mirror of
https://github.com/elastic/kibana.git
synced 2025-04-23 17:28:26 -04:00
Renaming the esre
application into ai_search
(#166632)
This commit is contained in:
parent
bd5e15c22c
commit
c12276d836
44 changed files with 641 additions and 620 deletions
|
@ -21,6 +21,7 @@ export const getDocLinks = ({ kibanaBranch }: GetDocLinkOptions): DocLinks => {
|
|||
const ELASTIC_WEBSITE_URL = meta.elasticWebsiteUrl;
|
||||
const DOCS_WEBSITE_URL = meta.docsWebsiteUrl;
|
||||
const ELASTIC_GITHUB = meta.elasticGithubUrl;
|
||||
const SEARCH_LABS_URL = meta.searchLabsUrl;
|
||||
|
||||
const ELASTICSEARCH_DOCS = `${ELASTIC_WEBSITE_URL}guide/en/elasticsearch/reference/${DOC_LINK_VERSION}/`;
|
||||
const KIBANA_DOCS = `${ELASTIC_WEBSITE_URL}guide/en/kibana/${DOC_LINK_VERSION}/`;
|
||||
|
@ -36,6 +37,7 @@ export const getDocLinks = ({ kibanaBranch }: GetDocLinkOptions): DocLinks => {
|
|||
const MACHINE_LEARNING_DOCS = `${ELASTIC_WEBSITE_URL}guide/en/machine-learning/${DOC_LINK_VERSION}/`;
|
||||
const SERVERLESS_DOCS = `${DOCS_WEBSITE_URL}serverless/`;
|
||||
const SERVERLESS_ELASTICSEARCH_DOCS = `${SERVERLESS_DOCS}elasticsearch/`;
|
||||
const SEARCH_LABS_REPO = `${ELASTIC_GITHUB}elasticsearch-labs/`;
|
||||
|
||||
return deepFreeze({
|
||||
settings: `${ELASTIC_WEBSITE_URL}guide/en/kibana/${DOC_LINK_VERSION}/settings.html`,
|
||||
|
@ -128,6 +130,8 @@ export const getDocLinks = ({ kibanaBranch }: GetDocLinkOptions): DocLinks => {
|
|||
webCrawlerReference: `${APP_SEARCH_DOCS}web-crawler-reference.html`,
|
||||
},
|
||||
enterpriseSearch: {
|
||||
aiSearchDoc: `${ESRE_DOCS}`,
|
||||
aiSearchHelp: `${ESRE_DOCS}help.html`,
|
||||
apiKeys: `${KIBANA_DOCS}api-keys.html`,
|
||||
behavioralAnalytics: `${ENTERPRISE_SEARCH_DOCS}analytics-overview.html`,
|
||||
behavioralAnalyticsCORS: `${ENTERPRISE_SEARCH_DOCS}analytics-cors-proxy.html`,
|
||||
|
@ -168,10 +172,6 @@ export const getDocLinks = ({ kibanaBranch }: GetDocLinkOptions): DocLinks => {
|
|||
documentLevelSecurity: `${ELASTICSEARCH_DOCS}document-level-security.html`,
|
||||
elser: `${ENTERPRISE_SEARCH_DOCS}elser-text-expansion.html`,
|
||||
engines: `${ENTERPRISE_SEARCH_DOCS}engines.html`,
|
||||
esre: `${ESRE_DOCS}index.html`,
|
||||
esreFaq: `${ESRE_DOCS}faq.html`,
|
||||
esreHelp: `${ESRE_DOCS}help.html`,
|
||||
esreLearn: `${ESRE_DOCS}learn.html`,
|
||||
indexApi: `${ELASTICSEARCH_DOCS}docs-index_.html`,
|
||||
ingestionApis: `${ENTERPRISE_SEARCH_DOCS}ingestion-apis.html`,
|
||||
ingestPipelines: `${ENTERPRISE_SEARCH_DOCS}ingest-pipelines.html`,
|
||||
|
@ -188,6 +188,8 @@ export const getDocLinks = ({ kibanaBranch }: GetDocLinkOptions): DocLinks => {
|
|||
searchApplicationsSearchApi: `${ENTERPRISE_SEARCH_DOCS}search-applications-safe-search.html`,
|
||||
searchApplications: `${ENTERPRISE_SEARCH_DOCS}search-applications.html`,
|
||||
searchApplicationsSearch: `${ENTERPRISE_SEARCH_DOCS}search-applications-search.html`,
|
||||
searchLabs: `${SEARCH_LABS_URL}`,
|
||||
searchLabsRepo: `${SEARCH_LABS_REPO}`,
|
||||
searchTemplates: `${ELASTICSEARCH_DOCS}search-template.html`,
|
||||
start: `${ENTERPRISE_SEARCH_DOCS}start.html`,
|
||||
supportedNlpModels: `${MACHINE_LEARNING_DOCS}ml-nlp-model-ref.html`,
|
||||
|
|
|
@ -18,5 +18,6 @@ export const getDocLinksMeta = ({ kibanaBranch }: GetDocLinksMetaOptions): DocLi
|
|||
elasticWebsiteUrl: 'https://www.elastic.co/',
|
||||
elasticGithubUrl: 'https://github.com/elastic/',
|
||||
docsWebsiteUrl: 'https://docs.elastic.co/',
|
||||
searchLabsUrl: 'https://search-labs.elastic.co/',
|
||||
};
|
||||
};
|
||||
|
|
|
@ -14,6 +14,7 @@ export interface DocLinksMeta {
|
|||
elasticWebsiteUrl: string;
|
||||
elasticGithubUrl: string;
|
||||
docsWebsiteUrl: string;
|
||||
searchLabsUrl: string;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -110,6 +111,8 @@ export interface DocLinks {
|
|||
readonly webCrawlerReference: string;
|
||||
};
|
||||
readonly enterpriseSearch: {
|
||||
readonly aiSearchDoc: string;
|
||||
readonly aiSearchHelp: string;
|
||||
readonly apiKeys: string;
|
||||
readonly behavioralAnalytics: string;
|
||||
readonly behavioralAnalyticsCORS: string;
|
||||
|
@ -150,10 +153,6 @@ export interface DocLinks {
|
|||
readonly documentLevelSecurity: string;
|
||||
readonly elser: string;
|
||||
readonly engines: string;
|
||||
readonly esre: string;
|
||||
readonly esreFaq: string;
|
||||
readonly esreHelp: string;
|
||||
readonly esreLearn: string;
|
||||
readonly indexApi: string;
|
||||
readonly ingestionApis: string;
|
||||
readonly ingestPipelines: string;
|
||||
|
@ -170,6 +169,8 @@ export interface DocLinks {
|
|||
readonly searchApplicationsSearchApi: string;
|
||||
readonly searchApplications: string;
|
||||
readonly searchApplicationsSearch: string;
|
||||
readonly searchLabs: string;
|
||||
readonly searchLabsRepo: string;
|
||||
readonly searchTemplates: string;
|
||||
readonly start: string;
|
||||
readonly supportedNlpModels: string;
|
||||
|
|
|
@ -46,7 +46,7 @@ exports[`guide cards snapshots should render all cards 1`] = `
|
|||
Object {
|
||||
"icon": "magnifyWithPlus",
|
||||
"navigateTo": Object {
|
||||
"appId": "enterpriseSearchEsre",
|
||||
"appId": "enterpriseSearchAISearch",
|
||||
},
|
||||
"order": 4,
|
||||
"solution": "search",
|
||||
|
|
|
@ -46,11 +46,11 @@ export const guideCards: GuideCardConstants[] = [
|
|||
{
|
||||
solution: 'search',
|
||||
icon: 'magnifyWithPlus',
|
||||
title: i18n.translate('guidedOnboardingPackage.gettingStarted.cards.esreSearch.title', {
|
||||
title: i18n.translate('guidedOnboardingPackage.gettingStarted.cards.aiSearch.title', {
|
||||
defaultMessage: 'Build a semantic search experience',
|
||||
}),
|
||||
navigateTo: {
|
||||
appId: 'enterpriseSearchEsre',
|
||||
appId: 'enterpriseSearchAISearch',
|
||||
},
|
||||
telemetryId: 'onboarding--search--semantic',
|
||||
order: 4,
|
||||
|
|
|
@ -137,7 +137,7 @@ export const applicationUsageSchema = {
|
|||
enterpriseSearchContent: commonSchema,
|
||||
enterpriseSearchAnalytics: commonSchema,
|
||||
enterpriseSearchApplications: commonSchema,
|
||||
enterpriseSearchEsre: commonSchema,
|
||||
enterpriseSearchAISearch: commonSchema,
|
||||
enterpriseSearchVectorSearch: commonSchema,
|
||||
enterpriseSearchElasticsearch: commonSchema,
|
||||
appSearch: commonSchema,
|
||||
|
|
|
@ -2360,7 +2360,7 @@
|
|||
}
|
||||
}
|
||||
},
|
||||
"enterpriseSearchEsre": {
|
||||
"enterpriseSearchAISearch": {
|
||||
"properties": {
|
||||
"appId": {
|
||||
"type": "keyword",
|
||||
|
|
|
@ -46,19 +46,19 @@ export const ENTERPRISE_SEARCH_CONTENT_PLUGIN = {
|
|||
SUPPORT_URL: 'https://discuss.elastic.co/c/enterprise-search/',
|
||||
};
|
||||
|
||||
export const ESRE_PLUGIN = {
|
||||
ID: 'enterpriseSearchEsre',
|
||||
NAME: i18n.translate('xpack.enterpriseSearch.esre.productName', {
|
||||
defaultMessage: 'ESRE',
|
||||
export const AI_SEARCH_PLUGIN = {
|
||||
ID: 'enterpriseSearchAISearch',
|
||||
NAME: i18n.translate('xpack.enterpriseSearch.aiSearch.productName', {
|
||||
defaultMessage: 'AI Search',
|
||||
}),
|
||||
NAV_TITLE: i18n.translate('xpack.enterpriseSearch.esre.navTitle', {
|
||||
defaultMessage: 'ESRE',
|
||||
NAV_TITLE: i18n.translate('xpack.enterpriseSearch.aiSearch.navTitle', {
|
||||
defaultMessage: 'AI Search',
|
||||
}),
|
||||
DESCRIPTION: i18n.translate('xpack.enterpriseSearch.esre.description', {
|
||||
DESCRIPTION: i18n.translate('xpack.enterpriseSearch.aiSearch.description', {
|
||||
defaultMessage:
|
||||
'Toolkit for enabling developers to build AI search-powered applications using the Elastic platform.',
|
||||
}),
|
||||
URL: '/app/enterprise_search/esre',
|
||||
URL: '/app/enterprise_search/ai_search',
|
||||
LOGO: 'logoEnterpriseSearch',
|
||||
};
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ import { FormattedMessage } from '@kbn/i18n-react';
|
|||
|
||||
import { docLinks } from '../../../shared/doc_links';
|
||||
|
||||
export const EsreDocsSection: React.FC = () => (
|
||||
export const SetAISearchChromeSearchDocsSection: React.FC = () => (
|
||||
<EuiFlexGroup alignItems="center">
|
||||
<EuiFlexItem grow={4}>
|
||||
<EuiFlexGroup direction="column" gutterSize="s">
|
||||
|
@ -22,8 +22,8 @@ export const EsreDocsSection: React.FC = () => (
|
|||
<EuiTitle>
|
||||
<h2>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.esreDocsSection.title"
|
||||
defaultMessage="Dive deeper with the ESRE docs"
|
||||
id="xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.title"
|
||||
defaultMessage="Dive deeper with AI Search"
|
||||
/>
|
||||
</h2>
|
||||
</EuiTitle>
|
||||
|
@ -32,20 +32,20 @@ export const EsreDocsSection: React.FC = () => (
|
|||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.esreDocsSection.description"
|
||||
defaultMessage="To learn more about how to get started with ESRE, and test these tools with concrete examples, visit the {esreDocumentation}."
|
||||
id="xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.description"
|
||||
defaultMessage="To learn more about how to get started and test these tools with concrete examples, visit {searchLab}."
|
||||
values={{
|
||||
esreDocumentation: (
|
||||
searchLab: (
|
||||
<EuiLink
|
||||
data-telemetry-id="entSearch-esre-documentation-esreHomeLink"
|
||||
data-telemetry-id="entSearch-aiSearch-documentation-searchLabsLink"
|
||||
target="_blank"
|
||||
href={docLinks.esre}
|
||||
href={docLinks.searchLabs}
|
||||
external
|
||||
>
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.esreDocsSection.description.esreLinkText',
|
||||
'xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.description.searchLabsLinkText',
|
||||
{
|
||||
defaultMessage: 'ESRE documentation',
|
||||
defaultMessage: 'Search Labs',
|
||||
}
|
||||
)}
|
||||
</EuiLink>
|
||||
|
@ -66,7 +66,7 @@ export const EsreDocsSection: React.FC = () => (
|
|||
<EuiTitle size="s">
|
||||
<h3>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.esreDocsSection.learn.title"
|
||||
id="xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.learn.title"
|
||||
defaultMessage="Learn"
|
||||
/>
|
||||
</h3>
|
||||
|
@ -76,20 +76,20 @@ export const EsreDocsSection: React.FC = () => (
|
|||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.esreDocsSection.learn.description"
|
||||
defaultMessage="These are complex subjects, so we've curated some {learningTopics} to help you get started."
|
||||
id="xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.learn.description"
|
||||
defaultMessage="The {searchLabsRepo} has notebooks, sample apps, and resources."
|
||||
values={{
|
||||
learningTopics: (
|
||||
searchLabsRepo: (
|
||||
<EuiLink
|
||||
data-telemetry-id="entSearch-esre-documentation-esreLearnLink"
|
||||
data-telemetry-id="entSearch-aiSearch-documentation-searchLabsRepoLink"
|
||||
target="_blank"
|
||||
href={docLinks.esreLearn}
|
||||
external={false}
|
||||
href={docLinks.searchLabsRepo}
|
||||
external
|
||||
>
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.esreDocsSection.learn.learningTopicsLinkText',
|
||||
'xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.learn.searchLabsRepoLinkText',
|
||||
{
|
||||
defaultMessage: 'learning topics',
|
||||
defaultMessage: 'Search Labs Github repo',
|
||||
}
|
||||
)}
|
||||
</EuiLink>
|
||||
|
@ -109,8 +109,8 @@ export const EsreDocsSection: React.FC = () => (
|
|||
<EuiTitle size="s">
|
||||
<h3>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.esreDocsSection.faq.title"
|
||||
defaultMessage="FAQ"
|
||||
id="xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.doc.title"
|
||||
defaultMessage="Docs"
|
||||
/>
|
||||
</h3>
|
||||
</EuiTitle>
|
||||
|
@ -119,20 +119,20 @@ export const EsreDocsSection: React.FC = () => (
|
|||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.esreDocsSection.faq.description"
|
||||
defaultMessage="Learn what ESRE is (and isn't) from these {frequentlyAskedQuestions}."
|
||||
id="xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.doc.description"
|
||||
defaultMessage="Visit the {aiSearchDoc}."
|
||||
values={{
|
||||
frequentlyAskedQuestions: (
|
||||
aiSearchDoc: (
|
||||
<EuiLink
|
||||
data-telemetry-id="entSearch-esre-documentation-esreFaqLink"
|
||||
data-telemetry-id="entSearch-aiSearch-documentation-aiSearchDocLink"
|
||||
target="_blank"
|
||||
href={docLinks.esreFaq}
|
||||
external={false}
|
||||
href={docLinks.aiSearchDoc}
|
||||
external
|
||||
>
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.esreDocsSection.learn.frequentlyAskedQuestionsLinkText',
|
||||
'xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.doc.aiSearchDocLinkText',
|
||||
{
|
||||
defaultMessage: 'frequently asked questions',
|
||||
defaultMessage: 'Elastic documentation',
|
||||
}
|
||||
)}
|
||||
</EuiLink>
|
||||
|
@ -152,7 +152,7 @@ export const EsreDocsSection: React.FC = () => (
|
|||
<EuiTitle size="s">
|
||||
<h3>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.esreDocsSection.help.title"
|
||||
id="xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.help.title"
|
||||
defaultMessage="Help"
|
||||
/>
|
||||
</h3>
|
||||
|
@ -162,20 +162,20 @@ export const EsreDocsSection: React.FC = () => (
|
|||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.esreDocsSection.help.description"
|
||||
id="xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.help.description"
|
||||
defaultMessage="Need help? Check out the {discussForum}!"
|
||||
values={{
|
||||
discussForum: (
|
||||
<EuiLink
|
||||
data-telemetry-id="entSearch-esre-documentation-esreHelpLink"
|
||||
data-telemetry-id="entSearch-aiSearch-documentation-aiSearchHelpLink"
|
||||
target="_blank"
|
||||
href={docLinks.esreHelp}
|
||||
href={docLinks.aiSearchHelp}
|
||||
external={false}
|
||||
>
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.esreDocsSection.learn.discussForumLinkText',
|
||||
'xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.help.helpLinkText',
|
||||
{
|
||||
defaultMessage: 'ESRE discuss forum',
|
||||
defaultMessage: 'discuss forum or Elastic community Slack',
|
||||
}
|
||||
)}
|
||||
</EuiLink>
|
|
@ -23,24 +23,24 @@ import { FormattedMessage } from '@kbn/i18n-react';
|
|||
import analyticsIllustration from '../../../../assets/images/analytics.svg';
|
||||
import scalableIllustration from '../../../../assets/images/scalable.svg';
|
||||
import simplifyIllustration from '../../../../assets/images/simplify.svg';
|
||||
import { SetEsreChrome as SetPageChrome } from '../../../shared/kibana_chrome';
|
||||
import { EnterpriseSearchEsrePageTemplate } from '../layout/page_template';
|
||||
import { SetAiSearchChrome as SetPageChrome } from '../../../shared/kibana_chrome';
|
||||
import { EnterpriseSearchAISearchPageTemplate } from '../layout/page_template';
|
||||
|
||||
import { EsreDocsSection } from './esre_docs_section';
|
||||
import { SetAISearchChromeSearchDocsSection } from './ai_search_docs_section';
|
||||
import { MeasurePerformanceSection } from './measure_performance_section';
|
||||
import { RankAggregationSection } from './rank_aggregation_section';
|
||||
import { SemanticSearchSection } from './semantic_search_section';
|
||||
|
||||
export const EsreGuide: React.FC = () => {
|
||||
export const AISearchGuide: React.FC = () => {
|
||||
const isMobile = useIsWithinBreakpoints(['xs']);
|
||||
|
||||
return (
|
||||
<EnterpriseSearchEsrePageTemplate
|
||||
<EnterpriseSearchAISearchPageTemplate
|
||||
restrictWidth
|
||||
bottomBorder={false}
|
||||
pageHeader={{
|
||||
pageTitle: i18n.translate('xpack.enterpriseSearch.esre.guide.pageTitle', {
|
||||
defaultMessage: 'Enhance your search with ESRE',
|
||||
pageTitle: i18n.translate('xpack.enterpriseSearch.aiSearch.guide.pageTitle', {
|
||||
defaultMessage: 'Enhance your search with AI',
|
||||
}),
|
||||
}}
|
||||
>
|
||||
|
@ -64,10 +64,10 @@ export const EsreGuide: React.FC = () => {
|
|||
</EuiFlexItem>
|
||||
<EuiFlexItem grow>
|
||||
<EuiText>
|
||||
<p data-test-subj="esre-description-text">
|
||||
<p data-test-subj="ai-search-description-text">
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.guide.description"
|
||||
defaultMessage="The Elasticsearch Relevance Engine™ (ESRE) enables developers to build AI search-powered applications using the Elastic platform. ESRE is a set of tools and features that include our proprietary trained ML model ELSER, our vector search and embeddings capabilities, and RRF ranking for combining vector and text search."
