineResults: PipelineResult[] = [
{ event: { category: ['1'], type: ['type1'] } },
{ event: { category: ['2'], type: ['type2'] } },
];
const previousPipelineResults: PipelineResult[] = [
{ event: { category: ['3'], type: ['type3'] } },
{ event: { category: ['4'], type: ['type4'] } },
];
const result = diffCategorization(pipelineResults, previousPipelineResults);
expect(result).toEqual(new Set([0, 1]));
});
describe('stringArraysEqual', () => {
it('should return true for equal arrays', () => {
const arr1 = ['a', 'b', 'c'];
const arr2 = ['a', 'b', 'c'];
expect(stringArraysEqual(arr1, arr2)).toBe(true);
});
it('should return false for arrays of different lengths', () => {
const arr1 = ['a', 'b', 'c'];
const arr2 = ['a', 'b'];
expect(stringArraysEqual(arr1, arr2)).toBe(false);
});
it('should return false for arrays with different elements', () => {
const arr1 = ['a', 'b', 'c'];
const arr2 = ['a', 'b', 'd'];
expect(stringArraysEqual(arr1, arr2)).toBe(false);
});
it('should return false for arrays with same elements in different order', () => {
const arr1 = ['a', 'b', 'c'];
const arr2 = ['c', 'b', 'a'];
expect(stringArraysEqual(arr1, arr2)).toBe(false);
});
it('should return true for empty arrays', () => {
const arr1: string[] = [];
const arr2: string[] = [];
expect(stringArraysEqual(arr1, arr2)).toBe(true);
});
});
});
});

View file

@ -0,0 +1,82 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/
import type { PipelineResult } from './validate';
import { partialShuffleArray } from '../../../common';
/**
* Selects a subset of results for further processing from the given list.
*
* The shuffle is deterministic and reproducible, based on the default seed.
*
* @param pipelineResults - An array of PipelineResult objects to select from.
* @param maxSamples - The maximum number of samples to select.
* @returns An array of PipelineResult objects, containing up to `maxSamples` elements and their indices.
*/
export function selectResults(
pipelineResults: PipelineResult[],
maxSamples: number,
avoidIndices: Set<number>
): [PipelineResult[], number[]] {
const numSamples = Math.min(pipelineResults.length, maxSamples);
const indices = Array.from({ length: pipelineResults.length }, (_, i) => i).filter(
(i) => !avoidIndices.has(i)
);
if (indices.length < numSamples) {
const avoidIndicesList = Array.from(avoidIndices).sort();
partialShuffleArray(avoidIndicesList, 0, numSamples - indices.length);
avoidIndicesList.length = numSamples - indices.length;
indices.push(...avoidIndicesList);
}
partialShuffleArray(indices, 0, numSamples);
indices.length = numSamples;
return [indices.map((i) => pipelineResults[i]), indices];
}
/**
* Converts a PipelineResult object into its categorization.
*
* @param {PipelineResult} result - The result object from the pipeline containing event details.
* @returns {string[]} An array of strings combining event categories and types. Returns an empty array if event, event.category, or event.type is missing.
*/
function toCategorization(result: PipelineResult): string[] {
const event = result?.event;
if (!event || !event.category || !event.type) {
return [];
}
return [...event.category.sort(), ...event.type.sort()];
}
/**
* Compares two arrays of strings for equality.
*
* @param arr1 - The first array of strings to compare.
* @param arr2 - The second array of strings to compare.
* @returns the equality predicate
*/
export function stringArraysEqual(arr1: string[], arr2: string[]): boolean {
return arr1.length === arr2.length && arr1.every((value, index) => value === arr2[index]);
}
/**
* Compares two arrays of pipeline results and returns a set of indices where the categorization differs.
*
* @param pipelineResults - The current array of pipeline results.
* @param previousPipelineResults - The previous array of pipeline results to compare against.
* @returns A set of indices where the pipeline results differ in event category or type.
*/
export function diffCategorization(
pipelineResults: PipelineResult[],
previousPipelineResults: PipelineResult[]
): Set<number> {
const diff = Array.from({ length: pipelineResults.length }, (_, i) => i).filter((i) => {
const category1 = toCategorization(pipelineResults[i]);
const category2 = toCategorization(previousPipelineResults[i]);
return !stringArraysEqual(category1, category2);
});
return new Set(diff);
}

