[Sample data] Use Lens in Logs sample data (#106486)
* [Sample data] Use Lens in Logs sample data * Fix accidental inclusions and add new images * Fix test * link proper ID * changing the copy for 400s and 500s Co-authored-by: Kibana Machine <42973632+kibanamachine@users.noreply.github.com> Co-authored-by: Marta Bondyra <marta.bondyra@elastic.co>
Before Width: | Height: | Size: 474 KiB After Width: | Height: | Size: 254 KiB |
Before Width: | Height: | Size: 459 KiB After Width: | Height: | Size: 232 KiB |
|
@ -163,13 +163,12 @@ View your geospatial data alongside a heat map and pie chart, and then filter th
|
|||
When you apply a filter in one panel, it is applied to all panels on the dashboard.
|
||||
|
||||
. Click **Add from library** to open a list of panels that you can add to the dashboard.
|
||||
. Add **[Logs] Heatmap** and **[Logs] Visitors by OS** to the dashboard.
|
||||
. Add **[Logs] Unique Visitor Heatmap** and **[Logs] Bytes distribution** to the dashboard.
|
||||
+
|
||||
[role="screenshot"]
|
||||
image::maps/images/gs_dashboard_with_map.png[]
|
||||
|
||||
. To filter for documents where **machine.os.keyword** is **osx**, click
|
||||
the **osx** slice in the pie chart.
|
||||
. To filter for documents with unusually high byte values, click and drag in the *Bytes distribution* chart.
|
||||
|
||||
. Remove the filter by clicking **x** next to its name in the filter bar.
|
||||
|
||||
|
|
|
@ -88,44 +88,20 @@ The panels you create using the following editors support dashboard drilldowns:
|
|||
[float]
|
||||
==== Create and set up the dashboards you want to connect
|
||||
|
||||
Use the <<gs-get-data-into-kibana,*Sample web logs*>> data to create a dashboard and add panels, then set a search and filter on the *[Logs] Web traffic* dashboard.
|
||||
Use the <<gs-get-data-into-kibana,*Sample web logs*>> data to create a dashboard and add panels, then set a search and filter on the *[Logs] Web Traffic* dashboard.
|
||||
|
||||
. Add the *Sample web logs* data.
|
||||
|
||||
. Create a new dashboard, click *Add from Library*, then add the following panels:
|
||||
|
||||
* *[Logs] Heatmap*
|
||||
* *[Logs] Host, Visits, and Bytes Table*
|
||||
* *[Logs] Total Requests and Bytes*
|
||||
* *[Logs] Visitors by OS*
|
||||
* *[Logs] Response Codes Over Time + Annotations*
|
||||
* *[Logs] Visits*
|
||||
|
||||
. Set the <<set-time-filter,time filter>> to *Last 30 days*.
|
||||
|
||||
. Save the dashboard. In the *Title* field, enter `Host Overview`.
|
||||
. Save the dashboard. In the *Title* field, enter `Detailed logs`.
|
||||
|
||||
. Open the *[Logs] Web traffic* dashboard.
|
||||
|
||||
. Create a data table.
|
||||
|
||||
.. In the toolbar, click *Edit*.
|
||||
|
||||
.. Click *Create visualization*.
|
||||
|
||||
.. From the *Chart type* dropdown, select *Table*.
|
||||
|
||||
.. From the *Available fields* list, drag and drop the following fields onto the visualization builder:
|
||||
|
||||
* *agent.keyword*
|
||||
|
||||
* *bytes*
|
||||
|
||||
* *geo.src*
|
||||
|
||||
* *ip*
|
||||
|
||||
.. In the editor, remove *Count of records*, then click *Save and return*.
|
||||
|
||||
. On the *[Logs] Web traffic* dashboard, set a search and filter.
|
||||
. Open the *[Logs] Web Traffic* dashboard, then set a search and filter.