|
||||
id="xpack.enterpriseSearch.aiSearch.guide.description"
|
||||
defaultMessage="Build AI search-powered applications using the Elastic platform, including our proprietary trained ML model ELSER, our vector search and embeddings capabilities, and RRF ranking for combining vector and text search."
|
||||
/>
|
||||
</p>
|
||||
</EuiText>
|
||||
|
@ -85,10 +85,10 @@ export const EsreGuide: React.FC = () => {
|
|||
</EuiFlexItem>
|
||||
<EuiHorizontalRule />
|
||||
<EuiFlexItem grow>
|
||||
<EsreDocsSection />
|
||||
<SetAISearchChromeSearchDocsSection />
|
||||
</EuiFlexItem>
|
||||
</EuiFlexGroup>
|
||||
</EuiPanel>
|
||||
</EnterpriseSearchEsrePageTemplate>
|
||||
</EnterpriseSearchAISearchPageTemplate>
|
||||
);
|
||||
};
|
|
@ -18,7 +18,7 @@ import {
|
|||
EuiPanel,
|
||||
} from '@elastic/eui';
|
||||
|
||||
export interface EsreGuideAccordionProps {
|
||||
export interface AISearchGuideAccordionProps {
|
||||
id: string;
|
||||
icon: IconType;
|
||||
title: string;
|
||||
|
@ -28,7 +28,7 @@ export interface EsreGuideAccordionProps {
|
|||
currentExpandedId: string | undefined;
|
||||
}
|
||||
|
||||
export const EsreGuideAccordion: React.FC<EsreGuideAccordionProps> = ({
|
||||
export const AISearchGuideAccordion: React.FC<AISearchGuideAccordionProps> = ({
|
||||
id,
|
||||
icon,
|
||||
title,
|
|
@ -29,7 +29,7 @@ import { EuiLinkTo } from '../../../shared/react_router_helpers';
|
|||
|
||||
const steps: EuiContainedStepProps[] = [
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.elserPanel.step1.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.elserPanel.step1.title', {
|
||||
defaultMessage: 'Create an index',
|
||||
}),
|
||||
children: (
|
||||
|
@ -38,10 +38,10 @@ const steps: EuiContainedStepProps[] = [
|
|||
shouldNotCreateHref
|
||||
>
|
||||
<EuiButton
|
||||
data-telemetry-id="entSearch-esre-semanticSearch-elserPanel-createIndexButton"
|
||||
data-telemetry-id="entSearch-aiSearch-semanticSearch-elserPanel-createIndexButton"
|
||||
iconType="plusInCircle"
|
||||
>
|
||||
{i18n.translate('xpack.enterpriseSearch.esre.elserPanel.step1.buttonLabel', {
|
||||
{i18n.translate('xpack.enterpriseSearch.aiSearch.elserPanel.step1.buttonLabel', {
|
||||
defaultMessage: 'Create an index',
|
||||
})}
|
||||
</EuiButton>
|
||||
|
@ -50,21 +50,21 @@ const steps: EuiContainedStepProps[] = [
|
|||
status: 'incomplete',
|
||||
},
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.elserPanel.step2.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.elserPanel.step2.title', {
|
||||
defaultMessage: "Navigate to index's Pipelines tab",
|
||||
}),
|
||||
children: (
|
||||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.elserPanel.step2.description"
|
||||
id="xpack.enterpriseSearch.aiSearch.elserPanel.step2.description"
|
||||
defaultMessage="After creating an index, select it and click the tab called {pipelinesName}."
|
||||
values={{
|
||||
pipelinesName: (
|
||||
<strong>
|
||||
"
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.elserPanel.step2.description.pipelinesName',
|
||||
'xpack.enterpriseSearch.aiSearch.elserPanel.step2.description.pipelinesName',
|
||||
{
|
||||
defaultMessage: 'Pipelines',
|
||||
}
|
||||
|
@ -80,14 +80,14 @@ const steps: EuiContainedStepProps[] = [
|
|||
status: 'incomplete',
|
||||
},
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.elserPanel.step3.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.elserPanel.step3.title', {
|
||||
defaultMessage: 'Follow the on-screen instructions to deploy ELSER',
|
||||
}),
|
||||
children: (
|
||||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.elserPanel.step3.description"
|
||||
id="xpack.enterpriseSearch.aiSearch.elserPanel.step3.description"
|
||||
defaultMessage="Locate the panel that allows you to one click deploy ELSER and create an inference pipeline using that model."
|
||||
/>
|
||||
</p>
|
||||
|
@ -105,14 +105,17 @@ export const ElserPanel: React.FC = () => (
|
|||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.elser.description"
|
||||
id="xpack.enterpriseSearch.aiSearch.elser.description"
|
||||
defaultMessage="Effortlessly deploy the {elser} for instant text semantic search capabilities in just a few clicks. This model expands your document and query text using the 'text_expansion' field, delivering seamless search out of the box."
|
||||
values={{
|
||||
elser: (
|
||||
<EuiLink target="_blank" href={docLinks.elser} external={false}>
|
||||
{i18n.translate('xpack.enterpriseSearch.esre.elser.description.elserLinkText', {
|
||||
defaultMessage: 'Elastic Learned Sparse Encoder',
|
||||
})}
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.aiSearch.elser.description.elserLinkText',
|
||||
{
|
||||
defaultMessage: 'Elastic Learned Sparse Encoder v2',
|
||||
}
|
||||
)}
|
||||
</EuiLink>
|
||||
),
|
||||
}}
|
|
@ -28,18 +28,18 @@ import { EuiLinkTo } from '../../../shared/react_router_helpers';
|
|||
|
||||
const steps: EuiContainedStepProps[] = [
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.linearCombinationPanel.step1.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step1.title', {
|
||||
defaultMessage: 'Discover how to use linear combination in _search queries',
|
||||
}),
|
||||
children: (
|
||||
<EuiLink
|
||||
data-telemetry-id="entSearch-esre-rankAggregation-linearCombinationPanel-knnSearchCombineLink"
|
||||
data-telemetry-id="entSearch-aiSearch-rankAggregation-linearCombinationPanel-knnSearchCombineLink"
|
||||
href={docLinks.knnSearchCombine}
|
||||
target="_blank"
|
||||
external
|
||||
>
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.linearCombinationPanel.step1.knnSearchCombineLinkText',
|
||||
'xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step1.knnSearchCombineLinkText',
|
||||
{
|
||||
defaultMessage: 'Combine approximate kNN with other features',
|
||||
}
|
||||
|
@ -49,19 +49,22 @@ const steps: EuiContainedStepProps[] = [
|
|||
status: 'incomplete',
|
||||
},
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.linearCombinationPanel.step2.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step2.title', {
|
||||
defaultMessage: 'Try it today in Console',
|
||||
}),
|
||||
children: (
|
||||
<EuiLinkTo
|
||||
data-telemetry-id="entSearch-esre-rankAggregation-linearCombinationPanel-devToolsConsoleButton"
|
||||
data-telemetry-id="entSearch-aiSearch-rankAggregation-linearCombinationPanel-devToolsConsoleButton"
|
||||
to={generatePath(DEV_TOOLS_CONSOLE_PATH)}
|
||||
shouldNotCreateHref
|
||||
>
|
||||
<EuiButton>
|
||||
{i18n.translate('xpack.enterpriseSearch.esre.linearCombinationPanel.step2.buttonLabel', {
|
||||
defaultMessage: 'Open Console',
|
||||
})}
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step2.buttonLabel',
|
||||
{
|
||||
defaultMessage: 'Open Console',
|
||||
}
|
||||
)}
|
||||
</EuiButton>
|
||||
</EuiLinkTo>
|
||||
),
|
||||
|
@ -77,7 +80,7 @@ export const LinearCombinationPanel: React.FC = () => (
|
|||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.linearCombinationPanel.description"
|
||||
id="xpack.enterpriseSearch.aiSearch.linearCombinationPanel.description"
|
||||
defaultMessage="Used to calculate a similarity score or distance between data points. Combines attributes or features using weights, which enables customized relevance factors."
|
||||
/>
|
||||
</p>
|
|
@ -27,22 +27,22 @@ import { EuiLinkTo } from '../../../shared/react_router_helpers';
|
|||
|
||||
const steps: EuiContainedStepProps[] = [
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.measurePerformanceSection.step1.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step1.title', {
|
||||
defaultMessage: 'Create a collection',
|
||||
}),
|
||||
children: (
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.measurePerformanceSection.step1.description"
|
||||
id="xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step1.description"
|
||||
defaultMessage="Visit {behavioralAnalytics} and create your first collection."
|
||||
values={{
|
||||
behavioralAnalytics: (
|
||||
<EuiLinkTo
|
||||
data-telemetry-id="entSearch-esre-measurePerformance-behavioralAnalyticsLink"
|
||||
data-telemetry-id="entSearch-aiSearch-measurePerformance-behavioralAnalyticsLink"
|
||||
to={generatePath(ANALYTICS_PLUGIN.URL)}
|
||||
shouldNotCreateHref
|
||||
>
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.measurePerformanceSection.step1.behavioralAnalyticsLinkText',
|
||||
'xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step1.behavioralAnalyticsLinkText',
|
||||
{
|
||||
defaultMessage: 'Behavioral Analytics',
|
||||
}
|
||||
|
@ -55,24 +55,24 @@ const steps: EuiContainedStepProps[] = [
|
|||
status: 'incomplete',
|
||||
},
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.measurePerformanceSection.step2.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step2.title', {
|
||||
defaultMessage: 'Integrate the analytics tracker',
|
||||
}),
|
||||
children: (
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.measurePerformanceSection.step2.description"
|
||||
id="xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step2.description"
|
||||
defaultMessage="After creating a collection, follow the directions on how to integrate our tracker into your application or website."
|
||||
/>
|
||||
),
|
||||
status: 'incomplete',
|
||||
},
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.measurePerformanceSection.step3.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step3.title', {
|
||||
defaultMessage: 'Review your dashboard',
|
||||
}),
|
||||
children: (
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.measurePerformanceSection.step3.description"
|
||||
id="xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step3.description"
|
||||
defaultMessage="Our dashboards and tools help you visualize your end-user behavior and measure the performance of your search applications."
|
||||
/>
|
||||
),
|
||||
|
@ -88,7 +88,7 @@ export const MeasurePerformanceSection: React.FC = () => (
|
|||
<EuiTitle>
|
||||
<h2>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.measurePerformanceSection.title"
|
||||
id="xpack.enterpriseSearch.aiSearch.measurePerformanceSection.title"
|
||||
defaultMessage="Measure your performance"
|
||||
/>
|
||||
</h2>
|
||||
|
@ -98,18 +98,18 @@ export const MeasurePerformanceSection: React.FC = () => (
|
|||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.measurePerformanceSection.description"
|
||||
id="xpack.enterpriseSearch.aiSearch.measurePerformanceSection.description"
|
||||
defaultMessage="Use {behavioralAnalytics} dashboards and tools to visualize user behavior and measure the impact of your changes."
|
||||
values={{
|
||||
behavioralAnalytics: (
|
||||
<EuiLink
|
||||
data-telemetry-id="entSearch-esre-measurePerformance-behavioralAnalyticsDocsLink"
|
||||
data-telemetry-id="entSearch-aiSearch-measurePerformance-behavioralAnalyticsDocsLink"
|
||||
target="_blank"
|
||||
href={docLinks.behavioralAnalytics}
|
||||
external
|
||||
>
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.measurePerformanceSection.behavioralAnalyticsLinkText',
|
||||
'xpack.enterpriseSearch.aiSearch.measurePerformanceSection.behavioralAnalyticsLinkText',
|
||||
{
|
||||
defaultMessage: 'Behavioral Analytics',
|
||||
}
|
|
@ -32,47 +32,50 @@ import { EuiLinkTo } from '../../../shared/react_router_helpers';
|
|||
|
||||
const steps: EuiContainedStepProps[] = [
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.title', {
|
||||
defaultMessage: 'Learn how to upload ML models',
|
||||
}),
|
||||
children: (
|
||||
<EuiFlexGroup direction="column">
|
||||
<EuiFlexItem>
|
||||
<EuiLink
|
||||
data-telemetry-id="entSearch-esre-semanticSearch-nlpEnrichmentPanel-supportedNlpModelsLink"
|
||||
data-telemetry-id="entSearch-aiSearch-semanticSearch-nlpEnrichmentPanel-supportedNlpModelsLink"
|
||||
href={docLinks.supportedNlpModels}
|
||||
target="_blank"
|
||||
external
|
||||
>
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.supportedNlpModelsLinkText',
|
||||
'xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.supportedNlpModelsLinkText',
|
||||
{ defaultMessage: 'Supported NLP models' }
|
||||
)}
|
||||
</EuiLink>
|
||||
</EuiFlexItem>
|
||||
<EuiFlexItem>
|
||||
<EuiLink
|
||||
data-telemetry-id="entSearch-esre-semanticSearch-nlpEnrichmentPanel-trainedModelsLink"
|
||||
data-telemetry-id="entSearch-aiSearch-semanticSearch-nlpEnrichmentPanel-trainedModelsLink"
|
||||
href={docLinks.trainedModels}
|
||||
target="_blank"
|
||||
external
|
||||
>
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.guideToTrainedModelsLinkText',
|
||||
'xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.guideToTrainedModelsLinkText',
|
||||
{ defaultMessage: 'Guide to trained models' }
|
||||
)}
|
||||
</EuiLink>
|
||||
</EuiFlexItem>
|
||||
<EuiFlexItem>
|
||||
<EuiLinkTo
|
||||
data-telemetry-id="entSearch-esre-semanticSearch-nlpEnrichmentPanel-trainedModelsButton"
|
||||
data-telemetry-id="entSearch-aiSearch-semanticSearch-nlpEnrichmentPanel-trainedModelsButton"
|
||||
to={generatePath(ML_MANAGE_TRAINED_MODELS_PATH)}
|
||||
shouldNotCreateHref
|
||||
>
|
||||
<EuiButton iconType="eye">
|
||||
{i18n.translate('xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.buttonLabel', {
|
||||
defaultMessage: 'View trained models',
|
||||
})}
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.buttonLabel',
|
||||
{
|
||||
defaultMessage: 'View trained models',
|
||||
}
|
||||
)}
|
||||
</EuiButton>
|
||||
</EuiLinkTo>
|
||||
</EuiFlexItem>
|
||||
|
@ -81,17 +84,17 @@ const steps: EuiContainedStepProps[] = [
|
|||
status: 'incomplete',
|
||||
},
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step2.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step2.title', {
|
||||
defaultMessage: 'Create an index',
|
||||
}),
|
||||
children: (
|
||||
<EuiLinkTo
|
||||
data-telemetry-id="entSearch-esre-semanticSearch-nlpEnrichmentPanel-createIndexButton"
|
||||
data-telemetry-id="entSearch-aiSearch-semanticSearch-nlpEnrichmentPanel-createIndexButton"
|
||||
to={generatePath(ENTERPRISE_SEARCH_CONTENT_PLUGIN.URL + NEW_INDEX_PATH)}
|
||||
shouldNotCreateHref
|
||||
>
|
||||
<EuiButton iconType="plusInCircle">
|
||||
{i18n.translate('xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step2.buttonLabel', {
|
||||
{i18n.translate('xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step2.buttonLabel', {
|
||||
defaultMessage: 'Create an index',
|
||||
})}
|
||||
</EuiButton>
|
||||
|
@ -100,21 +103,21 @@ const steps: EuiContainedStepProps[] = [
|
|||
status: 'incomplete',
|
||||
},
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step3.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step3.title', {
|
||||
defaultMessage: 'Create an ML inference pipeline',
|
||||
}),
|
||||
children: (
|
||||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step3.description"
|
||||
id="xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step3.description"
|
||||
defaultMessage="Navigate to your index's {pipelinesName} tab to create an inference pipeline that uses your deployed model."
|
||||
values={{
|
||||
pipelinesName: (
|
||||
<strong>
|
||||
"
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step3.description.pipelinesName',
|
||||
'xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step3.description.pipelinesName',
|
||||
{
|
||||
defaultMessage: 'Pipelines',
|
||||
}
|
||||
|
@ -139,18 +142,18 @@ export const NlpEnrichmentPanel: React.FC = () => (
|
|||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.nlpEnrichmentPanel.description"
|
||||
id="xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.description"
|
||||
defaultMessage="Use Natural Language Processing (NLP) tools like sentiment analysis, summarization, or Named Entity Recognition to enhance the relevance of your search results. NLP uses several {supportedMlModels} you can load to intelligently analyze and enrich documents with additional fields."
|
||||
values={{
|
||||
supportedMlModels: (
|
||||
<EuiLink
|
||||
data-telemetry-id="entSearch-esre-semanticSearch-nlpEnrichmentPanel-supportedMlModelsLink"
|
||||
data-telemetry-id="entSearch-aiSearch-semanticSearch-nlpEnrichmentPanel-supportedMlModelsLink"
|
||||
target="_blank"
|
||||
href={docLinks.supportedNlpModels}
|
||||
external={false}
|
||||
>
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.nlpEnrichmentPanel.description.supportedMlModelsLinkText',
|
||||
'xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.description.supportedMlModelsLinkText',
|
||||
{
|
||||
defaultMessage: 'supported ML models',
|
||||
}
|
|
@ -14,7 +14,7 @@ import { FormattedMessage } from '@kbn/i18n-react';
|
|||
import linearCombinationIllustration from '../../../../assets/images/linear.svg';
|
||||
import rrfRankingIllustration from '../../../../assets/images/rrf.svg';
|
||||
|
||||
import { EsreGuideAccordion } from './esre_guide_accordion';
|
||||
import { AISearchGuideAccordion } from './ai_search_guide_accordion';
|
||||
import { LinearCombinationPanel } from './linear_combination_panel';
|
||||
import { RrfRankingPanel } from './rrf_ranking_panel';
|
||||
|
||||
|
@ -29,7 +29,7 @@ export const RankAggregationSection: React.FC = () => {
|
|||
<EuiTitle>
|
||||
<h2>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.rankAggregationSection.title"
|
||||
id="xpack.enterpriseSearch.aiSearch.rankAggregationSection.title"
|
||||
defaultMessage="Use a rank aggregation method"
|
||||
/>
|
||||
</h2>
|
||||
|
@ -39,7 +39,7 @@ export const RankAggregationSection: React.FC = () => {
|
|||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.rankAggregationSection.description"
|
||||
id="xpack.enterpriseSearch.aiSearch.rankAggregationSection.description"
|
||||
defaultMessage="Optional methods for fusing or combining different rankings to achieve better overall ranking performance."