View file

@ -10,12 +10,12 @@ import { ECS_EVENT_TYPES_PER_CATEGORY, EVENT_CATEGORIES, EVENT_TYPES } from './c
import type { EventCategories } from './constants';
interface Event {
export interface Event {
type?: string[];
category?: string[];
}
interface PipelineResult {
export interface PipelineResult {
event?: Event;
}

View file

@ -93,7 +93,7 @@ export async function handleHeaderValidate({
async function verifyKVProcessor(
kvProcessor: ESProcessorItem,
formattedSamples: string[],
samples: string[],
client: IScopedClusterClient
): Promise<{ errors: object[] }> {
// This processor removes the original message field in the output
@ -101,7 +101,7 @@ async function verifyKVProcessor(
processors: [kvProcessor[0], createRemoveProcessor()],
on_failure: [createPassthroughFailureProcessor()],
};
const { errors } = await testPipeline(formattedSamples, pipeline, client);
const { errors } = await testPipeline(samples, pipeline, client);
return { errors };
}

View file

@ -9,8 +9,7 @@ import type { LogFormatDetectionState } from '../../types';
import { LOG_FORMAT_DETECTION_PROMPT } from './prompts';
import type { LogDetectionNodeParams } from './types';
import { SamplesFormat } from '../../../common';
const MaxLogSamplesInPrompt = 5;
import { LOG_FORMAT_DETECTION_SAMPLE_ROWS } from '../../../common/constants';
export async function handleLogFormatDetection({
state,
@ -20,8 +19,8 @@ export async function handleLogFormatDetection({
const logFormatDetectionNode = LOG_FORMAT_DETECTION_PROMPT.pipe(model).pipe(outputParser);
const samples =
state.logSamples.length > MaxLogSamplesInPrompt
? state.logSamples.slice(0, MaxLogSamplesInPrompt)
state.logSamples.length > LOG_FORMAT_DETECTION_SAMPLE_ROWS
? state.logSamples.slice(0, LOG_FORMAT_DETECTION_SAMPLE_ROWS)
: state.logSamples;
const logFormatDetectionResult = await logFormatDetectionNode.invoke({

View file

@ -10,7 +10,7 @@ import { StateGraph, END, START } from '@langchain/langgraph';
import { SamplesFormat } from '../../../common';
import type { RelatedState } from '../../types';
import { handleValidatePipeline } from '../../util/graph';
import { formatSamples, prefixSamples } from '../../util/samples';
import { prefixSamples } from '../../util/samples';
import { RELATED_ECS_FIELDS, RELATED_EXAMPLE_ANSWER } from './constants';
import { handleErrors } from './errors';
import { handleRelated } from './related';
@ -30,10 +30,6 @@ const graphState: StateGraphArgs<RelatedState>['channels'] = {
value: (x: string[], y?: string[]) => y ?? x,
default: () => [],
},
formattedSamples: {
value: (x: string, y?: string) => y ?? x,
default: () => '',
},
hasTriedOnce: {
value: (x: boolean, y?: boolean) => y ?? x,
default: () => false,
@ -97,31 +93,22 @@ const graphState: StateGraphArgs<RelatedState>['channels'] = {
};
function modelInput({ state }: RelatedBaseNodeParams): Partial<RelatedState> {
const initialPipeline = JSON.parse(JSON.stringify(state.currentPipeline));
return {
exAnswer: JSON.stringify(RELATED_EXAMPLE_ANSWER, null, 2),
ecs: JSON.stringify(RELATED_ECS_FIELDS, null, 2),
samples: state.rawSamples,
initialPipeline,
finalized: false,
reviewed: false,
lastExecutedChain: 'modelInput',
};
}
let samples: string[];
if (state.samplesFormat.name === 'json' || state.samplesFormat.name === 'ndjson') {
samples = prefixSamples(state);
} else {
samples = state.rawSamples;
}
function modelJSONInput({ state }: RelatedBaseNodeParams): Partial<RelatedState> {
const samples = prefixSamples(state);
const formattedSamples = formatSamples(samples);
const initialPipeline = JSON.parse(JSON.stringify(state.currentPipeline));
return {
exAnswer: JSON.stringify(RELATED_EXAMPLE_ANSWER, null, 2),
ecs: JSON.stringify(RELATED_ECS_FIELDS, null, 2),
samples,
formattedSamples,
initialPipeline,
finalized: false,
reviewed: false,
lastExecutedChain: 'modelJSONInput',
lastExecutedChain: 'modelInput',
};
}
@ -143,13 +130,6 @@ function inputRouter({ state }: RelatedBaseNodeParams): string {
return 'related';
}
function modelRouter({ state }: RelatedBaseNodeParams): string {
if (state.samplesFormat.name === 'json' || state.samplesFormat.name === 'ndjson') {
return 'modelJSONInput';
}
return 'modelInput';
}
function chainRouter({ state }: RelatedBaseNodeParams): string {
if (Object.keys(state.currentProcessors).length === 0) {
if (state.hasTriedOnce || state.reviewed) {
@ -172,7 +152,6 @@ function chainRouter({ state }: RelatedBaseNodeParams): string {
export async function getRelatedGraph({ client, model }: RelatedGraphParams) {
const workflow = new StateGraph({ channels: graphState })
.addNode('modelInput', (state: RelatedState) => modelInput({ state }))
.addNode('modelJSONInput', (state: RelatedState) => modelJSONInput({ state }))
.addNode('modelOutput', (state: RelatedState) => modelOutput({ state }))
.addNode('handleRelated', (state: RelatedState) => handleRelated({ state, model }))
.addNode('handleValidatePipeline', (state: RelatedState) =>
@ -180,10 +159,7 @@ export async function getRelatedGraph({ client, model }: RelatedGraphParams) {
)
.addNode('handleErrors', (state: RelatedState) => handleErrors({ state, model }))
.addNode('handleReview', (state: RelatedState) => handleReview({ state, model }))
.addConditionalEdges(START, (state: RelatedState) => modelRouter({ state }), {
modelJSONInput: 'modelJSONInput',
modelInput: 'modelInput', // For Non JSON input samples
})
.addEdge(START, 'modelInput')
.addEdge('modelOutput', END)
.addEdge('handleRelated', 'handleValidatePipeline')
.addEdge('handleErrors', 'handleValidatePipeline')
@ -192,10 +168,6 @@ export async function getRelatedGraph({ client, model }: RelatedGraphParams) {
related: 'handleRelated',
validatePipeline: 'handleValidatePipeline',
})
.addConditionalEdges('modelJSONInput', (state: RelatedState) => inputRouter({ state }), {
related: 'handleRelated',
validatePipeline: 'handleValidatePipeline',
})
.addConditionalEdges(
'handleValidatePipeline',
(state: RelatedState) => chainRouter({ state }),