|
||||
+
|
||||
[%hardbreaks]
|
||||
Search: `extension.keyword: ("gz" or "css" or "deb")`
|
||||
|
@ -134,15 +110,15 @@ Filter: `geo.src: CN`
|
|||
[float]
|
||||
==== Create the drilldown
|
||||
|
||||
Create a drilldown that opens the *Host Overview* dashboard from the *[Logs] Web traffic* dashboard.
|
||||
Create a drilldown that opens the *Detailed logs* dashboard from the *[Logs] Web Traffic* dashboard.
|
||||
|
||||
. Open the panel menu for the data table you created, then select *Create drilldown*.
|
||||
. Open the panel menu for the *[Logs] Errors by host* data table, then select *Create drilldown*.
|
||||
|
||||
. Click *Go to dashboard*.
|
||||
|
||||
.. Give the drilldown a name. For example, `My Drilldown`.
|
||||
.. Give the drilldown a name. For example, `View details`.
|
||||
|
||||
.. From the *Choose a destination dashboard* dropdown, select *Host Overview*.
|
||||
.. From the *Choose a destination dashboard* dropdown, select *Detailed logs*.
|
||||
|
||||
.. To use the geo.src filter, KQL query, and time filter, select *Use filters and query from origin dashboard* and *Use date range from origin dashboard*.
|
||||
|
||||
|
@ -150,7 +126,7 @@ Create a drilldown that opens the *Host Overview* dashboard from the *[Logs] Web
|
|||
|
||||
. Save the dashboard.
|
||||
|
||||
. In the data table panel, hover over a value, click *+*, then select `My Drilldown`.
|
||||
. In the data table panel, hover over a value, click *+*, then select `View details`.
|
||||
+
|
||||
[role="screenshot"]
|
||||
image::images/drilldown_on_panel.png[Drilldown on data table that navigates to another dashboard]
|
||||
|
@ -187,11 +163,23 @@ For example, if you have a dashboard that shows data from a Github repository, y
|
|||
|
||||
. Add the *Sample web logs* data.
|
||||
|
||||
. Open the *[Logs] Web traffic* dashboard.
|
||||
. Open the *[Logs] Web Traffic* dashboard.
|
||||
|
||||
. In the toolbar, click *Edit*.
|
||||
|
||||
. Open the *[Logs] Visitors by OS* panel menu, then select *Create drilldown*.
|
||||
. Create a donut chart
|
||||
|
||||
.. In the toolbar, click *Edit*.
|
||||
|
||||
.. Click *Create visualization*.
|
||||
|
||||
.. From the *Chart type* dropdown, select *Donut*.
|
||||
|
||||
.. From the *Available fields* list, drag and drop the *machine.os.keyword* field onto the visualization builder.
|
||||
|
||||
.. Click *Save and return*.
|
||||
|
||||
. Open the donut chart panel menu, then select *Create drilldown*.
|
||||
|
||||
. Click *Go to URL*.
|
||||
|
||||
|
@ -212,7 +200,7 @@ https://github.com/elastic/kibana/issues?q=is:issue+is:open+{{event.value}}
|
|||
|
||||
. Save the dashboard.
|
||||
|
||||
. On the *[Logs] Visitors by OS* panel, click any chart slice, then select *Show on Github*.
|
||||
. On the donut chart panel, click any chart slice, then select *Show on Github*.