|
||||
/>
|
||||
</p>
|
||||
|
@ -50,15 +50,15 @@ export const RankAggregationSection: React.FC = () => {
|
|||
<EuiFlexItem grow={6}>
|
||||
<EuiFlexGroup direction="column">
|
||||
<EuiFlexItem grow={false}>
|
||||
<EsreGuideAccordion
|
||||
<AISearchGuideAccordion
|
||||
id="rrfRankingAccordion"
|
||||
data-telemetry-id="entSearch-esre-rankAggregation-rrfRankingAccordion"
|
||||
data-telemetry-id="entSearch-aiSearch-rankAggregation-rrfRankingAccordion"
|
||||
icon={rrfRankingIllustration}
|
||||
title={i18n.translate('xpack.enterpriseSearch.esre.rrfRankingAccordion.title', {
|
||||
title={i18n.translate('xpack.enterpriseSearch.aiSearch.rrfRankingAccordion.title', {
|
||||
defaultMessage: 'RRF hybrid ranking',
|
||||
})}
|
||||
description={i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.rrfRankingAccordion.description',
|
||||
'xpack.enterpriseSearch.aiSearch.rrfRankingAccordion.description',
|
||||
{
|
||||
defaultMessage: 'Intelligently combines rankings without configuration',
|
||||
}
|
||||
|
@ -67,21 +67,21 @@ export const RankAggregationSection: React.FC = () => {
|
|||
onToggle={setCurrentExpandedId}
|
||||
>
|
||||
<RrfRankingPanel />
|
||||
</EsreGuideAccordion>
|
||||
</AISearchGuideAccordion>
|
||||
</EuiFlexItem>
|
||||
<EuiFlexItem grow={false}>
|
||||
<EsreGuideAccordion
|
||||
<AISearchGuideAccordion
|
||||
id="linearCombinationAccordion"
|
||||
data-telemetry-id="entSearch-esre-rankAggregation-linearCombinationAccordion"
|
||||
data-telemetry-id="entSearch-aiSearch-rankAggregation-linearCombinationAccordion"
|
||||
icon={linearCombinationIllustration}
|
||||
title={i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.linearCombinationAccordion.title',
|
||||
'xpack.enterpriseSearch.aiSearch.linearCombinationAccordion.title',
|
||||
{
|
||||
defaultMessage: 'Linear combination',
|
||||
}
|
||||
)}
|
||||
description={i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.linearCombinationAccordion.description',
|
||||
'xpack.enterpriseSearch.aiSearch.linearCombinationAccordion.description',
|
||||
{
|
||||
defaultMessage: 'Weighted results from multiple rankings',
|
||||
}
|
||||
|
@ -90,7 +90,7 @@ export const RankAggregationSection: React.FC = () => {
|
|||
onToggle={setCurrentExpandedId}
|
||||
>
|
||||
<LinearCombinationPanel />
|
||||
</EsreGuideAccordion>
|
||||
</AISearchGuideAccordion>
|
||||
</EuiFlexItem>
|
||||
</EuiFlexGroup>
|
||||
</EuiFlexItem>
|
|
@ -28,17 +28,17 @@ import { EuiLinkTo } from '../../../shared/react_router_helpers';
|
|||
|
||||
const steps: EuiContainedStepProps[] = [
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.rrfRankingPanel.step1.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step1.title', {
|
||||
defaultMessage: 'Discover examples of using RRF in _search queries',
|
||||
}),
|
||||
children: (
|
||||
<EuiLink
|
||||
data-telemetry-id="entSearch-esre-rankAggregation-rrfRankingPanel-rrfDocsLink"
|
||||
data-telemetry-id="entSearch-aiSearch-rankAggregation-rrfRankingPanel-rrfDocsLink"
|
||||
href={docLinks.rrf}
|
||||
target="_blank"
|
||||
external
|
||||
>
|
||||
{i18n.translate('xpack.enterpriseSearch.esre.rrfRankingPanel.step1.rrfDocsLinkText', {
|
||||
{i18n.translate('xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step1.rrfDocsLinkText', {
|
||||
defaultMessage: 'Reciprocal Rank Fusion documentation',
|
||||
})}
|
||||
</EuiLink>
|
||||
|
@ -46,17 +46,17 @@ const steps: EuiContainedStepProps[] = [
|
|||
status: 'incomplete',
|
||||
},
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.rrfRankingPanel.step2.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step2.title', {
|
||||
defaultMessage: 'Try it today in Console',
|
||||
}),
|
||||
children: (
|
||||
<EuiLinkTo
|
||||
data-telemetry-id="entSearch-esre-rankAggregation-rrfRankingPanel-devToolsConsoleButton"
|
||||
data-telemetry-id="entSearch-aiSearch-rankAggregation-rrfRankingPanel-devToolsConsoleButton"
|
||||
to={generatePath(DEV_TOOLS_CONSOLE_PATH)}
|
||||
shouldNotCreateHref
|
||||
>
|
||||
<EuiButton>
|
||||
{i18n.translate('xpack.enterpriseSearch.esre.rrfRankingPanel.step2.buttonLabel', {
|
||||
{i18n.translate('xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step2.buttonLabel', {
|
||||
defaultMessage: 'Open Console',
|
||||
})}
|
||||
</EuiButton>
|
||||
|
@ -74,13 +74,13 @@ export const RrfRankingPanel: React.FC = () => (
|
|||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.rrfRankingPanel.description"
|
||||
data-telemetry-id="entSearch-esre-semanticSearch-rrfRankingPanel-rrfDocsLink"
|
||||
id="xpack.enterpriseSearch.aiSearch.rrfRankingPanel.description"
|
||||
data-telemetry-id="entSearch-aiSearch-semanticSearch-rrfRankingPanel-rrfDocsLink"
|
||||
defaultMessage="Use {rrf} to combine rankings from multiple result sets with different relevance indicators, with no fine tuning required."
|
||||
values={{
|
||||
rrf: (
|
||||
<EuiLink target="_blank" href={docLinks.rrf} external={false}>
|
||||
{i18n.translate('xpack.enterpriseSearch.esre.rrfRankingPanel.rrfLinkText', {
|
||||
{i18n.translate('xpack.enterpriseSearch.aiSearch.rrfRankingPanel.rrfLinkText', {
|
||||
defaultMessage: 'Reciprocal Rank Fusion (RRF)',
|
||||
})}
|
||||
</EuiLink>
|
|
@ -15,8 +15,8 @@ import elserIllustration from '../../../../assets/images/elser.svg';
|
|||
import nlpEnrichmentIllustration from '../../../../assets/images/nlp.svg';
|
||||
import vectorSearchIllustration from '../../../../assets/images/vector.svg';
|
||||
|
||||
import { AISearchGuideAccordion } from './ai_search_guide_accordion';
|
||||
import { ElserPanel } from './elser_panel';
|
||||
import { EsreGuideAccordion } from './esre_guide_accordion';
|
||||
import { NlpEnrichmentPanel } from './nlp_enrichment_panel';
|
||||
import { VectorSearchPanel } from './vector_search_panel';
|
||||
|
||||
|
@ -31,7 +31,7 @@ export const SemanticSearchSection: React.FC = () => {
|
|||
<EuiTitle>
|
||||
<h2>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.semanticSearch.title"
|
||||
id="xpack.enterpriseSearch.aiSearch.semanticSearch.title"
|
||||
defaultMessage="Set up semantic search"
|
||||
/>
|
||||
</h2>
|
||||
|
@ -41,8 +41,8 @@ export const SemanticSearchSection: React.FC = () => {
|
|||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.semanticSearch.description"
|
||||
defaultMessage="ESRE combines your choice of these information retrieval tools."
|
||||
id="xpack.enterpriseSearch.aiSearch.semanticSearch.description"
|
||||
defaultMessage="Combine any of these information retrieval tools."
|
||||
/>
|
||||
</p>
|
||||
</EuiText>
|
||||
|
@ -52,16 +52,16 @@ export const SemanticSearchSection: React.FC = () => {
|
|||
<EuiFlexItem grow={6}>
|
||||
<EuiFlexGroup direction="column">
|
||||
<EuiFlexItem grow={false}>
|
||||
<EsreGuideAccordion
|
||||
<AISearchGuideAccordion
|
||||
id="elserAccordion"
|
||||
data-telemetry-id="entSearch-esre-semanticSearch-elserAccordion"
|
||||
data-telemetry-id="entSearch-aiSearch-semanticSearch-elserAccordion"
|
||||
initialIsOpen
|
||||
icon={elserIllustration}
|
||||
title={i18n.translate('xpack.enterpriseSearch.esre.elserAccordion.title', {
|
||||
title={i18n.translate('xpack.enterpriseSearch.aiSearch.elserAccordion.title', {
|
||||
defaultMessage: 'Elastic Learned Sparse Encoder',
|
||||
})}
|
||||
description={i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.elserAccordion.description',
|
||||
'xpack.enterpriseSearch.aiSearch.elserAccordion.description',
|
||||
{
|
||||
defaultMessage: 'Instant semantic search capabilities',
|
||||
}
|
||||
|
@ -70,18 +70,18 @@ export const SemanticSearchSection: React.FC = () => {
|
|||
onToggle={setCurrentExpandedId}
|
||||
>
|
||||
<ElserPanel />
|
||||
</EsreGuideAccordion>
|
||||
</AISearchGuideAccordion>
|
||||
</EuiFlexItem>
|
||||
<EuiFlexItem grow={false}>
|
||||
<EsreGuideAccordion
|
||||
<AISearchGuideAccordion
|
||||
id="vectorSearchAccordion"
|
||||
data-telemetry-id="entSearch-esre-semanticSearch-vectorSearchAccordion"
|
||||
data-telemetry-id="entSearch-aiSearch-semanticSearch-vectorSearchAccordion"
|
||||
icon={vectorSearchIllustration}
|
||||
title={i18n.translate('xpack.enterpriseSearch.esre.vectorSearchAccordion.title', {
|
||||
title={i18n.translate('xpack.enterpriseSearch.aiSearch.vectorSearchAccordion.title', {
|
||||
defaultMessage: 'Vector Search',
|
||||
})}
|
||||
description={i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.vectorSearchAccordion.description',
|
||||
'xpack.enterpriseSearch.aiSearch.vectorSearchAccordion.description',
|
||||
{
|
||||
defaultMessage: 'Powerful similarity searches for unstructured data',
|
||||
}
|
||||
|
@ -90,18 +90,21 @@ export const SemanticSearchSection: React.FC = () => {
|
|||
onToggle={setCurrentExpandedId}
|
||||
>
|
||||
<VectorSearchPanel />
|
||||
</EsreGuideAccordion>
|
||||
</AISearchGuideAccordion>
|
||||
</EuiFlexItem>
|
||||
<EuiFlexItem grow={false}>
|
||||
<EsreGuideAccordion
|
||||
<AISearchGuideAccordion
|
||||
id="nlpEnrichmentAccordion"
|
||||
data-telemetry-id="entSearch-esre-semanticSearch-nlpEnrichmentAccordion"
|
||||
data-telemetry-id="entSearch-aiSearch-semanticSearch-nlpEnrichmentAccordion"
|
||||
icon={nlpEnrichmentIllustration}
|
||||
title={i18n.translate('xpack.enterpriseSearch.esre.nlpEnrichmentAccordion.title', {
|
||||
defaultMessage: 'NLP Enrichment',
|
||||
})}
|
||||
title={i18n.translate(
|
||||
'xpack.enterpriseSearch.aiSearch.nlpEnrichmentAccordion.title',
|
||||
{
|
||||
defaultMessage: 'NLP Enrichment',
|
||||
}
|
||||
)}
|
||||
description={i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.nlpEnrichmentAccordion.description',
|
||||
'xpack.enterpriseSearch.aiSearch.nlpEnrichmentAccordion.description',
|
||||
{
|
||||
defaultMessage: 'Insightful data enrichment with trained ML models',
|
||||
}
|
||||
|
@ -110,7 +113,7 @@ export const SemanticSearchSection: React.FC = () => {
|
|||
onToggle={setCurrentExpandedId}
|
||||
>
|
||||
<NlpEnrichmentPanel />
|
||||
</EsreGuideAccordion>
|
||||
</AISearchGuideAccordion>
|
||||
</EuiFlexItem>
|
||||
</EuiFlexGroup>
|
||||
</EuiFlexItem>
|
|
@ -32,34 +32,37 @@ import { EuiLinkTo } from '../../../shared/react_router_helpers';
|
|||
|
||||
const steps: EuiContainedStepProps[] = [
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.vectorSearchPanel.step1.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step1.title', {
|
||||
defaultMessage: 'Learn how to upload ML models',
|
||||
}),
|
||||
children: (
|
||||
<EuiFlexGroup direction="column">
|
||||
<EuiFlexItem>
|
||||
<EuiLink
|
||||
data-telemetry-id="entSearch-esre-semanticSearch-vectorSearchPanel-trainedModelsLink"
|
||||
data-telemetry-id="entSearch-aiSearch-semanticSearch-vectorSearchPanel-trainedModelsLink"
|
||||
href={docLinks.trainedModels}
|
||||
target="_blank"
|
||||
external
|
||||
>
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.vectorSearchPanel.step1.guideToTrainedModelsLinkText',
|
||||
'xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step1.guideToTrainedModelsLinkText',
|
||||
{ defaultMessage: 'Guide to trained models' }
|
||||
)}
|
||||
</EuiLink>
|
||||
</EuiFlexItem>
|
||||
<EuiFlexItem>
|
||||
<EuiLinkTo
|
||||
data-telemetry-id="entSearch-esre-semanticSearch-vectorSearchPanel-trainedModelsButton"
|
||||
data-telemetry-id="entSearch-aiSearch-semanticSearch-vectorSearchPanel-trainedModelsButton"
|
||||
to={generatePath(ML_MANAGE_TRAINED_MODELS_PATH)}
|
||||
shouldNotCreateHref
|
||||
>
|
||||
<EuiButton iconType="eye">
|
||||
{i18n.translate('xpack.enterpriseSearch.esre.vectorSearchPanel.step1.buttonLabel', {
|
||||
defaultMessage: 'View trained models',
|
||||
})}
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step1.buttonLabel',
|
||||
{
|
||||
defaultMessage: 'View trained models',
|
||||
}
|
||||
)}
|
||||
</EuiButton>
|
||||
</EuiLinkTo>
|
||||
</EuiFlexItem>
|
||||
|
@ -68,7 +71,7 @@ const steps: EuiContainedStepProps[] = [
|
|||
status: 'incomplete',
|
||||
},
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.vectorSearchPanel.step2.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step2.title', {
|
||||
defaultMessage: 'Create an index',
|
||||
}),
|
||||
children: (
|
||||
|
@ -77,10 +80,10 @@ const steps: EuiContainedStepProps[] = [
|
|||
shouldNotCreateHref
|
||||
>
|
||||
<EuiButton
|
||||
data-telemetry-id="entSearch-esre-semanticSearch-vectorSearchPanel-createIndexButton"
|
||||
data-telemetry-id="entSearch-aiSearch-semanticSearch-vectorSearchPanel-createIndexButton"
|
||||
iconType="plusInCircle"
|
||||
>
|
||||
{i18n.translate('xpack.enterpriseSearch.esre.vectorSearchPanel.step2.buttonLabel', {
|
||||
{i18n.translate('xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step2.buttonLabel', {
|
||||
defaultMessage: 'Create an index',
|
||||
})}
|
||||
</EuiButton>
|
||||
|
@ -89,21 +92,21 @@ const steps: EuiContainedStepProps[] = [
|
|||
status: 'incomplete',
|
||||
},
|
||||
{
|
||||
title: i18n.translate('xpack.enterpriseSearch.esre.vectorSearchPanel.step3.title', {
|
||||
title: i18n.translate('xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step3.title', {
|
||||
defaultMessage: 'Create a ML inference pipeline',
|
||||
}),
|
||||
children: (
|
||||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.vectorSearchPanel.step3.description"
|
||||
id="xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step3.description"
|
||||
defaultMessage="Navigate to your index's {pipelinesName} tab to create an inference pipeline that uses your deployed model."
|
||||
values={{
|
||||
pipelinesName: (
|
||||
<strong>
|
||||
"
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.vectorSearchPanel.step3.description.pipelinesName',
|
||||
'xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step3.description.pipelinesName',
|
||||
{
|
||||
defaultMessage: 'Pipelines',
|
||||
}
|
||||
|
@ -128,18 +131,18 @@ export const VectorSearchPanel: React.FC = () => (
|
|||
<EuiText>
|
||||
<p>
|
||||
<FormattedMessage
|
||||
id="xpack.enterpriseSearch.esre.vectorSearchPanel.description"
|
||||
id="xpack.enterpriseSearch.aiSearch.vectorSearchPanel.description"
|
||||
defaultMessage="Use {vectorDbCapabilities} by adding embeddings from your ML models. Deploy trained models on Elastic ML nodes and set up inference pipelines to automatically add embeddings when you ingest documents, so you can use the kNN vector search method in _search."