View file

@ -22,7 +22,7 @@ import { buildRouteValidationWithZod } from '../util/route_validation';
import { withAvailability } from './with_availability';
import { isErrorThatHandlesItsOwnResponse } from '../lib/errors';
import { handleCustomErrors } from './routes_util';
import { GenerationErrorCode } from '../../common/constants';
import { CATEGORIZATION_RECURSION_LIMIT, GenerationErrorCode } from '../../common/constants';
export function registerCategorizationRoutes(
router: IRouter<IntegrationAssistantRouteHandlerContext>
@ -91,6 +91,7 @@ export function registerCategorizationRoutes(
samplesFormat,
};
const options = {
recursionLimit: CATEGORIZATION_RECURSION_LIMIT,
callbacks: [
new APMTracer({ projectName: langSmithOptions?.projectName ?? 'default' }, logger),
...getLangSmithTracer({ ...langSmithOptions, logger }),

View file

@ -42,7 +42,6 @@ export interface SimplifiedProcessors {
export interface CategorizationState {
rawSamples: string[];
samples: string[];
formattedSamples: string;
ecsTypes: string;
ecsCategories: string;
exAnswer: string;
@ -52,9 +51,11 @@ export interface CategorizationState {
errors: object;
previousError: string;
pipelineResults: object[];
previousPipelineResults: object[];
lastReviewedSamples: number[]; // Filled when reviewing.
stableSamples: number[]; // Samples that did not change due to a review.
reviewCount: number;
finalized: boolean;
reviewed: boolean;
hasTriedOnce: boolean;
currentPipeline: object;
currentProcessors: object[];
invalidCategorization: object[];
@ -154,7 +155,6 @@ export interface UnstructuredLogState {
export interface RelatedState {
rawSamples: string[];
samples: string[];
formattedSamples: string;
ecs: string;
exAnswer: string;
packageName: string;

View file

@ -19,9 +19,11 @@ export async function handleValidatePipeline({
}: HandleValidateNodeParams): Promise<Partial<CategorizationState> | Partial<RelatedState>> {
const previousError = JSON.stringify(state.errors, null, 2);
const results = await testPipeline(state.rawSamples, state.currentPipeline, client);
return {
errors: results.errors,
previousError,
previousPipelineResults: state.pipelineResults,
pipelineResults: results.pipelineResults,
lastExecutedChain: 'validate_pipeline',
};