|
||||
+
|
||||
[role="screenshot"]
|
||||
image:images/url_drilldown_popup.png[URL drilldown popup]
|
||||
|
|
Before Width: | Height: | Size: 92 KiB After Width: | Height: | Size: 113 KiB |
Before Width: | Height: | Size: 177 KiB After Width: | Height: | Size: 138 KiB |
|
@ -117,7 +117,7 @@ export default function ({ getService, getPageObjects }: FtrProviderContext) {
|
|||
const toTime = `${todayYearMonthDay} @ 23:59:59.999`;
|
||||
await PageObjects.timePicker.setAbsoluteRange(fromTime, toTime);
|
||||
const panelCount = await PageObjects.dashboard.getPanelCount();
|
||||
expect(panelCount).to.be(11);
|
||||
expect(panelCount).to.be(13);
|
||||
});
|
||||
|
||||
it('should launch sample ecommerce data set dashboard', async () => {
|
||||
|
|
|
@ -2008,16 +2008,10 @@
|
|||
"home.sampleData.flightsSpec.globalFlightDashboardTitle": "[フライト] グローバルフライトダッシュボード",
|
||||
"home.sampleData.flightsSpecDescription": "飛行ルートを監視するサンプルデータ、ビジュアライゼーション、ダッシュボードです。",
|
||||
"home.sampleData.flightsSpecTitle": "サンプル飛行データ",
|
||||
"home.sampleData.logsSpec.fileTypeScatterPlotTitle": "[ログ] ファイルタイプ散布図",
|
||||
"home.sampleData.logsSpec.goalsTitle": "[ログ] 目標",
|
||||
"home.sampleData.logsSpec.heatmapTitle": "[ログ] ヒートマップ",
|
||||
"home.sampleData.logsSpec.hostVisitsBytesTableTitle": "[ログ] ホスト、訪問数、バイト表",
|
||||
"home.sampleData.logsSpec.inputControlsTitle": "[ログ] インプットコントロール",
|
||||
"home.sampleData.logsSpec.markdownInstructionsTitle": "[ログ] マークダウンの指示",
|
||||
"home.sampleData.logsSpec.responseCodesOverTimeTitle": "[ログ] 一定期間の応答コードと注釈",
|
||||
"home.sampleData.logsSpec.sourceAndDestinationSankeyChartTitle": "[ログ] ソースと行先のサンキーダイアグラム",
|
||||
"home.sampleData.logsSpec.uniqueVisitorsTitle": "[ログ] ユニークビジターと平均バイトの比較",
|
||||
"home.sampleData.logsSpec.visitorOSTitle": "[ログ] OS 別のビジター",
|
||||
"home.sampleData.logsSpec.visitorsMapTitle": "[ログ] ビジターマップ",
|
||||
"home.sampleData.logsSpec.webTrafficDescription": "Elastic Web サイトのサンプル Webトラフィックログデータを分析します",
|
||||
"home.sampleData.logsSpec.webTrafficTitle": "[ログ] Web トラフィック",
|
||||
|
|
|
@ -2019,16 +2019,10 @@
|
|||
"home.sampleData.flightsSpec.globalFlightDashboardTitle": "[航班] 全球航班仪表板",
|
||||
"home.sampleData.flightsSpecDescription": "用于监测航班路线的样例数据、可视化和仪表板。",
|
||||
"home.sampleData.flightsSpecTitle": "样例航班数据",
|
||||
"home.sampleData.logsSpec.fileTypeScatterPlotTitle": "[日志] 文件类型散点图",
|
||||
"home.sampleData.logsSpec.goalsTitle": "[日志] 目标",
|
||||
"home.sampleData.logsSpec.heatmapTitle": "[日志] 热图",
|
||||
"home.sampleData.logsSpec.hostVisitsBytesTableTitle": "[日志] 主机、访问和字节表",
|
||||
"home.sampleData.logsSpec.inputControlsTitle": "[日志] 输入控制",
|
||||
"home.sampleData.logsSpec.markdownInstructionsTitle": "[日志] Markdown 说明",
|
||||
"home.sampleData.logsSpec.responseCodesOverTimeTitle": "[日志] 时移响应代码 + 注释",
|
||||
"home.sampleData.logsSpec.sourceAndDestinationSankeyChartTitle": "[日志] 始发地和到达地 Sankey 图",
|
||||
"home.sampleData.logsSpec.uniqueVisitorsTitle": "[日志] 独立访客与平均字节数",
|
||||
"home.sampleData.logsSpec.visitorOSTitle": "[日志] 按 OS 划分的访客",
|
||||
"home.sampleData.logsSpec.visitorsMapTitle": "[日志] 访客地图",
|
||||
"home.sampleData.logsSpec.webTrafficDescription": "分析 Elastic 网站的模拟 Web 流量日志数据",
|
||||
"home.sampleData.logsSpec.webTrafficTitle": "[日志] 网络流量",
|
||||
|
|