|
||||
values={{
|
||||
vectorDbCapabilities: (
|
||||
<EuiLink
|
||||
data-telemetry-id="entSearch-esre-semanticSearch-vectorSearchPanel-knnSearchLink"
|
||||
data-telemetry-id="entSearch-aiSearch-semanticSearch-vectorSearchPanel-knnSearchLink"
|
||||
target="_blank"
|
||||
href={docLinks.knnSearch}
|
||||
external={false}
|
||||
>
|
||||
{i18n.translate(
|
||||
'xpack.enterpriseSearch.esre.vectorSearchPanel.description.vectorDbCapabilitiesLinkText',
|
||||
'xpack.enterpriseSearch.aiSearch.vectorSearchPanel.description.vectorDbCapabilitiesLinkText',
|
||||
{
|
||||
defaultMessage: "Elasticsearch's vector DB capabilities",
|
||||
}
|
|
@ -13,40 +13,42 @@ import React from 'react';
|
|||
|
||||
import { shallow } from 'enzyme';
|
||||
|
||||
import { SetEsreChrome } from '../../../shared/kibana_chrome';
|
||||
import { SetAiSearchChrome } from '../../../shared/kibana_chrome';
|
||||
import { EnterpriseSearchPageTemplateWrapper } from '../../../shared/layout';
|
||||
import { SendEnterpriseSearchTelemetry } from '../../../shared/telemetry';
|
||||
|
||||
import { EnterpriseSearchEsrePageTemplate } from './page_template';
|
||||
import { EnterpriseSearchAISearchPageTemplate } from './page_template';
|
||||
|
||||
describe('EnterpriseSearchEsrePageTemplate', () => {
|
||||
describe('EnterpriseSearchAISearchPageTemplate', () => {
|
||||
it('renders', () => {
|
||||
const wrapper = shallow(
|
||||
<EnterpriseSearchEsrePageTemplate>
|
||||
<EnterpriseSearchAISearchPageTemplate>
|
||||
<div className="hello">world</div>
|
||||
</EnterpriseSearchEsrePageTemplate>
|
||||
</EnterpriseSearchAISearchPageTemplate>
|
||||
);
|
||||
|
||||
expect(wrapper.type()).toEqual(EnterpriseSearchPageTemplateWrapper);
|
||||
expect(wrapper.prop('solutionNav')).toEqual({ name: 'ESRE', items: [] });
|
||||
expect(wrapper.prop('solutionNav')).toEqual({ name: 'AI Search', items: [] });
|
||||
expect(wrapper.find('.hello').text()).toEqual('world');
|
||||
});
|
||||
|
||||
describe('page chrome', () => {
|
||||
it('takes a breadcrumb array & renders a product-specific page chrome', () => {
|
||||
const wrapper = shallow(<EnterpriseSearchEsrePageTemplate pageChrome={['Some page']} />);
|
||||
const wrapper = shallow(<EnterpriseSearchAISearchPageTemplate pageChrome={['Some page']} />);
|
||||
const setPageChrome = wrapper
|
||||
.find(EnterpriseSearchPageTemplateWrapper)
|
||||
.prop('setPageChrome') as any;
|
||||
|
||||
expect(setPageChrome.type).toEqual(SetEsreChrome);
|
||||
expect(setPageChrome.type).toEqual(SetAiSearchChrome);
|
||||
expect(setPageChrome.props.trail).toEqual(['Some page']);
|
||||
});
|
||||
});
|
||||
|
||||
describe('page telemetry', () => {
|
||||
it('takes a metric & renders product-specific telemetry viewed event', () => {
|
||||
const wrapper = shallow(<EnterpriseSearchEsrePageTemplate pageViewTelemetry="some_page" />);
|
||||
const wrapper = shallow(
|
||||
<EnterpriseSearchAISearchPageTemplate pageViewTelemetry="some_page" />
|
||||
);
|
||||
|
||||
expect(wrapper.find(SendEnterpriseSearchTelemetry).prop('action')).toEqual('viewed');
|
||||
expect(wrapper.find(SendEnterpriseSearchTelemetry).prop('metric')).toEqual('some_page');
|
||||
|
@ -56,7 +58,7 @@ describe('EnterpriseSearchEsrePageTemplate', () => {
|
|||
describe('props', () => {
|
||||
it('passes down any ...pageTemplateProps that EnterpriseSearchPageTemplateWrapper accepts', () => {
|
||||
const wrapper = shallow(
|
||||
<EnterpriseSearchEsrePageTemplate
|
||||
<EnterpriseSearchAISearchPageTemplate
|
||||
pageHeader={{ pageTitle: 'hello world' }}
|
||||
isLoading={false}
|
||||
emptyState={<div />}
|
|
@ -7,13 +7,13 @@
|
|||
|
||||
import React from 'react';
|
||||
|
||||
import { ESRE_PLUGIN } from '../../../../../common/constants';
|
||||
import { SetEsreChrome } from '../../../shared/kibana_chrome';
|
||||
import { AI_SEARCH_PLUGIN } from '../../../../../common/constants';
|
||||
import { SetAiSearchChrome } from '../../../shared/kibana_chrome';
|
||||
import { EnterpriseSearchPageTemplateWrapper, PageTemplateProps } from '../../../shared/layout';
|
||||
import { useEnterpriseSearchNav } from '../../../shared/layout';
|
||||
import { SendEnterpriseSearchTelemetry } from '../../../shared/telemetry';
|
||||
|
||||
export const EnterpriseSearchEsrePageTemplate: React.FC<PageTemplateProps> = ({
|
||||
export const EnterpriseSearchAISearchPageTemplate: React.FC<PageTemplateProps> = ({
|
||||
children,
|
||||
pageChrome,
|
||||
pageViewTelemetry,
|
||||
|
@ -23,10 +23,10 @@ export const EnterpriseSearchEsrePageTemplate: React.FC<PageTemplateProps> = ({
|
|||
<EnterpriseSearchPageTemplateWrapper
|
||||
{...pageTemplateProps}
|
||||
solutionNav={{
|
||||
name: ESRE_PLUGIN.NAME,
|
||||
name: AI_SEARCH_PLUGIN.NAME,
|
||||
items: useEnterpriseSearchNav(),
|
||||
}}
|
||||
setPageChrome={pageChrome && <SetEsreChrome trail={pageChrome} />}
|
||||
setPageChrome={pageChrome && <SetAiSearchChrome trail={pageChrome} />}
|
||||
>
|
||||
{pageViewTelemetry && (
|
||||
<SendEnterpriseSearchTelemetry action="viewed" metric={pageViewTelemetry} />
|
|
@ -11,18 +11,18 @@ import React from 'react';
|
|||
|
||||
import { shallow } from 'enzyme';
|
||||
|
||||
import { EsreGuide } from './components/esre_guide/esre_guide';
|
||||
import { AISearchGuide } from './components/ai_search_guide/ai_search_guide';
|
||||
|
||||
import { EnterpriseSearchEsre } from '.';
|
||||
import { EnterpriseSearchAISearch } from '.';
|
||||
|
||||
describe('SearchExperiences', () => {
|
||||
it('renders the ESRE guide', () => {
|
||||
it('renders the AI Search guide', () => {
|
||||
setMockValues({
|
||||
errorConnectingMessage: '',
|
||||
config: { host: 'localhost' },
|
||||
});
|
||||
const wrapper = shallow(<EnterpriseSearchEsre />);
|
||||
const wrapper = shallow(<EnterpriseSearchAISearch />);
|
||||
|
||||
expect(wrapper.find(EsreGuide)).toHaveLength(1);
|
||||
expect(wrapper.find(AISearchGuide)).toHaveLength(1);
|
||||
});
|
||||
});
|
|
@ -13,11 +13,11 @@ import { isVersionMismatch } from '../../../common/is_version_mismatch';
|
|||
import { InitialAppData } from '../../../common/types';
|
||||
import { VersionMismatchPage } from '../shared/version_mismatch';
|
||||
|
||||
import { EsreGuide } from './components/esre_guide/esre_guide';
|
||||
import { AISearchGuide } from './components/ai_search_guide/ai_search_guide';
|
||||
|
||||
import { ROOT_PATH } from './routes';
|
||||
|
||||
export const EnterpriseSearchEsre: React.FC<InitialAppData> = (props) => {
|
||||
export const EnterpriseSearchAISearch: React.FC<InitialAppData> = (props) => {
|
||||
const { enterpriseSearchVersion, kibanaVersion } = props;
|
||||
const incompatibleVersions = isVersionMismatch(enterpriseSearchVersion, kibanaVersion);
|
||||
|
||||
|
@ -31,7 +31,7 @@ export const EnterpriseSearchEsre: React.FC<InitialAppData> = (props) => {
|
|||
);
|
||||
}
|
||||
|
||||
return <EsreGuide />;
|
||||
return <AISearchGuide />;
|
||||
};
|
||||
|
||||
return (
|
|
@ -8,7 +8,7 @@
|
|||
module.exports = {
|
||||
preset: '@kbn/test',
|
||||
rootDir: '../../../../../..',
|
||||
roots: ['<rootDir>/x-pack/plugins/enterprise_search/public/applications/esre'],
|
||||
roots: ['<rootDir>/x-pack/plugins/enterprise_search/public/applications/ai_search'],
|
||||
collectCoverage: true,
|
||||
coverageReporters: ['text', 'html'],
|
||||
collectCoverageFrom: [
|
||||
|
@ -18,7 +18,7 @@ module.exports = {
|
|||
'!<rootDir>/x-pack/plugins/enterprise_search/public/applications/test_helpers/**/*.{ts,tsx}',
|
||||
],
|
||||
coverageDirectory:
|
||||
'<rootDir>/target/kibana-coverage/jest/x-pack/plugins/enterprise_search/public/applications/esre',
|
||||
'<rootDir>/target/kibana-coverage/jest/x-pack/plugins/enterprise_search/public/applications/ai_search',
|
||||
modulePathIgnorePatterns: [
|
||||
'<rootDir>/x-pack/plugins/enterprise_search/public/applications/app_search/cypress',
|
||||
'<rootDir>/x-pack/plugins/enterprise_search/public/applications/workplace_search/cypress',
|
|
@ -8,6 +8,8 @@
|
|||
import { DocLinksStart } from '@kbn/core/public';
|
||||
|
||||
class DocLinks {
|
||||
public aiSearchDoc: string;
|
||||
public aiSearchHelp: string;
|
||||
public apiKeys: string;
|
||||
public appSearchAdaptiveRelevance: string;
|
||||
public appSearchApiClients: string;
|
||||
|
@ -103,10 +105,6 @@ class DocLinks {
|
|||
public enterpriseSearchMailService: string;
|
||||
public enterpriseSearchTroubleshootSetup: string;
|
||||
public enterpriseSearchUsersAccess: string;
|
||||
public esre: string;
|
||||
public esreFaq: string;
|
||||
public esreHelp: string;
|
||||
public esreLearn: string;
|
||||
public indexApi: string;
|
||||
public ingestionApis: string;
|
||||
public ingestPipelines: string;
|
||||
|
@ -127,6 +125,8 @@ class DocLinks {
|
|||
public searchApplicationsSearch: string;
|
||||
public searchApplicationsTemplates: string;
|
||||
public searchApplicationsSearchApi: string;
|
||||
public searchLabs: string;
|
||||
public searchLabsRepo: string;
|
||||
public searchTemplates: string;
|
||||
public searchUIAppSearch: string;
|
||||
public searchUIElasticsearch: string;
|
||||
|
@ -172,6 +172,8 @@ class DocLinks {
|
|||
public workplaceSearchZoom: string;
|
||||
|
||||
constructor() {
|
||||
this.aiSearchDoc = '';
|
||||
this.aiSearchHelp = '';
|
||||
this.apiKeys = '';
|
||||
this.appSearchAdaptiveRelevance = '';
|
||||
this.appSearchApis = '';
|
||||
|
@ -267,10 +269,6 @@ class DocLinks {
|
|||
this.enterpriseSearchMailService = '';
|
||||
this.enterpriseSearchTroubleshootSetup = '';
|
||||
this.enterpriseSearchUsersAccess = '';
|
||||
this.esre = '';
|
||||
this.esreFaq = '';
|
||||
this.esreHelp = '';
|
||||
this.esreLearn = '';
|
||||
this.indexApi = '';
|
||||
this.ingestionApis = '';
|
||||
this.ingestPipelines = '';
|
||||
|
@ -293,6 +291,8 @@ class DocLinks {
|
|||
this.searchApplications = '';
|
||||
this.searchApplicationsSearch = '';
|
||||
this.searchApplicationsSearchApi = '';
|
||||
this.searchLabs = '';
|
||||
this.searchLabsRepo = '';
|
||||
this.searchTemplates = '';
|
||||
this.start = '';
|
||||
this.supportedNlpModels = '';
|
||||
|
@ -337,6 +337,8 @@ class DocLinks {
|
|||
}
|
||||
|
||||
public setDocLinks(docLinks: DocLinksStart): void {
|
||||
this.aiSearchDoc = docLinks.links.enterpriseSearch.aiSearchDoc;
|
||||
this.aiSearchHelp = docLinks.links.enterpriseSearch.aiSearchHelp;
|
||||
this.apiKeys = docLinks.links.enterpriseSearch.apiKeys;
|
||||
this.appSearchAdaptiveRelevance = docLinks.links.appSearch.adaptiveRelevance;
|
||||
this.appSearchApis = docLinks.links.appSearch.apiRef;
|
||||
|
@ -432,10 +434,6 @@ class DocLinks {
|
|||
this.enterpriseSearchMailService = docLinks.links.enterpriseSearch.mailService;
|
||||
this.enterpriseSearchTroubleshootSetup = docLinks.links.enterpriseSearch.troubleshootSetup;
|
||||
this.enterpriseSearchUsersAccess = docLinks.links.enterpriseSearch.usersAccess;
|
||||
this.esre = docLinks.links.enterpriseSearch.esre;
|
||||
this.esreFaq = docLinks.links.enterpriseSearch.esreFaq;
|
||||
this.esreHelp = docLinks.links.enterpriseSearch.esreHelp;
|
||||
this.esreLearn = docLinks.links.enterpriseSearch.esreLearn;
|
||||
this.indexApi = docLinks.links.enterpriseSearch.indexApi;
|
||||
this.ingestionApis = docLinks.links.enterpriseSearch.ingestionApis;
|
||||
this.ingestPipelines = docLinks.links.enterpriseSearch.ingestPipelines;
|
||||
|
@ -459,6 +457,8 @@ class DocLinks {
|
|||
this.searchApplicationsSearchApi = docLinks.links.enterpriseSearch.searchApplicationsSearchApi;
|
||||
this.searchApplications = docLinks.links.enterpriseSearch.searchApplications;
|
||||
this.searchApplicationsSearch = docLinks.links.enterpriseSearch.searchApplicationsSearch;
|
||||
this.searchLabs = docLinks.links.enterpriseSearch.searchLabs;
|
||||
this.searchLabsRepo = docLinks.links.enterpriseSearch.searchLabsRepo;
|
||||
this.searchTemplates = docLinks.links.enterpriseSearch.searchTemplates;
|
||||
this.start = docLinks.links.enterpriseSearch.start;
|
||||
this.supportedNlpModels = docLinks.links.enterpriseSearch.supportedNlpModels;
|
||||
|
|
|
@ -16,7 +16,7 @@ import {
|
|||
ENTERPRISE_SEARCH_CONTENT_PLUGIN,
|
||||
ENTERPRISE_SEARCH_OVERVIEW_PLUGIN,
|
||||
ENTERPRISE_SEARCH_PRODUCT_NAME,
|
||||
ESRE_PLUGIN,
|
||||
AI_SEARCH_PLUGIN,
|
||||
SEARCH_EXPERIENCES_PLUGIN,
|
||||
SEARCH_PRODUCT_NAME,
|
||||
VECTOR_SEARCH_PLUGIN,
|
||||
|
@ -157,8 +157,8 @@ export const useSearchExperiencesBreadcrumbs = (breadcrumbs: Breadcrumbs = []) =
|
|||
export const useEnterpriseSearchApplicationsBreadcrumbs = (breadcrumbs: Breadcrumbs = []) =>
|
||||
useSearchBreadcrumbs(breadcrumbs);
|
||||
|
||||
export const useEsreBreadcrumbs = (breadcrumbs: Breadcrumbs = []) =>
|
||||
useSearchBreadcrumbs([{ text: ESRE_PLUGIN.NAME, path: '/' }, ...breadcrumbs]);
|
||||
export const useAiSearchBreadcrumbs = (breadcrumbs: Breadcrumbs = []) =>
|
||||
useSearchBreadcrumbs([{ text: AI_SEARCH_PLUGIN.NAME, path: '/' }, ...breadcrumbs]);
|
||||
|
||||
export const useVectorSearchBreadcrumbs = (breadcrumbs: Breadcrumbs = []) =>
|
||||
useSearchBreadcrumbs([{ text: VECTOR_SEARCH_PLUGIN.NAV_TITLE, path: '/' }, ...breadcrumbs]);
|
||||
|
|
|
@ -11,7 +11,7 @@ import {
|
|||
WORKPLACE_SEARCH_PLUGIN,
|
||||
SEARCH_EXPERIENCES_PLUGIN,
|
||||
SEARCH_PRODUCT_NAME,
|
||||
ESRE_PLUGIN,
|
||||
AI_SEARCH_PLUGIN,
|
||||
VECTOR_SEARCH_PLUGIN,
|
||||
} from '../../../../common/constants';
|
||||
|
||||
|
@ -49,7 +49,7 @@ export const workplaceSearchTitle = (page: Title = []) =>
|
|||
export const searchExperiencesTitle = (page: Title = []) =>
|
||||
generateTitle([...page, SEARCH_EXPERIENCES_PLUGIN.NAME]);
|
||||
|
||||
export const esreTitle = (page: Title = []) => generateTitle([...page, ESRE_PLUGIN.NAME]);
|
||||
export const aiSearchTitle = (page: Title = []) => generateTitle([...page, AI_SEARCH_PLUGIN.NAME]);
|
||||
|
||||
export const vectorSearchTitle = (page: Title = []) =>
|
||||
generateTitle([...page, VECTOR_SEARCH_PLUGIN.NAME]);
|
||||
|
|
|
@ -10,7 +10,7 @@ export {
|
|||
SetAnalyticsChrome,
|
||||
SetEnterpriseSearchContentChrome,
|
||||
SetElasticsearchChrome,
|
||||
SetEsreChrome,
|
||||
SetAiSearchChrome,
|
||||
SetAppSearchChrome,
|
||||
SetWorkplaceSearchChrome,
|
||||
SetSearchExperiencesChrome,
|
||||
|
|
|
@ -19,7 +19,7 @@ import {
|
|||
useEnterpriseSearchApplicationsBreadcrumbs,
|
||||
useAnalyticsBreadcrumbs,
|
||||
useEnterpriseSearchContentBreadcrumbs,
|
||||
useEsreBreadcrumbs,
|
||||
useAiSearchBreadcrumbs,
|
||||
useElasticsearchBreadcrumbs,
|
||||
useAppSearchBreadcrumbs,
|
||||
useWorkplaceSearchBreadcrumbs,
|
||||
|
@ -34,7 +34,7 @@ import {
|
|||
appSearchTitle,
|
||||
workplaceSearchTitle,
|
||||
searchExperiencesTitle,
|
||||
esreTitle,
|
||||
aiSearchTitle,
|
||||
vectorSearchTitle,
|
||||
} from './generate_title';
|
||||
|
||||
|
@ -125,14 +125,14 @@ export const SetAppSearchChrome: React.FC<SetChromeProps> = ({ trail = [] }) =>
|
|||
return null;
|
||||
};
|
||||
|
||||
export const SetEsreChrome: React.FC<SetChromeProps> = ({ trail = [] }) => {
|
||||
export const SetAiSearchChrome: React.FC<SetChromeProps> = ({ trail = [] }) => {
|
||||
const { setBreadcrumbs, setDocTitle } = useValues(KibanaLogic);
|
||||
|
||||
const title = reverseArray(trail);
|
||||
const docTitle = esreTitle(title);
|
||||
const docTitle = aiSearchTitle(title);
|
||||
|
||||
const crumbs = useGenerateBreadcrumbs(trail);
|
||||
const breadcrumbs = useEsreBreadcrumbs(crumbs);
|
||||
const breadcrumbs = useAiSearchBreadcrumbs(crumbs);
|
||||
|
||||
useEffect(() => {
|
||||
setBreadcrumbs(breadcrumbs);
|
||||
|
|
|
@ -42,28 +42,6 @@ describe('useEnterpriseSearchContentNav', () => {
|
|||
});
|
||||
|
||||
expect(useEnterpriseSearchNav()).toEqual([
|
||||
{
|
||||
href: '/app/enterprise_search/overview',
|
||||
id: 'es_overview',
|
||||
items: [
|
||||
{
|
||||
href: '/app/enterprise_search/elasticsearch',
|
||||
id: 'elasticsearch',
|
||||
name: 'Elasticsearch',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/vector_search',
|
||||
id: 'vectorSearch',
|
||||
name: 'Vector Search',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/esre',
|
||||
id: 'esre',
|
||||
name: 'ESRE',
|
||||
},
|
||||
],
|
||||
name: 'Overview',
|
||||
},
|
||||
{
|
||||
id: 'content',
|
||||
items: [
|
||||
|
@ -97,6 +75,28 @@ describe('useEnterpriseSearchContentNav', () => {
|
|||
],
|
||||
name: 'Applications',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/overview',
|
||||
id: 'es_getting_started',
|
||||
items: [
|
||||
{
|
||||
href: '/app/enterprise_search/elasticsearch',
|
||||
id: 'elasticsearch',
|
||||
name: 'Elasticsearch',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/vector_search',
|
||||
id: 'vectorSearch',
|
||||
name: 'Vector Search',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/ai_search',
|
||||
id: 'aiSearch',
|
||||
name: 'AI Search',
|
||||
},
|
||||
],
|
||||
name: 'Getting started',
|
||||
},
|
||||
{
|
||||
id: 'enterpriseSearch',
|
||||
items: [
|
||||
|
@ -206,28 +206,6 @@ describe('useEnterpriseSearchApplicationNav', () => {
|
|||
|
||||
it('returns an array of top-level Enterprise Search nav items', () => {
|
||||
expect(useEnterpriseSearchApplicationNav()).toEqual([
|
||||
{
|
||||
href: '/app/enterprise_search/overview',
|
||||
id: 'es_overview',
|
||||
items: [
|
||||
{
|
||||
href: '/app/enterprise_search/elasticsearch',
|
||||
id: 'elasticsearch',
|
||||
name: 'Elasticsearch',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/vector_search',
|
||||
id: 'vectorSearch',
|
||||
name: 'Vector Search',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/esre',
|
||||
id: 'esre',
|
||||
name: 'ESRE',
|
||||
},
|
||||
],
|
||||
name: 'Overview',
|
||||
},
|
||||
{
|
||||
id: 'content',
|
||||
items: [
|
||||
|
@ -260,6 +238,28 @@ describe('useEnterpriseSearchApplicationNav', () => {
|
|||
],
|
||||
name: 'Applications',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/overview',
|
||||
id: 'es_getting_started',
|
||||
items: [
|
||||
{
|
||||
href: '/app/enterprise_search/elasticsearch',
|
||||
id: 'elasticsearch',
|
||||
name: 'Elasticsearch',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/vector_search',
|
||||
id: 'vectorSearch',
|
||||
name: 'Vector Search',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/ai_search',
|
||||
id: 'aiSearch',
|
||||
name: 'AI Search',
|
||||
},
|
||||
],
|
||||
name: 'Getting started',
|
||||
},
|
||||
{
|
||||
id: 'enterpriseSearch',
|
||||
items: [
|
||||
|
@ -283,9 +283,9 @@ describe('useEnterpriseSearchApplicationNav', () => {
|
|||
const engineName = 'my-test-engine';
|
||||
const navItems = useEnterpriseSearchApplicationNav(engineName);
|
||||
expect(navItems?.map((ni) => ni.name)).toEqual([
|
||||
'Overview',
|
||||
'Content',
|
||||
'Applications',
|
||||
'Getting started',
|
||||
'Enterprise Search',
|
||||
]);
|
||||
const searchItem = navItems?.find((ni) => ni.id === 'applications');
|
||||
|
@ -339,9 +339,9 @@ describe('useEnterpriseSearchApplicationNav', () => {
|
|||
const engineName = 'my-test-engine';
|
||||
const navItems = useEnterpriseSearchApplicationNav(engineName, true);
|
||||
expect(navItems?.map((ni) => ni.name)).toEqual([
|
||||
'Overview',
|
||||
'Content',
|
||||
'Applications',
|
||||
'Getting started',
|
||||
'Enterprise Search',
|
||||
]);
|
||||
const searchItem = navItems?.find((ni) => ni.id === 'applications');
|
||||
|
@ -398,28 +398,6 @@ describe('useEnterpriseSearchApplicationNav', () => {
|
|||
|
||||