View file

@ -56,13 +56,13 @@ export async function testPipeline(
export async function createJSONInput(
processors: ESProcessorItem[],
formattedSamples: string[],
samples: string[],
client: IScopedClusterClient
): Promise<{ pipelineResults: Array<{ [key: string]: unknown }>; errors: object[] }> {
const pipeline = {
processors: [...processors, createRemoveProcessor()],
on_failure: [createPassthroughFailureProcessor()],
};
const { pipelineResults, errors } = await testPipeline(formattedSamples, pipeline, client);
const { pipelineResults, errors } = await testPipeline(samples, pipeline, client);
return { pipelineResults, errors };
}

View file

@ -48,17 +48,6 @@ export function prefixSamples(
return modifiedSamples;
}
export function formatSamples(samples: string[]): string {
const formattedSamples: unknown[] = [];
for (const sample of samples) {
const sampleObj = JSON.parse(sample);
formattedSamples.push(sampleObj);
}
return JSON.stringify(formattedSamples, null, 2);
}
function determineType(value: unknown): string {
if (typeof value === 'object' && value !== null) {
if (Array.isArray(value)) {

View file

@ -24771,7 +24771,6 @@
"xpack.integrationAssistant.step.dataStream.logsSample.errorNotArray": "Le fichier de logs exemple n'est pas un tableau",
"xpack.integrationAssistant.step.dataStream.logsSample.errorNotObject": "Le fichier de logs exemple contient des entrées nétant pas des objets",
"xpack.integrationAssistant.step.dataStream.logsSample.label": "Logs",
"xpack.integrationAssistant.step.dataStream.logsSample.truncatedWarning": "L'échantillon de logs a été tronqué pour contenir {maxRows} lignes.",
"xpack.integrationAssistant.step.dataStream.logsSample.warning": "Veuillez noter que ces données seront analysées par un outil d'IA tiers. Assurez-vous de respecter les directives de confidentialité et de sécurité lors de la sélection des données.",
"xpack.integrationAssistant.step.dataStream.nameAlreadyExistsError": "Ce nom d'intégration est déjà utilisé. Veuillez choisir un autre nom.",
"xpack.integrationAssistant.step.dataStream.noSpacesHelpText": "Les noms peuvent contenir uniquement des lettres minuscules, des chiffres et des traits de soulignement (_)",

View file

@ -24518,7 +24518,6 @@
"xpack.integrationAssistant.step.dataStream.logsSample.errorNotArray": "ログサンプルファイルは配列ではありません",
"xpack.integrationAssistant.step.dataStream.logsSample.errorNotObject": "ログサンプルファイルには、オブジェクト以外のエントリが含まれています",
"xpack.integrationAssistant.step.dataStream.logsSample.label": "ログ",
"xpack.integrationAssistant.step.dataStream.logsSample.truncatedWarning": "ログサンプルは{maxRows}行に切り詰められました。",
"xpack.integrationAssistant.step.dataStream.logsSample.warning": "このデータは、サードパーティAIツールによって分析されます。データを選択するときには、プライバシーおよびセキュリティガイドラインに準拠していることを確認してください。",
"xpack.integrationAssistant.step.dataStream.nameAlreadyExistsError": "この統合名はすでに使用中です。別の名前を選択してください。",
"xpack.integrationAssistant.step.dataStream.noSpacesHelpText": "名前には、小文字、数字、アンダースコア_のみを使用できます。",

View file

@ -24552,7 +24552,6 @@
"xpack.integrationAssistant.step.dataStream.logsSample.errorNotArray": "日志样例文件不是数组",
"xpack.integrationAssistant.step.dataStream.logsSample.errorNotObject": "日志样例文件包含非对象条目",
"xpack.integrationAssistant.step.dataStream.logsSample.label": "日志",
"xpack.integrationAssistant.step.dataStream.logsSample.truncatedWarning": "日志样例已被截短为 {maxRows} 行。",
"xpack.integrationAssistant.step.dataStream.logsSample.warning": "请注意,此数据将由第三方 AI 工具进行分析。选择数据时,请确保遵循隐私和安全指引。",
"xpack.integrationAssistant.step.dataStream.nameAlreadyExistsError": "此集成名称已在使用中。请选择其他名称。",
"xpack.integrationAssistant.step.dataStream.noSpacesHelpText": "名称只能包含小写字母、数字和下划线 (_)",