describe('useEnterpriseSearchAnalyticsNav', () => {
|
||||
const baseNavs = [
|
||||
{
|
||||
href: '/app/enterprise_search/overview',
|
||||
id: 'es_overview',
|
||||
items: [
|
||||
{
|
||||
href: '/app/enterprise_search/elasticsearch',
|
||||
id: 'elasticsearch',
|
||||
name: 'Elasticsearch',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/vector_search',
|
||||
id: 'vectorSearch',
|
||||
name: 'Vector Search',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/esre',
|
||||
id: 'esre',
|
||||
name: 'ESRE',
|
||||
},
|
||||
],
|
||||
name: 'Overview',
|
||||
},
|
||||
{
|
||||
id: 'content',
|
||||
items: [
|
||||
|
@ -447,6 +425,28 @@ describe('useEnterpriseSearchAnalyticsNav', () => {
|
|||
],
|
||||
name: 'Applications',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/overview',
|
||||
id: 'es_getting_started',
|
||||
items: [
|
||||
{
|
||||
href: '/app/enterprise_search/elasticsearch',
|
||||
id: 'elasticsearch',
|
||||
name: 'Elasticsearch',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/vector_search',
|
||||
id: 'vectorSearch',
|
||||
name: 'Vector Search',
|
||||
},
|
||||
{
|
||||
href: '/app/enterprise_search/ai_search',
|
||||
id: 'aiSearch',
|
||||
name: 'AI Search',
|
||||
},
|
||||
],
|
||||
name: 'Getting started',
|
||||
},
|
||||
{
|
||||
id: 'enterpriseSearch',
|
||||
items: [
|
||||
|
|
|
@ -19,7 +19,7 @@ import {
|
|||
ELASTICSEARCH_PLUGIN,
|
||||
ENTERPRISE_SEARCH_CONTENT_PLUGIN,
|
||||
ENTERPRISE_SEARCH_OVERVIEW_PLUGIN,
|
||||
ESRE_PLUGIN,
|
||||
AI_SEARCH_PLUGIN,
|
||||
VECTOR_SEARCH_PLUGIN,
|
||||
WORKPLACE_SEARCH_PLUGIN,
|
||||
} from '../../../../common/constants';
|
||||
|
@ -34,46 +34,6 @@ export const useEnterpriseSearchNav = () => {
|
|||
if (!isSidebarEnabled) return undefined;
|
||||
|
||||
const navItems: Array<EuiSideNavItemType<unknown>> = [
|
||||
{
|
||||
id: 'es_overview',
|
||||
name: i18n.translate('xpack.enterpriseSearch.nav.enterpriseSearchOverviewTitle', {
|
||||
defaultMessage: 'Overview',
|
||||
}),
|
||||
...generateNavLink({
|
||||
shouldNotCreateHref: true,
|
||||
to: ENTERPRISE_SEARCH_OVERVIEW_PLUGIN.URL,
|
||||
}),
|
||||
items: [
|
||||
{
|
||||
id: 'elasticsearch',
|
||||
name: i18n.translate('xpack.enterpriseSearch.nav.elasticsearchTitle', {
|
||||
defaultMessage: 'Elasticsearch',
|
||||
}),
|
||||
...generateNavLink({
|
||||
shouldNotCreateHref: true,
|
||||
to: ELASTICSEARCH_PLUGIN.URL,
|
||||
}),
|
||||
},
|
||||
{
|
||||
id: 'vectorSearch',
|
||||
name: VECTOR_SEARCH_PLUGIN.NAME,
|
||||
...generateNavLink({
|
||||
shouldNotCreateHref: true,
|
||||
to: VECTOR_SEARCH_PLUGIN.URL,
|
||||
}),
|
||||
},
|
||||
{
|
||||
id: 'esre',
|
||||
name: i18n.translate('xpack.enterpriseSearch.nav.esreTitle', {
|
||||
defaultMessage: 'ESRE',
|
||||
}),
|
||||
...generateNavLink({
|
||||
shouldNotCreateHref: true,
|
||||
to: ESRE_PLUGIN.URL,
|
||||
}),
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
id: 'content',
|
||||
items: [
|
||||
|
@ -136,6 +96,46 @@ export const useEnterpriseSearchNav = () => {
|
|||
defaultMessage: 'Applications',
|
||||
}),
|
||||
},
|
||||
{
|
||||
id: 'es_getting_started',
|
||||
name: i18n.translate('xpack.enterpriseSearch.nav.enterpriseSearchOverviewTitle', {
|
||||
defaultMessage: 'Getting started',
|
||||
}),
|
||||
...generateNavLink({
|
||||
shouldNotCreateHref: true,
|
||||
to: ENTERPRISE_SEARCH_OVERVIEW_PLUGIN.URL,
|
||||
}),
|
||||
items: [
|
||||
{
|
||||
id: 'elasticsearch',
|
||||
name: i18n.translate('xpack.enterpriseSearch.nav.elasticsearchTitle', {
|
||||
defaultMessage: 'Elasticsearch',
|
||||
}),
|
||||
...generateNavLink({
|
||||
shouldNotCreateHref: true,
|
||||
to: ELASTICSEARCH_PLUGIN.URL,
|
||||
}),
|
||||
},
|
||||
{
|
||||
id: 'vectorSearch',
|
||||
name: VECTOR_SEARCH_PLUGIN.NAME,
|
||||
...generateNavLink({
|
||||
shouldNotCreateHref: true,
|
||||
to: VECTOR_SEARCH_PLUGIN.URL,
|
||||
}),
|
||||
},
|
||||
{
|
||||
id: 'aiSearch',
|
||||
name: i18n.translate('xpack.enterpriseSearch.nav.aiSearchTitle', {
|
||||
defaultMessage: 'AI Search',
|
||||
}),
|
||||
...generateNavLink({
|
||||
shouldNotCreateHref: true,
|
||||
to: AI_SEARCH_PLUGIN.URL,
|
||||
}),
|
||||
},
|
||||
],
|
||||
},
|
||||
...(productAccess.hasAppSearchAccess || productAccess.hasWorkplaceSearchAccess
|
||||
? [
|
||||
{
|
||||
|
|
|
@ -22,7 +22,7 @@ import {
|
|||
} from '@elastic/eui';
|
||||
import { FormattedMessage } from '@kbn/i18n-react';
|
||||
|
||||
import { ESRE_PLUGIN } from '../../../../../common/constants';
|
||||
import { AI_SEARCH_PLUGIN } from '../../../../../common/constants';
|
||||
import elserIllustration from '../../../../assets/images/elser.svg';
|
||||
import nlpIllustration from '../../../../assets/images/nlp.svg';
|
||||
import { docLinks } from '../../../shared/doc_links';
|
||||
|
@ -206,7 +206,7 @@ export const VectorSearchGuide: React.FC = () => {
|
|||
<EuiFlexGroup gutterSize="l" direction="column">
|
||||
<EuiCard
|
||||
onClick={() =>
|
||||
application.navigateToApp(ESRE_PLUGIN.URL.replace(/^(?:\/app\/)?(.*)$/, '$1'))
|
||||
application.navigateToApp(AI_SEARCH_PLUGIN.URL.replace(/^(?:\/app\/)?(.*)$/, '$1'))
|
||||
}
|
||||
layout="horizontal"
|
||||
titleSize="s"
|
||||
|
|
|
@ -31,7 +31,7 @@ import {
|
|||
APPLICATIONS_PLUGIN,
|
||||
APP_SEARCH_PLUGIN,
|
||||
ELASTICSEARCH_PLUGIN,
|
||||
ESRE_PLUGIN,
|
||||
AI_SEARCH_PLUGIN,
|
||||
ENTERPRISE_SEARCH_CONTENT_PLUGIN,
|
||||
ENTERPRISE_SEARCH_OVERVIEW_PLUGIN,
|
||||
SEARCH_EXPERIENCES_PLUGIN,
|
||||
|
@ -216,25 +216,25 @@ export class EnterpriseSearchPlugin implements Plugin {
|
|||
});
|
||||
|
||||
core.application.register({
|
||||
appRoute: ESRE_PLUGIN.URL,
|
||||
appRoute: AI_SEARCH_PLUGIN.URL,
|
||||
category: DEFAULT_APP_CATEGORIES.enterpriseSearch,
|
||||
euiIconType: ESRE_PLUGIN.LOGO,
|
||||
id: ESRE_PLUGIN.ID,
|
||||
euiIconType: AI_SEARCH_PLUGIN.LOGO,
|
||||
id: AI_SEARCH_PLUGIN.ID,
|
||||
mount: async (params: AppMountParameters) => {
|
||||
const kibanaDeps = await this.getKibanaDeps(core, params, cloud);
|
||||
const { chrome, http } = kibanaDeps.core;
|
||||
chrome.docTitle.change(ESRE_PLUGIN.NAME);
|
||||
chrome.docTitle.change(AI_SEARCH_PLUGIN.NAME);
|
||||
|
||||
await this.getInitialData(http);
|
||||
const pluginData = this.getPluginData();
|
||||
|
||||
const { renderApp } = await import('./applications');
|
||||
const { EnterpriseSearchEsre } = await import('./applications/esre');
|
||||
const { EnterpriseSearchAISearch } = await import('./applications/ai_search');
|
||||
|
||||
return renderApp(EnterpriseSearchEsre, kibanaDeps, pluginData);
|
||||
return renderApp(EnterpriseSearchAISearch, kibanaDeps, pluginData);
|
||||
},
|
||||
navLinkStatus: AppNavLinkStatus.hidden,
|
||||
title: ESRE_PLUGIN.NAV_TITLE,
|
||||
title: AI_SEARCH_PLUGIN.NAV_TITLE,
|
||||
});
|
||||
|
||||
core.application.register({
|
||||
|
|
|
@ -192,7 +192,7 @@ export class EnterpriseSearchPlugin implements Plugin {
|
|||
enterpriseSearchContent: showEnterpriseSearch,
|
||||
enterpriseSearchAnalytics: showEnterpriseSearch,
|
||||
enterpriseSearchApplications: showEnterpriseSearch,
|
||||
enterpriseSearchEsre: showEnterpriseSearch,
|
||||
enterpriseSearchAISearch: showEnterpriseSearch,
|
||||
enterpriseSearchVectorSearch: showEnterpriseSearch,
|
||||
enterpriseSearchElasticsearch: showEnterpriseSearch,
|
||||
appSearch: hasAppSearchAccess && config.canDeployEntSearch,
|
||||
|
@ -204,7 +204,7 @@ export class EnterpriseSearchPlugin implements Plugin {
|
|||
enterpriseSearchContent: showEnterpriseSearch,
|
||||
enterpriseSearchAnalytics: showEnterpriseSearch,
|
||||
enterpriseSearchApplications: showEnterpriseSearch,
|
||||
enterpriseSearchEsre: showEnterpriseSearch,
|
||||
enterpriseSearchAISearch: showEnterpriseSearch,
|
||||
enterpriseSearchVectorSearch: showEnterpriseSearch,
|
||||
enterpriseSearchElasticsearch: showEnterpriseSearch,
|
||||
appSearch: hasAppSearchAccess && config.canDeployEntSearch,
|
||||
|
|
|
@ -18,7 +18,7 @@ import {
|
|||
ENTERPRISE_SEARCH_CONNECTOR_CRAWLER_SERVICE_TYPE,
|
||||
ENTERPRISE_SEARCH_CONTENT_PLUGIN,
|
||||
APP_SEARCH_PLUGIN,
|
||||
ESRE_PLUGIN,
|
||||
AI_SEARCH_PLUGIN,
|
||||
} from '../../common/constants';
|
||||
|
||||
type ServiceDefinition =
|
||||
|
@ -107,11 +107,11 @@ export function getSearchResultProvider(
|
|||
},
|
||||
{
|
||||
keywords: ['esre', 'search'],
|
||||
name: i18n.translate('xpack.enterpriseSearch.searchProvider.esre.name', {
|
||||
defaultMessage: 'ESRE',
|
||||
name: i18n.translate('xpack.enterpriseSearch.searchProvider.aiSearch.name', {
|
||||
defaultMessage: 'Search AI',
|
||||
}),
|
||||
serviceType: 'esre',
|
||||
url: ESRE_PLUGIN.URL,
|
||||
serviceType: 'ai_search',
|
||||
url: AI_SEARCH_PLUGIN.URL,
|
||||
},
|
||||
]
|
||||
: []),
|
||||
|
|
|
@ -3212,7 +3212,7 @@
|
|||
"guidedOnboardingPackage.gettingStarted.cards.progressLabel": "{numberCompleteSteps} étape(s) terminée(s) sur {numberSteps}",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.siemSecurity.title": "Détecter les menaces dans {lineBreak} mes données avec SIEM",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.completeLabel": "Guide terminé",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.esreSearch.title": "Créer une expérience de recherche sémantique",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.aiSearch.title": "Créer une expérience de recherche sémantique",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.hostsObservability.title": "Monitorer mes indicateurs d'hôte",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.kubernetesObservability.title": "Monitorer les clusters Kubernetes",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.logsObservability.title": "Collecter et analyser mes logs",
|
||||
|
@ -12114,19 +12114,19 @@
|
|||
"xpack.enterpriseSearch.errorConnectingState.cloudErrorMessage": "Est-ce que des nœuds Enterprise Search sont en cours d'exécution dans votre déploiement cloud ? {deploymentSettingsLink}",
|
||||
"xpack.enterpriseSearch.errorConnectingState.description1": "Impossible d'établir une connexion à Enterprise Search au niveau de l'URL hôte {enterpriseSearchUrl} en raison de l'erreur suivante :",
|
||||
"xpack.enterpriseSearch.errorConnectingState.description2": "Vérifiez que l'URL hôte est correctement configurée dans {configFile}.",
|
||||
"xpack.enterpriseSearch.esre.elser.description": "Déployez le {elser} sans effort pour des capacités de recherche sémantique de texte instantanées en quelques clics seulement. Ce modèle développe votre document et votre texte de requête utilisant le champ \"text_expansion\", ce qui vous permet immédiatement de faire des recherches transparentes.",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step2.description": "Après avoir créé un index, sélectionnez-le et cliquez sur l’onglet intitulé \"{pipelinesName}\".",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.description": "Pour en savoir plus sur comment débuter avec ESRE et tester ces outils avec des exemples concrets, consultez la {esreDocumentation}.",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.faq.description": "Découvrez ce qu’est (et n’est pas) ESRE avec ces {frequentlyAskedQuestions}.",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.help.description": "Besoin d'aide ? Consultez {discussForum}.",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.description": "Ces sujets sont complexes, c’est pourquoi nous avons choisi quelques {learningTopics} pour vous aider à démarrer.",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.description": "Utilisez les tableaux de bord et outils de {behavioralAnalytics} pour visualiser le comportement des utilisateurs et mesurer l’impact de vos modifications.",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step1.description": "Consultez les {behavioralAnalytics} et créez votre première collection",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.description": "Utilisez des outils de traitement du langage naturel (NLP) tels que l’analyse des sentiments, la synthèse ou la reconnaissance d’entités nommées pour améliorer la pertinence de vos résultats de recherche. NLP utilise plusieurs {supportedMlModels} que vous pouvez charger pour analyser et enrichir intelligemment des documents avec des champs supplémentaires.",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step3.description": "Accédez à l’onglet {pipelinesName} de votre index pour créer un pipeline d’inférence qui utilise votre modèle déployé.",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.description": "Utilisez {rrf} pour combiner des classements de plusieurs ensembles de résultats avec différents indicateurs de pertinence, sans avoir besoin d’ajustement.",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.description": "Utilisez des {vectorDbCapabilities} en ajoutant des incorporations de vos modèles ML. Déployez des modèles entraînés sur des nœuds de ML Elastic et configurez des pipelines d’inférence pour ajouter automatiquement des incorporations quand vous ingérez des documents, afin de pouvoir utiliser la méthode de recherche vectorielle kNN dans _search.",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step3.description": "Accédez à l’onglet {pipelinesName} de votre index pour créer un pipeline d’inférence qui utilise votre modèle déployé.",
|
||||
"xpack.enterpriseSearch.aiSearch.elser.description": "Déployez le {elser} sans effort pour des capacités de recherche sémantique de texte instantanées en quelques clics seulement. Ce modèle développe votre document et votre texte de requête utilisant le champ \"text_expansion\", ce qui vous permet immédiatement de faire des recherches transparentes.",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step2.description": "Après avoir créé un index, sélectionnez-le et cliquez sur l’onglet intitulé \"{pipelinesName}\".",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.description": "Pour en savoir plus sur la façon de démarrer et de tester ces outils avec des exemples concrets, visitez le {searchLab}.",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.doc.description": "Visitez la {aiSearchDoc}.",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.help.description": "Besoin d'aide ? Consultez {discussForum}.",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.learn.description": "Le {searchLabsRepo} contient de nombreuses resources comme des notebooks ou des exemples d'application",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.description": "Utilisez les tableaux de bord et outils de {behavioralAnalytics} pour visualiser le comportement des utilisateurs et mesurer l’impact de vos modifications.",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step1.description": "Consultez les {behavioralAnalytics} et créez votre première collection",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.description": "Utilisez des outils de traitement du langage naturel (NLP) tels que l’analyse des sentiments, la synthèse ou la reconnaissance d’entités nommées pour améliorer la pertinence de vos résultats de recherche. NLP utilise plusieurs {supportedMlModels} que vous pouvez charger pour analyser et enrichir intelligemment des documents avec des champs supplémentaires.",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step3.description": "Accédez à l’onglet {pipelinesName} de votre index pour créer un pipeline d’inférence qui utilise votre modèle déployé.",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.description": "Utilisez {rrf} pour combiner des classements de plusieurs ensembles de résultats avec différents indicateurs de pertinence, sans avoir besoin d’ajustement.",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.description": "Utilisez des {vectorDbCapabilities} en ajoutant des incorporations de vos modèles ML. Déployez des modèles entraînés sur des nœuds de ML Elastic et configurez des pipelines d’inférence pour ajouter automatiquement des incorporations quand vous ingérez des documents, afin de pouvoir utiliser la méthode de recherche vectorielle kNN dans _search.",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step3.description": "Accédez à l’onglet {pipelinesName} de votre index pour créer un pipeline d’inférence qui utilise votre modèle déployé.",
|
||||
"xpack.enterpriseSearch.index.connector.syncRules.description": "Inclure ou exclure les éléments de haut niveau, les types de fichier et les chemins (de fichier ou de répertoire) pour\n effectuer la synchronisation à partir de {indexName}. Tout est inclus par défaut. Chaque document est\n testé par rapport aux règles ci-dessous, et la première règle qui correspond est appliquée.",
|
||||
"xpack.enterpriseSearch.inferencePipelineCard.action.delete.disabledDescription": "Ce pipeline d'inférence ne peut pas être supprimé, car il est utilisé dans plusieurs pipelines [{indexReferences}]. Pour le supprimer, vous devez le détacher des autres pipelines pour ne garder qu'un seul pipeline d'ingestion.",
|
||||
"xpack.enterpriseSearch.inferencePipelineCard.deleteConfirm.description": "Vous êtes en train de retirer le pipeline \"{pipelineName}\" du pipeline d'inférence de Machine Learning pour le supprimer.",
|
||||
|
@ -14093,75 +14093,75 @@
|
|||
"xpack.enterpriseSearch.errorConnectingState.troubleshootAuth": "Vérifiez votre authentification utilisateur :",
|
||||
"xpack.enterpriseSearch.errorConnectingState.troubleshootAuthNative": "Vous devez vous authentifier à l'aide d'une authentification native d'Elasticsearch, de SSO/SAML ou d'OpenID Connect.",
|
||||
"xpack.enterpriseSearch.errorConnectingState.troubleshootAuthSAML": "Si vous utilisez un fournisseur de SSO externe, tel que SAML ou OpenID Connect, votre domaine SAML/OIDC doit également être configuré sur Enterprise Search.",
|
||||
"xpack.enterpriseSearch.esre.description": "Le kit d’outils permettant aux développeurs de créer des applications d’IA optimisées pour la recherche à l’aide de la plateforme Elastic.",
|
||||
"xpack.enterpriseSearch.esre.elser.description.elserLinkText": "Elastic Learned Sparse Encoder",
|
||||
"xpack.enterpriseSearch.esre.elserAccordion.description": "Fonctionnalités de recherche sémantique instantanée",
|
||||
"xpack.enterpriseSearch.esre.elserAccordion.title": "Elastic Learned Sparse Encoder",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step1.buttonLabel": "Créer un index",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step1.title": "Créer un index",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step2.description.pipelinesName": "Pipelines",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step2.title": "Accédez à l’onglet Pipelines d’un index",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step3.description": "Localisez le panneau qui vous permet de déployer ELSER en un clic et créez un pipeline d’inférence à l’aide de ce modèle.",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step3.title": "Suivez les instructions à l’écran pour déployer ELSER",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.description.esreLinkText": "Documentation ESRE",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.faq.title": "FAQ",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.help.title": "Aide",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.discussForumLinkText": "Forum de discussion ESRE",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.frequentlyAskedQuestionsLinkText": "questions fréquentes",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.learningTopicsLinkText": "thèmes de formation",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.title": "Apprendre",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.title": "Approfondissez avec les documents ESRE",
|
||||
"xpack.enterpriseSearch.esre.guide.description": "L’Elasticsearch Relevance Engine™ (ESRE) permet aux développeurs de créer des applications d’IA optimisées pour la recherche à l’aide de la plateforme Elastic. ESRE est un ensemble d'outils et de fonctionnalités qui comprennent notre modèle ML entraîné ELSER, notre recherche vectorielle et nos capacités d'intégration, ainsi que le classement RRF pour combiner la recherche vectorielle et la recherche textuelle.",
|
||||
"xpack.enterpriseSearch.esre.guide.pageTitle": "Améliorez vos recherches avec ESRE",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationAccordion.description": "Résultats pondérés de plusieurs classements",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationAccordion.title": "Combinaison linéaire",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.description": "Utilisée pour calculer un score de similarité ou une distance entre des points de données. Combine les attributs ou fonctionnalités à l’aide de pondérations, ce qui permet de personnaliser les facteurs de pertinence.",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.step1.knnSearchCombineLinkText": "Combiner les kNN (k plus proches voisins) approximatifs avec d'autres caractéristiques",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.step1.title": "Découvrez comment utiliser la combinaison linéaire dans les requêtes _search",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.step2.buttonLabel": "Ouvrir Console",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.step2.title": "Essayez-le dès maintenant dans Console",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.behavioralAnalyticsLinkText": "Behavioral Analytics",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step1.behavioralAnalyticsLinkText": "Behavioral Analytics",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step1.title": "Créer une collection",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step2.description": "Après avoir créé une collection, suivez les directives concernant l’intégration de notre outil de suivi dans votre application ou site web.",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step2.title": "Intégrer l’outil de suivi d’analyse",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step3.description": "Nos tableaux de bord et outils vous aident à visualiser le comportement de vos utilisateurs finaux et à mesurer les performances de vos applications de recherche.",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step3.title": "Consulter votre tableau de bord",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.title": "Mesurer vos performances",
|
||||
"xpack.enterpriseSearch.esre.navTitle": "ESRE",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentAccordion.description": "Enrichissement des données pertinentes avec les modèles de ML entraînés",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentAccordion.title": "Enrichissement de NLP",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.description.supportedMlModelsLinkText": "Modèles de ML compatibles",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.buttonLabel": "Affichez les modèles entraînés",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.guideToTrainedModelsLinkText": "Guide sur les modèles entraînés",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.supportedNlpModelsLinkText": "Modèles NLP compatibles",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.title": "Apprenez à charger des modèles de ML",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step2.buttonLabel": "Créez un index",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step2.title": "Créez un index",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step3.description.pipelinesName": "Pipelines",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step3.title": "Créez un pipeline d’inférence de ML",
|
||||
"xpack.enterpriseSearch.esre.productName": "ESRE",
|
||||
"xpack.enterpriseSearch.esre.rankAggregationSection.description": "Méthodes facultatives pour fusionner ou combiner différents classements pour obtenir une meilleure performance générale de classement.",
|
||||
"xpack.enterpriseSearch.esre.rankAggregationSection.title": "Utiliser une méthode d’agrégation de classement",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingAccordion.description": "Ceci combine intelligemment les classements sans configuration",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingAccordion.title": "Classement hybride avec la RRF",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.rrfLinkText": "Fusion des rangs réciproques (RRF)",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.step1.rrfDocsLinkText": "Documentations sur la fusion des rangs réciproques (RRF)",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.step1.title": "Découvrez des exemples de l’utilisation de la RRF dans les requêtes _search",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.step2.buttonLabel": "Ouvrir Console",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.step2.title": "Essayez-le dès maintenant dans Console",
|
||||
"xpack.enterpriseSearch.esre.semanticSearch.description": "ESRE combine votre choix parmi ces outils de récupération d'informations.",
|
||||
"xpack.enterpriseSearch.esre.semanticSearch.title": "Configurer une recherche sémantique",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchAccordion.description": "Des recherches de similarités puissantes pour les données non structurées",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchAccordion.title": "Recherche vectorielle",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.description.vectorDbCapabilitiesLinkText": "Fonctionnalités de bases de données vectorielles d’Elasticsearch",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step1.buttonLabel": "Affichez les modèles entraînés",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step1.guideToTrainedModelsLinkText": "Guide sur les modèles entraînés",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step1.title": "Apprenez à charger des modèles de ML",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step2.buttonLabel": "Créez un index",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step2.title": "Créez un index",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step3.description.pipelinesName": "Pipelines",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step3.title": "Créez un pipeline d’inférence de ML",
|
||||
"xpack.enterpriseSearch.aiSearch.description": "Le kit d’outils permettant aux développeurs de créer des applications d’IA optimisées pour la recherche à l’aide de la plateforme Elastic.",
|
||||
"xpack.enterpriseSearch.aiSearch.elser.description.elserLinkText": "Elastic Learned Sparse Encoder v2",
|
||||
"xpack.enterpriseSearch.aiSearch.elserAccordion.description": "Fonctionnalités de recherche sémantique instantanée",
|
||||
"xpack.enterpriseSearch.aiSearch.elserAccordion.title": "Elastic Learned Sparse Encoder",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step1.buttonLabel": "Créer un index",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step1.title": "Créer un index",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step2.description.pipelinesName": "Pipelines",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step2.title": "Accédez à l’onglet Pipelines d’un index",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step3.description": "Localisez le panneau qui vous permet de déployer ELSER en un clic et créez un pipeline d’inférence à l’aide de ce modèle.",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step3.title": "Suivez les instructions à l’écran pour déployer ELSER",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.description.searchLabsLinkText": "Search Labs",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.doc.title": "Documentation",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.help.title": "Aide",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.help.helpLinkText": "notre forum de discussion ou le Slack communautaire Elastic",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.doc.aiSearchDocLinkText": "documetation Elastic",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.learn.searchLabsRepoLinkText": "dépôt GitHub du Search Labs",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.learn.title": "Apprendre",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.title": "En savoir plus sur la recherche basée sur l'IA",
|
||||
"xpack.enterpriseSearch.aiSearch.guide.description": "Créez des applications de recherche basées IA à l'aide de la plateforme Elastic, en utilisant notre modèle ML exclusif ELSER, nos capacités de recherche vectorielle, ainsi que le modèle de ranking RRF pour combiner la recherche vectorielle et la recherche textuelle.",
|
||||
"xpack.enterpriseSearch.aiSearch.guide.pageTitle": "Améliorez vos recherches avec l'IA",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationAccordion.description": "Résultats pondérés de plusieurs classements",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationAccordion.title": "Combinaison linéaire",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.description": "Utilisée pour calculer un score de similarité ou une distance entre des points de données. Combine les attributs ou fonctionnalités à l’aide de pondérations, ce qui permet de personnaliser les facteurs de pertinence.",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step1.knnSearchCombineLinkText": "Combiner les kNN (k plus proches voisins) approximatifs avec d'autres caractéristiques",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step1.title": "Découvrez comment utiliser la combinaison linéaire dans les requêtes _search",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step2.buttonLabel": "Ouvrir Console",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step2.title": "Essayez-le dès maintenant dans Console",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.behavioralAnalyticsLinkText": "Behavioral Analytics",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step1.behavioralAnalyticsLinkText": "Behavioral Analytics",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step1.title": "Créer une collection",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step2.description": "Après avoir créé une collection, suivez les directives concernant l’intégration de notre outil de suivi dans votre application ou site web.",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step2.title": "Intégrer l’outil de suivi d’analyse",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step3.description": "Nos tableaux de bord et outils vous aident à visualiser le comportement de vos utilisateurs finaux et à mesurer les performances de vos applications de recherche.",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step3.title": "Consulter votre tableau de bord",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.title": "Mesurer vos performances",
|
||||
"xpack.enterpriseSearch.aiSearch.navTitle": "AI Search",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentAccordion.description": "Enrichissement des données pertinentes avec les modèles de ML entraînés",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentAccordion.title": "Enrichissement de NLP",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.description.supportedMlModelsLinkText": "Modèles de ML compatibles",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.buttonLabel": "Affichez les modèles entraînés",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.guideToTrainedModelsLinkText": "Guide sur les modèles entraînés",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.supportedNlpModelsLinkText": "Modèles NLP compatibles",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.title": "Apprenez à charger des modèles de ML",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step2.buttonLabel": "Créez un index",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step2.title": "Créez un index",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step3.description.pipelinesName": "Pipelines",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step3.title": "Créez un pipeline d’inférence de ML",
|
||||
"xpack.enterpriseSearch.aiSearch.productName": "AI Search",
|
||||
"xpack.enterpriseSearch.aiSearch.rankAggregationSection.description": "Méthodes facultatives pour fusionner ou combiner différents classements pour obtenir une meilleure performance générale de classement.",
|
||||
"xpack.enterpriseSearch.aiSearch.rankAggregationSection.title": "Utiliser une méthode d’agrégation de classement",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingAccordion.description": "Ceci combine intelligemment les classements sans configuration",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingAccordion.title": "Classement hybride avec la RRF",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.rrfLinkText": "Fusion des rangs réciproques (RRF)",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step1.rrfDocsLinkText": "Documentations sur la fusion des rangs réciproques (RRF)",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step1.title": "Découvrez des exemples de l’utilisation de la RRF dans les requêtes _search",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step2.buttonLabel": "Ouvrir Console",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step2.title": "Essayez-le dès maintenant dans Console",
|
||||
"xpack.enterpriseSearch.aiSearch.semanticSearch.description": "ESRE combine votre choix parmi ces outils de récupération d'informations.",
|
||||
"xpack.enterpriseSearch.aiSearch.semanticSearch.title": "Configurer une recherche sémantique",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchAccordion.description": "Des recherches de similarités puissantes pour les données non structurées",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchAccordion.title": "Recherche vectorielle",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.description.vectorDbCapabilitiesLinkText": "Fonctionnalités de bases de données vectorielles d’Elasticsearch",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step1.buttonLabel": "Affichez les modèles entraînés",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step1.guideToTrainedModelsLinkText": "Guide sur les modèles entraînés",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step1.title": "Apprenez à charger des modèles de ML",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step2.buttonLabel": "Créez un index",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step2.title": "Créez un index",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step3.description.pipelinesName": "Pipelines",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step3.title": "Créez un pipeline d’inférence de ML",
|
||||
"xpack.enterpriseSearch.guideConfig.addDataStep.description": "Ingérez vos données, créez un index et enrichissez vos données avec des pipelines d'ingestion et d'inférence personnalisables.",
|
||||
"xpack.enterpriseSearch.guideConfig.addDataStep.title": "Ajouter des données",
|
||||
"xpack.enterpriseSearch.guideConfig.description": "Nous vous aiderons à créer une expérience de recherche avec vos données à l'aide du robot d'indexation, des connecteurs et des API d'Elastic.",
|
||||
|
@ -14238,8 +14238,8 @@
|
|||
"xpack.enterpriseSearch.nav.contentSettingsTitle": "Paramètres",
|
||||
"xpack.enterpriseSearch.nav.contentTitle": "Contenu",
|
||||
"xpack.enterpriseSearch.nav.elasticsearchTitle": "Elasticsearch",
|
||||
"xpack.enterpriseSearch.nav.enterpriseSearchOverviewTitle": "Aperçu",
|
||||
"xpack.enterpriseSearch.nav.esreTitle": "ESRE",
|
||||
"xpack.enterpriseSearch.nav.enterpriseSearchOverviewTitle": "Guide de démarrage",
|
||||
"xpack.enterpriseSearch.nav.aiSearchTitle": "AI Search",
|
||||
"xpack.enterpriseSearch.nav.searchApplicationsTitle": "Applications de recherche",
|
||||
"xpack.enterpriseSearch.nav.searchIndicesTitle": "Index",
|
||||
"xpack.enterpriseSearch.nav.workplaceSearchTitle": "Workplace Search",
|
||||
|
|
|
@ -3227,7 +3227,7 @@
|
|||
"guidedOnboardingPackage.gettingStarted.cards.progressLabel": "{numberSteps}ステップ中{numberCompleteSteps}ステップ完了",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.siemSecurity.title": "SIEMで{lineBreak}データの脅威を検出",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.completeLabel": "ガイド完了",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.esreSearch.title": "セマンティック検索エクスペリエンスを構築",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.aiSearch.title": "セマンティック検索エクスペリエンスを構築",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.hostsObservability.title": "ホストメトリックを監視",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.kubernetesObservability.title": "Kubernetesクラスターの監視",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.logsObservability.title": "ログを収集して分析",
|
||||
|
@ -12128,19 +12128,19 @@
|
|||
"xpack.enterpriseSearch.errorConnectingState.cloudErrorMessage": "クラウドデプロイのエンタープライズ サーチノードが実行中ですか?{deploymentSettingsLink}",
|
||||
"xpack.enterpriseSearch.errorConnectingState.description1": "次のエラーのため、ホストURL {enterpriseSearchUrl}では、エンタープライズ サーチへの接続を確立できません:",
|
||||
"xpack.enterpriseSearch.errorConnectingState.description2": "ホストURLが{configFile}で正しく構成されていることを確認してください。",
|
||||
"xpack.enterpriseSearch.esre.elser.description": "わずか数回のクリック操作で、簡単に{elser}をデプロイし、即時テキストセマンティック検索機能を実現できます。このモデルは、「text_expansion」フィールドを使用してドキュメントとクエリテキストを拡張し、すぐに使えるシームレスな検索を提供します。",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step2.description": "インデックスを作成した後は、インデックスを選択し、{pipelinesName}タブをクリックします。",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.description": "ESREの基本操作と、具体的な例でこれらのツールをテストする方法の詳細については、{esreDocumentation}をご覧ください。",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.faq.description": "これらの{frequentlyAskedQuestions}でESREとは何かをご覧ください。",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.help.description": "ヘルプが必要な場合{discussForum}をご確認ください。",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.description": "これらは複雑なトピックであるため、導入しやすいように、いくつかの{learningTopics}をまとめました。",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.description": "{behavioralAnalytics}ダッシュボードとツールを使用して、ユーザーの行動を可視化し、変更の影響を測定します。",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step1.description": "{behavioralAnalytics}にアクセスし、最初のコレクションを作成",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.description": "セマンティック分析、要約、固有表現抽出などの自然言語処理(NLP)ツールを使用し、検索結果の関連性を高めます。NLPは、ユーザーが読み込むことができる複数の{supportedMlModels}を使用して、ドキュメントをインテリジェントに分析し、フィールドを追加することでドキュメントを強化します。",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step3.description": "インデックスの{pipelinesName}タブに移動し、デプロイされたモデルで使用する推論パイプラインを作成します。",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.description": "{rrf}を使用して、複数の結果セットの評価を異なる関連性指標と組み合わせます。微調整は必要ありません。",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.description": "MLモデルから埋め込みを追加して、{vectorDbCapabilities}を使用します。Elastic MLノードに学習済みモデルをデプロイし、推論パイプラインを設定して、ドキュメントをインジェストしたときに自動的に埋め込みが追加されるようにします。これにより、_searchでkNNベクトル検索方法を使用できます。",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step3.description": "インデックスの{pipelinesName}タブに移動し、デプロイされたモデルで使用する推論パイプラインを作成します。",
|
||||
"xpack.enterpriseSearch.aiSearch.elser.description": "わずか数回のクリック操作で、簡単に{elser}をデプロイし、即時テキストセマンティック検索機能を実現できます。このモデルは、「text_expansion」フィールドを使用してドキュメントとクエリテキストを拡張し、すぐに使えるシームレスな検索を提供します。",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step2.description": "インデックスを作成した後は、インデックスを選択し、{pipelinesName}タブをクリックします。",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.description": "これらのツールを開始し、具体的な例でテストする方法の詳細については、{searchLab} にアクセスしてください。",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.doc.description": "訪問する{aiSearchDoc}。",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.help.description": "ヘルプが必要な場合{discussForum}をご確認ください。",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.learn.description": "{searchLabsRepo} には、ノートブック、サンプル アプリ、リソースが含まれています。",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.description": "{behavioralAnalytics}ダッシュボードとツールを使用して、ユーザーの行動を可視化し、変更の影響を測定します。",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step1.description": "{behavioralAnalytics}にアクセスし、最初のコレクションを作成",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.description": "セマンティック分析、要約、固有表現抽出などの自然言語処理(NLP)ツールを使用し、検索結果の関連性を高めます。NLPは、ユーザーが読み込むことができる複数の{supportedMlModels}を使用して、ドキュメントをインテリジェントに分析し、フィールドを追加することでドキュメントを強化します。",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step3.description": "インデックスの{pipelinesName}タブに移動し、デプロイされたモデルで使用する推論パイプラインを作成します。",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.description": "{rrf}を使用して、複数の結果セットの評価を異なる関連性指標と組み合わせます。微調整は必要ありません。",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.description": "MLモデルから埋め込みを追加して、{vectorDbCapabilities}を使用します。Elastic MLノードに学習済みモデルをデプロイし、推論パイプラインを設定して、ドキュメントをインジェストしたときに自動的に埋め込みが追加されるようにします。これにより、_searchでkNNベクトル検索方法を使用できます。",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step3.description": "インデックスの{pipelinesName}タブに移動し、デプロイされたモデルで使用する推論パイプラインを作成します。",
|
||||
"xpack.enterpriseSearch.index.connector.syncRules.description": "上位のアイテム、ファイルタイプ、(ファイルまたはフォルダー)パスを追加または除外\n {indexName}から同期します。デフォルトではすべてが含まれています。各ドキュメントは\n 以下のルールに対してテストされ、最初の一致するルールが適用されます。",
|
||||
"xpack.enterpriseSearch.inferencePipelineCard.action.delete.disabledDescription": "この推論パイプラインは削除できません。複数のパイプライン[{indexReferences}]で使用されています。削除する前に、1つのインジェストパイプライン以外のすべてからこのパイプラインをデタッチする必要があります。",
|
||||
"xpack.enterpriseSearch.inferencePipelineCard.deleteConfirm.description": "パイプライン\"{pipelineName}\"を機械学習推論パイプラインから切り離し、削除しています。",
|
||||
|
@ -14107,75 +14107,75 @@
|
|||
"xpack.enterpriseSearch.errorConnectingState.troubleshootAuth": "ユーザー認証を確認してください。",
|
||||
"xpack.enterpriseSearch.errorConnectingState.troubleshootAuthNative": "Elasticsearchネイティブ認証、SSO/SAML、またはOpenID Connectを使用して認証する必要があります。",
|
||||
"xpack.enterpriseSearch.errorConnectingState.troubleshootAuthSAML": "SAMLやOpenID Connectなどの外部SSOプロバイダーを使用している場合は、エンタープライズ サーチでSAML/OIDCレルムを設定できる必要があります。",
|
||||
"xpack.enterpriseSearch.esre.description": "開発者がElasticプラットフォームを使ってAI検索エンジンを搭載したアプリケーションを構築するためのツールキット。",
|
||||
"xpack.enterpriseSearch.esre.elser.description.elserLinkText": "Elastic Learned Sparse Encoder",
|
||||
"xpack.enterpriseSearch.esre.elserAccordion.description": "即時セマンティック検索機能",
|
||||
"xpack.enterpriseSearch.esre.elserAccordion.title": "Elastic Learned Sparse Encoder",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step1.buttonLabel": "インデックスを作成",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step1.title": "インデックスを作成",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step2.description.pipelinesName": "パイプライン",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step2.title": "インデックスのパイプラインタブに移動",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step3.description": "ELSERをワンクリックでデプロイし、そのモデルを使った推論パイプラインを作成できるパネルを探します。",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step3.title": "画面の指示に従い、ELSERをデプロイ",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.description.esreLinkText": "ESREドキュメント",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.faq.title": "FAQ",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.help.title": "ヘルプ",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.discussForumLinkText": "ESREディスカッションフォーラム",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.frequentlyAskedQuestionsLinkText": "FAQ",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.learningTopicsLinkText": "学習トピック",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.title": "学習",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.title": "ESREドキュメントでさらに深く",
|
||||
"xpack.enterpriseSearch.esre.guide.description": "Elasticsearch Relevance Engine™(ESRE)により、開発者はElasticプラットフォームを使ってAI検索エンジンを搭載したアプリケーションを構築できます。ESREは、当社独自の学習済みMLモデルELSER、ベクトル検索と埋め込み機能、ベクトル検索とテキスト検索を組み合わせたRRFランキングを含むツールと機能のセットです。",
|
||||
"xpack.enterpriseSearch.esre.guide.pageTitle": "ESREで検索を強化",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationAccordion.description": "複数のランキングから重み付けがされた結果",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationAccordion.title": "線形結合",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.description": "データポイント間の類似度スコアまたは距離を計算するために使用します。重みを使って属性や特徴量を組み合わせることで、関連性係数をカスタマイズできます。",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.step1.knnSearchCombineLinkText": "近似kNNと他の特徴量を組み合わせる",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.step1.title": "_searchクエリで線形結合を使用する方法を見る",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.step2.buttonLabel": "コンソールを開く",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.step2.title": "今すぐコンソールで試す",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.behavioralAnalyticsLinkText": "Behavioral Analytics",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step1.behavioralAnalyticsLinkText": "Behavioral Analytics",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step1.title": "コレクションの作成",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step2.description": "コレクションを作成した後、手順に従って、トラッカーをあなたのアプリケーションやWebサイトに統合してください。",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step2.title": "分析トラッカーを統合",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step3.description": "Elasticのダッシュボードとツールでは、エンドユーザーの行動を可視化し、検索アプリケーションのパフォーマンスを測定できます。",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step3.title": "ダッシュボードを確認",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.title": "パフォーマンスを測定",
|
||||
"xpack.enterpriseSearch.esre.navTitle": "ESRE",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentAccordion.description": "学習済みMLモデルを使用した、インサイトが豊富なデータエンリッチメント",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentAccordion.title": "NLPエンリッチメント",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.description.supportedMlModelsLinkText": "サポートされているMLモデル",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.buttonLabel": "学習済みモデルを表示",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.guideToTrainedModelsLinkText": "学習済みモデルのガイド",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.supportedNlpModelsLinkText": "サポートされているNLPモデル",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.title": "MLモデルのアップロード方法",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step2.buttonLabel": "インデックスを作成",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step2.title": "インデックスを作成",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step3.description.pipelinesName": "パイプライン",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step3.title": "ML推論パイプラインを作成",
|
||||
"xpack.enterpriseSearch.esre.productName": "ESRE",
|
||||
"xpack.enterpriseSearch.esre.rankAggregationSection.description": "全体的なランキングパフォーマンスを向上させるために、異なるランキングを融合または組み合わせるオプションの方法。",
|
||||
"xpack.enterpriseSearch.esre.rankAggregationSection.title": "ランク集約方法を使用",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingAccordion.description": "構成なしで、インテリジェントにランキングを結合",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingAccordion.title": "RRFハイブリッドランキング",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.rrfLinkText": "逆順位融合(RRF)",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.step1.rrfDocsLinkText": "逆順位融合(RRF)ドキュメント",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.step1.title": "_searchクエリにおけるRRFの使用例を見る",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.step2.buttonLabel": "コンソールを開く",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.step2.title": "今すぐコンソールで試す",
|
||||
"xpack.enterpriseSearch.esre.semanticSearch.description": "ESREでは、これらの情報検索ツールの中から任意のツールを組み合わせることができます。",
|
||||
"xpack.enterpriseSearch.esre.semanticSearch.title": "セマンティック検索を設定",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchAccordion.description": "非構造化データ用の強力な類似度検索",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchAccordion.title": "ベクトル検索",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.description.vectorDbCapabilitiesLinkText": "ElasticsearchのベクトルDB機能",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step1.buttonLabel": "学習済みモデルを表示",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step1.guideToTrainedModelsLinkText": "学習済みモデルのガイド",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step1.title": "MLモデルのアップロード方法",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step2.buttonLabel": "インデックスを作成",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step2.title": "インデックスを作成",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step3.description.pipelinesName": "パイプライン",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step3.title": "ML推論パイプラインを作成",
|
||||
"xpack.enterpriseSearch.aiSearch.description": "開発者がElasticプラットフォームを使ってAI検索エンジンを搭載したアプリケーションを構築するためのツールキット。",
|
||||
"xpack.enterpriseSearch.aiSearch.elser.description.elserLinkText": "Elastic Learned Sparse Encoder v2",
|
||||
"xpack.enterpriseSearch.aiSearch.elserAccordion.description": "即時セマンティック検索機能",
|
||||
"xpack.enterpriseSearch.aiSearch.elserAccordion.title": "Elastic Learned Sparse Encoder",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step1.buttonLabel": "インデックスを作成",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step1.title": "インデックスを作成",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step2.description.pipelinesName": "パイプライン",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step2.title": "インデックスのパイプラインタブに移動",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step3.description": "ELSERをワンクリックでデプロイし、そのモデルを使った推論パイプラインを作成できるパネルを探します。",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step3.title": "画面の指示に従い、ELSERをデプロイ",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.description.searchLabsLinkText": "Search Labs",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.doc.title": "ドキュメンテーション",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.help.title": "ヘルプ",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.help.helpLinkText": "フォーラムまたは Elastic コミュニティ Slack について議論します",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.doc.aiSearchDocLinkText": "Elastic ドキュメンテーション",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.learn.searchLabsRepoLinkText": "SearchLabs リポジトリ ",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.learn.title": "学習",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.title": "AI 検索でさらに深く掘り下げる",
|
||||
"xpack.enterpriseSearch.aiSearch.guide.description": "Elastic プラットフォームを使用して、AI 検索を活用したアプリケーションを構築します。これには、独自のトレーニング済み ML モデル ELSER、ベクトル検索と埋め込み機能、ベクトル検索とテキスト検索を組み合わせるための RRF ランキングが含まれます。",
|
||||
"xpack.enterpriseSearch.aiSearch.guide.pageTitle": "AI で検索を強化する",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationAccordion.description": "複数のランキングから重み付けがされた結果",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationAccordion.title": "線形結合",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.description": "データポイント間の類似度スコアまたは距離を計算するために使用します。重みを使って属性や特徴量を組み合わせることで、関連性係数をカスタマイズできます。",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step1.knnSearchCombineLinkText": "近似kNNと他の特徴量を組み合わせる",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step1.title": "_searchクエリで線形結合を使用する方法を見る",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step2.buttonLabel": "コンソールを開く",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step2.title": "今すぐコンソールで試す",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.behavioralAnalyticsLinkText": "Behavioral Analytics",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step1.behavioralAnalyticsLinkText": "Behavioral Analytics",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step1.title": "コレクションの作成",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step2.description": "コレクションを作成した後、手順に従って、トラッカーをあなたのアプリケーションやWebサイトに統合してください。",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step2.title": "分析トラッカーを統合",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step3.description": "Elasticのダッシュボードとツールでは、エンドユーザーの行動を可視化し、検索アプリケーションのパフォーマンスを測定できます。",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step3.title": "ダッシュボードを確認",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.title": "パフォーマンスを測定",
|
||||
"xpack.enterpriseSearch.aiSearch.navTitle": "AI検索",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentAccordion.description": "学習済みMLモデルを使用した、インサイトが豊富なデータエンリッチメント",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentAccordion.title": "NLPエンリッチメント",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.description.supportedMlModelsLinkText": "サポートされているMLモデル",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.buttonLabel": "学習済みモデルを表示",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.guideToTrainedModelsLinkText": "学習済みモデルのガイド",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.supportedNlpModelsLinkText": "サポートされているNLPモデル",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.title": "MLモデルのアップロード方法",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step2.buttonLabel": "インデックスを作成",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step2.title": "インデックスを作成",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step3.description.pipelinesName": "パイプライン",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step3.title": "ML推論パイプラインを作成",
|
||||
"xpack.enterpriseSearch.aiSearch.productName": "AI検索",
|
||||
"xpack.enterpriseSearch.aiSearch.rankAggregationSection.description": "全体的なランキングパフォーマンスを向上させるために、異なるランキングを融合または組み合わせるオプションの方法。",
|
||||
"xpack.enterpriseSearch.aiSearch.rankAggregationSection.title": "ランク集約方法を使用",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingAccordion.description": "構成なしで、インテリジェントにランキングを結合",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingAccordion.title": "RRFハイブリッドランキング",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.rrfLinkText": "逆順位融合(RRF)",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step1.rrfDocsLinkText": "逆順位融合(RRF)ドキュメント",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step1.title": "_searchクエリにおけるRRFの使用例を見る",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step2.buttonLabel": "コンソールを開く",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step2.title": "今すぐコンソールで試す",
|
||||
"xpack.enterpriseSearch.aiSearch.semanticSearch.description": "ESREでは、これらの情報検索ツールの中から任意のツールを組み合わせることができます。",
|
||||
"xpack.enterpriseSearch.aiSearch.semanticSearch.title": "セマンティック検索を設定",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchAccordion.description": "非構造化データ用の強力な類似度検索",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchAccordion.title": "ベクトル検索",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.description.vectorDbCapabilitiesLinkText": "ElasticsearchのベクトルDB機能",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step1.buttonLabel": "学習済みモデルを表示",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step1.guideToTrainedModelsLinkText": "学習済みモデルのガイド",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step1.title": "MLモデルのアップロード方法",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step2.buttonLabel": "インデックスを作成",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step2.title": "インデックスを作成",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step3.description.pipelinesName": "パイプライン",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step3.title": "ML推論パイプラインを作成",
|
||||
"xpack.enterpriseSearch.guideConfig.addDataStep.description": "カスタマイズ可能なインジェストパイプラインと推論パイプラインにより、データのインジェスト、インデックスの作成、データのリッチ化を実現します。",
|
||||
"xpack.enterpriseSearch.guideConfig.addDataStep.title": "データの追加",
|
||||
"xpack.enterpriseSearch.guideConfig.description": "Elasticのウェブクローラー、コネクター、APIを使って、お客様のデータで検索体験を構築するお手伝いをします。",
|
||||
|
@ -14252,8 +14252,8 @@
|
|||
"xpack.enterpriseSearch.nav.contentSettingsTitle": "設定",
|
||||
"xpack.enterpriseSearch.nav.contentTitle": "コンテンツ",
|
||||
"xpack.enterpriseSearch.nav.elasticsearchTitle": "Elasticsearch",
|
||||
"xpack.enterpriseSearch.nav.enterpriseSearchOverviewTitle": "概要",
|
||||
"xpack.enterpriseSearch.nav.esreTitle": "ESRE",
|
||||
"xpack.enterpriseSearch.nav.enterpriseSearchOverviewTitle": "はじめる",
|
||||
"xpack.enterpriseSearch.nav.aiSearchTitle": "AI Search",
|
||||
"xpack.enterpriseSearch.nav.searchApplicationsTitle": "検索アプリケーション",
|
||||
"xpack.enterpriseSearch.nav.searchIndicesTitle": "インデックス",
|
||||
"xpack.enterpriseSearch.nav.workplaceSearchTitle": "Workplace Search",
|
||||
|
|
|
@ -3226,7 +3226,7 @@
|
|||
"guidedOnboardingPackage.gettingStarted.cards.progressLabel": "已完成 {numberCompleteSteps} 个(共 {numberSteps} 个)步骤",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.siemSecurity.title": "通过 SIEM{lineBreak}在我的数据中检测威胁",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.completeLabel": "指南完成",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.esreSearch.title": "构建语义搜索体验",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.aiSearch.title": "构建语义搜索体验",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.hostsObservability.title": "监测我的主机指标",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.kubernetesObservability.title": "监测 Kubernetes 集群",
|
||||
"guidedOnboardingPackage.gettingStarted.cards.logsObservability.title": "收集并分析我的日志",
|
||||
|
@ -12128,19 +12128,19 @@
|
|||
"xpack.enterpriseSearch.errorConnectingState.cloudErrorMessage": "您的云部署是否正在运行 Enterprise Search 节点?{deploymentSettingsLink}",
|
||||
"xpack.enterpriseSearch.errorConnectingState.description1": "由于以下错误,我们无法与主机 URL {enterpriseSearchUrl} 的 Enterprise Search 建立连接:",
|
||||
"xpack.enterpriseSearch.errorConnectingState.description2": "确保在 {configFile} 中已正确配置主机 URL。",
|
||||
"xpack.enterpriseSearch.esre.elser.description": "轻松部署 {elser},以便只需单击几下即可实现即时文本语义搜索功能。此模型将使用“text_expansion”字段扩充您的文档和查询文本,提供开箱可用的无缝搜索功能。",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step2.description": "创建索引后,请选中该索引,然后单击 {pipelinesName} 选项卡。",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.description": "要详细了解如何开始使用 ESRE 并使用具体的示例来测试这些工具,请访问 {esreDocumentation}。",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.faq.description": "通过这些{frequentlyAskedQuestions}了解 ESRE 是(不是)什么。",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.help.description": "需要帮助?请访问{discussForum}!",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.description": "这些是复杂的主题,我们已汇编了一些{learningTopics}以帮助您开始使用。",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.description": "使用{behavioralAnalytics}仪表板和工具以可视化用户行为并评估您所做更改的影响。",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step1.description": "访问{behavioralAnalytics}并创建您的首个集合",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.description": "使用情绪分析、汇总或已命名实体识别等自然语言处理 (NLP) 工具来增强搜索结果的相关性。NLP 使用几个可加载的 {supportedMlModels},以通过附加字段智能分析并扩充文档。",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step3.description": "导航到您索引的 {pipelinesName} 选项卡,以创建使用已部署模型的推理管道。",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.description": "使用 {rrf} 将来自多个结果集的排名与不同相关性指标组合起来,而无需进行微调。",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.description": "通过添加来自 ML 模型的嵌入来使用{vectorDbCapabilities}。在 Elastic ML 节点上部署已训练模型并设置推理管道,以在采集文档时自动添加嵌入,便于您在 _search 中使用 kNN 矢量搜索方法。",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step3.description": "导航到您索引的 {pipelinesName} 选项卡,以创建使用已部署模型的推理管道。",
|
||||
"xpack.enterpriseSearch.aiSearch.elser.description": "轻松部署 {elser},以便只需单击几下即可实现即时文本语义搜索功能。此模型将使用“text_expansion”字段扩充您的文档和查询文本,提供开箱可用的无缝搜索功能。",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step2.description": "创建索引后,请选中该索引,然后单击 {pipelinesName} 选项卡。",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.description": "要详细了解如何开始使用并通过具体示例测试这些工具,请访问 {searchLab}。",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.doc.description": "请访问{aiSearchDoc}。",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.help.description": "需要帮助?请访问{discussForum}!",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.learn.description": "{searchLabsRepo} 包含笔记本、示例应用程序和资源。",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.description": "使用{behavioralAnalytics}仪表板和工具以可视化用户行为并评估您所做更改的影响。",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step1.description": "访问{behavioralAnalytics}并创建您的首个集合",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.description": "使用情绪分析、汇总或已命名实体识别等自然语言处理 (NLP) 工具来增强搜索结果的相关性。NLP 使用几个可加载的 {supportedMlModels},以通过附加字段智能分析并扩充文档。",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step3.description": "导航到您索引的 {pipelinesName} 选项卡,以创建使用已部署模型的推理管道。",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.description": "使用 {rrf} 将来自多个结果集的排名与不同相关性指标组合起来,而无需进行微调。",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.description": "通过添加来自 ML 模型的嵌入来使用{vectorDbCapabilities}。在 Elastic ML 节点上部署已训练模型并设置推理管道,以在采集文档时自动添加嵌入,便于您在 _search 中使用 kNN 矢量搜索方法。",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step3.description": "导航到您索引的 {pipelinesName} 选项卡,以创建使用已部署模型的推理管道。",
|
||||
"xpack.enterpriseSearch.index.connector.syncRules.description": "包括或排除高级别项目、文件类型和(文件或文件夹)路径\n 从 {indexName} 中同步。默认情况下包括所有内容。每个文档会\n 根据以下规则进行测试,并将应用第一个匹配的规则。",
|
||||
"xpack.enterpriseSearch.inferencePipelineCard.action.delete.disabledDescription": "无法删除此推理管道,因为它已用在多个管道中 [{indexReferences}]。您必须将此管道从所有管道(一个采集管道除外)分离,然后才能将其删除。",
|
||||
"xpack.enterpriseSearch.inferencePipelineCard.deleteConfirm.description": "您正从 Machine Learning 推理管道中移除并删除管道“{pipelineName}”。",
|
||||
|
@ -14107,75 +14107,75 @@
|
|||
"xpack.enterpriseSearch.errorConnectingState.troubleshootAuth": "检查您的用户身份验证:",
|
||||
"xpack.enterpriseSearch.errorConnectingState.troubleshootAuthNative": "必须使用 Elasticsearch 本机身份验证、SSO/SAML 或 OpenID Connect 执行身份验证。",
|
||||
"xpack.enterpriseSearch.errorConnectingState.troubleshootAuthSAML": "如果使用外部 SSO 提供程序,如 SAML 或 OpenID Connect,还必须在 Enterprise Search 上设置 SAML/OIDC Realm。",
|
||||
"xpack.enterpriseSearch.esre.description": "工具套件,供开发者使用 Elastic 平台构建 AI 搜索驱动型应用程序。",
|
||||
"xpack.enterpriseSearch.esre.elser.description.elserLinkText": "Elastic Learned Sparse Encoder",
|
||||
"xpack.enterpriseSearch.esre.elserAccordion.description": "即时语义搜索功能",
|
||||
"xpack.enterpriseSearch.esre.elserAccordion.title": "Elastic Learned Sparse Encoder",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step1.buttonLabel": "创建索引",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step1.title": "创建索引",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step2.description.pipelinesName": "管道",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step2.title": "导航到索引的“管道”选项卡",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step3.description": "查找允许您一键部署 ELSER 并使用该模型创建推理管道的面板。",
|
||||
"xpack.enterpriseSearch.esre.elserPanel.step3.title": "按照屏幕上显示的说明部署 ELSER",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.description.esreLinkText": "ESRE 文档",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.faq.title": "常见问题解答",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.help.title": "帮助",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.discussForumLinkText": "ESRE 讨论论坛",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.frequentlyAskedQuestionsLinkText": "常见问题解答",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.learningTopicsLinkText": "学习主题",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.learn.title": "学习",
|
||||
"xpack.enterpriseSearch.esre.esreDocsSection.title": "更深入地了解 ESRE 文档",
|
||||
"xpack.enterpriseSearch.esre.guide.description": "借助 Elasticsearch Relevance Engine™ (ESRE),开发者可以使用 Elastic 平台构建 AI 搜索驱动型应用程序。ESRE 提供了一组工具和功能,其中包括我们专有的已训练 ML 模型 ELSER、我们的矢量搜索和嵌入功能,以及用于组合矢量和文本搜索的 RRF 排名。",
|
||||
"xpack.enterpriseSearch.esre.guide.pageTitle": "利用 ESRE 增强您的搜索功能",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationAccordion.description": "来自多个排名的加权结果",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationAccordion.title": "线性组合",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.description": "用于计算相似度分数或数据点之间的距离。使用权重组合属性或功能,这将启用定制相关性因子。",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.step1.knnSearchCombineLinkText": "组合近似 kNN 与其他功能",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.step1.title": "了解如何在 _search 查询中使用线性组合",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.step2.buttonLabel": "打开 Console",
|
||||
"xpack.enterpriseSearch.esre.linearCombinationPanel.step2.title": "立即在 Console 中试用",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.behavioralAnalyticsLinkText": "行为分析",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step1.behavioralAnalyticsLinkText": "行为分析",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step1.title": "创建集合",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step2.description": "创建集合后,请按照有关如何将跟踪器集成到应用程序或网站的指示操作。",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step2.title": "集成分析跟踪器",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step3.description": "我们的仪表板和工具将帮助您对最终用户行为进行可视化并评估搜索应用程序的性能。",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.step3.title": "查看仪表板",
|
||||
"xpack.enterpriseSearch.esre.measurePerformanceSection.title": "评估性能",
|
||||
"xpack.enterpriseSearch.esre.navTitle": "ESRE",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentAccordion.description": "利用已训练 ML 模型进行富有洞察力的数据扩充",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentAccordion.title": "NLP 扩充",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.description.supportedMlModelsLinkText": "受支持的 ML 模型",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.buttonLabel": "查看已训练模型",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.guideToTrainedModelsLinkText": "已训练模型指南",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.supportedNlpModelsLinkText": "受支持的 NLP 模型",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step1.title": "了解如何上传 ML 模型",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step2.buttonLabel": "创建索引",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step2.title": "创建索引",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step3.description.pipelinesName": "管道",
|
||||
"xpack.enterpriseSearch.esre.nlpEnrichmentPanel.step3.title": "创建 ML 推理管道",
|
||||
"xpack.enterpriseSearch.esre.productName": "ESRE",
|
||||
"xpack.enterpriseSearch.esre.rankAggregationSection.description": "可选方法,用于融合或组合不同排名,以实现更高的总体排名性能。",
|
||||
"xpack.enterpriseSearch.esre.rankAggregationSection.title": "使用排名聚合方法",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingAccordion.description": "智能组合排名,而无需配置",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingAccordion.title": "RRF 混合排名",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.rrfLinkText": "倒数排名融合 (RRF)",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.step1.rrfDocsLinkText": "倒数排名融合文档",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.step1.title": "发现在 _search 查询中使用 RRF 的示例",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.step2.buttonLabel": "打开 Console",
|
||||
"xpack.enterpriseSearch.esre.rrfRankingPanel.step2.title": "立即在 Console 中试用",
|
||||
"xpack.enterpriseSearch.esre.semanticSearch.description": "ESRE 组合了您选择的这些信息检索工具。",
|
||||
"xpack.enterpriseSearch.esre.semanticSearch.title": "设置语义搜索",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchAccordion.description": "用于非结构化数据的强大相似度搜索",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchAccordion.title": "矢量搜索",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.description.vectorDbCapabilitiesLinkText": "Elasticsearch 的矢量 DB 功能",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step1.buttonLabel": "查看已训练模型",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step1.guideToTrainedModelsLinkText": "已训练模型指南",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step1.title": "了解如何上传 ML 模型",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step2.buttonLabel": "创建索引",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step2.title": "创建索引",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step3.description.pipelinesName": "管道",
|
||||
"xpack.enterpriseSearch.esre.vectorSearchPanel.step3.title": "创建 ML 推理管道",
|
||||
"xpack.enterpriseSearch.aiSearch.description": "工具套件,供开发者使用 Elastic 平台构建 AI 搜索驱动型应用程序。",
|
||||
"xpack.enterpriseSearch.aiSearch.elser.description.elserLinkText": "Elastic Learned Sparse Encoder v2",
|
||||
"xpack.enterpriseSearch.aiSearch.elserAccordion.description": "即时语义搜索功能",
|
||||
"xpack.enterpriseSearch.aiSearch.elserAccordion.title": "Elastic Learned Sparse Encoder",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step1.buttonLabel": "创建索引",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step1.title": "创建索引",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step2.description.pipelinesName": "管道",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step2.title": "导航到索引的“管道”选项卡",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step3.description": "查找允许您一键部署 ELSER 并使用该模型创建推理管道的面板。",
|
||||
"xpack.enterpriseSearch.aiSearch.elserPanel.step3.title": "按照屏幕上显示的说明部署 ELSER",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.description.searchLabsLinkText": "Search Labs",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.doc.title": "ドキュメンテーション",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.help.title": "帮助",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.help.helpLinkText": "讨论论坛或 Elastic 社区 Slack",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.doc.aiSearchDocLinkText": "Elastic 文档",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.learn.searchLabsRepoLinkText": "SearchLabs 存储库",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.learn.title": "学习",
|
||||
"xpack.enterpriseSearch.aiSearch.aiSearchDocsSection.title": "通过人工智能搜索进行更深入的挖掘",
|
||||
"xpack.enterpriseSearch.aiSearch.guide.description": "使用 Elastic 平台构建人工智能搜索驱动的应用程序,包括我们经过专有训练的 ML 模型 ELSER、矢量搜索和嵌入功能以及用于组合矢量和文本搜索的 RRF 排名。",
|
||||
"xpack.enterpriseSearch.aiSearch.guide.pageTitle": "利用 AI 增强您的搜索功能",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationAccordion.description": "来自多个排名的加权结果",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationAccordion.title": "线性组合",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.description": "用于计算相似度分数或数据点之间的距离。使用权重组合属性或功能,这将启用定制相关性因子。",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step1.knnSearchCombineLinkText": "组合近似 kNN 与其他功能",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step1.title": "了解如何在 _search 查询中使用线性组合",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step2.buttonLabel": "打开 Console",
|
||||
"xpack.enterpriseSearch.aiSearch.linearCombinationPanel.step2.title": "立即在 Console 中试用",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.behavioralAnalyticsLinkText": "行为分析",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step1.behavioralAnalyticsLinkText": "行为分析",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step1.title": "创建集合",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step2.description": "创建集合后,请按照有关如何将跟踪器集成到应用程序或网站的指示操作。",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step2.title": "集成分析跟踪器",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step3.description": "我们的仪表板和工具将帮助您对最终用户行为进行可视化并评估搜索应用程序的性能。",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.step3.title": "查看仪表板",
|
||||
"xpack.enterpriseSearch.aiSearch.measurePerformanceSection.title": "评估性能",
|
||||
"xpack.enterpriseSearch.aiSearch.navTitle": "人工智能搜索",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentAccordion.description": "利用已训练 ML 模型进行富有洞察力的数据扩充",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentAccordion.title": "NLP 扩充",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.description.supportedMlModelsLinkText": "受支持的 ML 模型",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.buttonLabel": "查看已训练模型",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.guideToTrainedModelsLinkText": "已训练模型指南",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.supportedNlpModelsLinkText": "受支持的 NLP 模型",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step1.title": "了解如何上传 ML 模型",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step2.buttonLabel": "创建索引",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step2.title": "创建索引",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step3.description.pipelinesName": "管道",
|
||||
"xpack.enterpriseSearch.aiSearch.nlpEnrichmentPanel.step3.title": "创建 ML 推理管道",
|
||||
"xpack.enterpriseSearch.aiSearch.productName": "人工智能搜索",
|
||||
"xpack.enterpriseSearch.aiSearch.rankAggregationSection.description": "可选方法,用于融合或组合不同排名,以实现更高的总体排名性能。",
|
||||
"xpack.enterpriseSearch.aiSearch.rankAggregationSection.title": "使用排名聚合方法",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingAccordion.description": "智能组合排名,而无需配置",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingAccordion.title": "RRF 混合排名",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.rrfLinkText": "倒数排名融合 (RRF)",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step1.rrfDocsLinkText": "倒数排名融合文档",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step1.title": "发现在 _search 查询中使用 RRF 的示例",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step2.buttonLabel": "打开 Console",
|
||||
"xpack.enterpriseSearch.aiSearch.rrfRankingPanel.step2.title": "立即在 Console 中试用",
|
||||
"xpack.enterpriseSearch.aiSearch.semanticSearch.description": "ESRE 组合了您选择的这些信息检索工具。",
|
||||
"xpack.enterpriseSearch.aiSearch.semanticSearch.title": "设置语义搜索",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchAccordion.description": "用于非结构化数据的强大相似度搜索",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchAccordion.title": "矢量搜索",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.description.vectorDbCapabilitiesLinkText": "Elasticsearch 的矢量 DB 功能",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step1.buttonLabel": "查看已训练模型",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step1.guideToTrainedModelsLinkText": "已训练模型指南",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step1.title": "了解如何上传 ML 模型",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step2.buttonLabel": "创建索引",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step2.title": "创建索引",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step3.description.pipelinesName": "管道",
|
||||
"xpack.enterpriseSearch.aiSearch.vectorSearchPanel.step3.title": "创建 ML 推理管道",
|
||||
"xpack.enterpriseSearch.guideConfig.addDataStep.description": "采集您的数据,创建索引,并使用可定制采集和推理管道扩充您的数据。",
|
||||
"xpack.enterpriseSearch.guideConfig.addDataStep.title": "添加数据",
|
||||
"xpack.enterpriseSearch.guideConfig.description": "我们将帮助您使用 Elastic 的网络爬虫、连接器和 API,利用您的数据构建搜索体验。",
|
||||
|
@ -14252,8 +14252,8 @@
|
|||
"xpack.enterpriseSearch.nav.contentSettingsTitle": "设置",
|
||||
"xpack.enterpriseSearch.nav.contentTitle": "内容",
|
||||
"xpack.enterpriseSearch.nav.elasticsearchTitle": "Elasticsearch",
|
||||
"xpack.enterpriseSearch.nav.enterpriseSearchOverviewTitle": "概览",
|
||||
"xpack.enterpriseSearch.nav.esreTitle": "ESRE",
|
||||
"xpack.enterpriseSearch.nav.enterpriseSearchOverviewTitle": "入门",
|
||||
"xpack.enterpriseSearch.nav.aiSearchTitle": "AI Search",
|
||||
"xpack.enterpriseSearch.nav.searchApplicationsTitle": "搜索应用程序",
|
||||
"xpack.enterpriseSearch.nav.searchIndicesTitle": "索引",
|
||||
"xpack.enterpriseSearch.nav.workplaceSearchTitle": "Workplace Search",
|
||||
|
|
|
@ -152,15 +152,15 @@ export default function ({ getService, getPageObjects }: FtrProviderContext) {
|
|||
await a11y.testAppSnapshot();
|
||||
});
|
||||
});
|
||||
describe('ESRE', () => {
|
||||
describe('AI Search', () => {
|
||||
before(async () => {
|
||||
await common.navigateToApp('enterprise_search/esre');
|
||||
await common.navigateToApp('enterprise_search/ai_search');
|
||||
});
|
||||
|
||||
it('loads ESRE page', async function () {
|
||||
it('loads AI Search page', async function () {
|
||||
await retry.waitFor(
|
||||
'esre header description',
|
||||
async () => await testSubjects.exists('esre-description-text')
|
||||
'ai search page header description',
|
||||
async () => await testSubjects.exists('ai-search-description-text')
|
||||
);
|
||||
await a11y.testAppSnapshot();
|
||||
});
|
||||
|
|
|
@ -67,7 +67,7 @@ export default function catalogueTests({ getService }: FtrProviderContext) {
|
|||
'enterpriseSearchContent',
|
||||
'enterpriseSearchAnalytics',
|
||||
'enterpriseSearchApplications',
|
||||
'enterpriseSearchEsre',
|
||||
'enterpriseSearchAISearch',
|
||||
'enterpriseSearchVectorSearch',
|
||||
'enterpriseSearchElasticsearch',
|
||||
'appSearch',
|
||||
|
@ -97,7 +97,7 @@ export default function catalogueTests({ getService }: FtrProviderContext) {
|
|||
'enterpriseSearchContent',
|
||||
'enterpriseSearchAnalytics',
|
||||
'enterpriseSearchApplications',
|
||||
'enterpriseSearchEsre',
|
||||
'enterpriseSearchAISearch',
|
||||
'enterpriseSearchVectorSearch',
|
||||
'enterpriseSearchElasticsearch',
|
||||
'appSearch',
|
||||
|
|
|
@ -54,7 +54,7 @@ export default function navLinksTests({ getService }: FtrProviderContext) {
|
|||
'enterpriseSearchContent',
|
||||
'enterpriseSearchAnalytics',
|
||||
'enterpriseSearchApplications',
|
||||
'enterpriseSearchEsre',
|
||||
'enterpriseSearchAISearch',
|
||||
'enterpriseSearchVectorSearch',
|
||||
'enterpriseSearchElasticsearch',
|
||||
'appSearch',
|
||||
|
@ -74,7 +74,7 @@ export default function navLinksTests({ getService }: FtrProviderContext) {
|
|||
'enterpriseSearchContent',
|
||||
'enterpriseSearchAnalytics',
|
||||
'enterpriseSearchApplications',
|
||||
'enterpriseSearchEsre',
|
||||
'enterpriseSearchAISearch',
|
||||
'enterpriseSearchVectorSearch',
|
||||
'enterpriseSearchElasticsearch',
|
||||
'observabilityAIAssistant',
|
||||
|
|
|
@ -31,7 +31,7 @@ export default function catalogueTests({ getService }: FtrProviderContext) {
|
|||
'enterpriseSearchContent',
|
||||
'enterpriseSearchAnalytics',
|
||||
'enterpriseSearchApplications',
|
||||
'enterpriseSearchEsre',
|
||||
'enterpriseSearchAISearch',
|
||||
'enterpriseSearchVectorSearch',
|
||||
'enterpriseSearchElasticsearch',
|
||||
'appSearch',
|
||||
|
|
|
@ -23,7 +23,7 @@ export default function navLinksTests({ getService }: FtrProviderContext) {
|
|||
'enterpriseSearchContent',
|
||||
'enterpriseSearchAnalytics',
|
||||
'enterpriseSearchApplications',
|
||||
'enterpriseSearchEsre',
|
||||
'enterpriseSearchAISearch',
|
||||
'enterpriseSearchVectorSearch',
|
||||
'enterpriseSearchElasticsearch',
|
||||
'appSearch',
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue