* [Maps] docs * unique ids * use hyphen instead of underscore in file names * get everything working * add screen shots of layer types * add sources to layer documentation * terms join example * vector styling * clean up * link to geo_point for grid agg source * minor clean up * review feedback * Update docs/maps/index.asciidoc Co-Authored-By: nreese <reese.nathan@gmail.com> * Update docs/maps/heatmap-layer.asciidoc Co-Authored-By: nreese <reese.nathan@gmail.com> * Update docs/maps/heatmap-layer.asciidoc Co-Authored-By: nreese <reese.nathan@gmail.com> * Update docs/maps/heatmap-layer.asciidoc Co-Authored-By: nreese <reese.nathan@gmail.com> * rest of changes suggested by gchaps * update terms join intro
|
@ -44,6 +44,8 @@ include::canvas.asciidoc[]
|
|||
|
||||
include::ml/index.asciidoc[]
|
||||
|
||||
include::maps/index.asciidoc[]
|
||||
|
||||
include::infrastructure/index.asciidoc[]
|
||||
|
||||
include::logs/index.asciidoc[]
|
||||
|
@ -84,4 +86,4 @@ include::migration.asciidoc[]
|
|||
|
||||
include::CHANGELOG.asciidoc[]
|
||||
|
||||
include::redirects.asciidoc[]
|
||||
include::redirects.asciidoc[]
|
||||
|
|
17
docs/maps/heatmap-layer.asciidoc
Normal file
|
@ -0,0 +1,17 @@
|
|||
[[heatmap-layer]]
|
||||
== Heat map layer
|
||||
|
||||
In the heat map layer, point data is clustered to show locations with higher densities.
|
||||
|
||||
[role="screenshot"]
|
||||
image::maps/images/heatmap_layer.png[]
|
||||
|
||||
You can create a heat map layer from the following data source:
|
||||
|
||||
*Grid aggregation*:: Geospatial data grouped in grids with metrics for each gridded cell.
|
||||
Set *Show as* to *heat map*.
|
||||
The index must contain at least one field mapped as {ref}/geo-point.html[geo_point].
|
||||
|
||||
NOTE: Only count and sum metric aggregations are available with the grid aggregation source and heat map layers.
|
||||
Mean, median, min, and max are turned off because the heat map will blend nearby values.
|
||||
Blending two average values would make the cluster more prominent, even though it just might literally mean that these nearby areas are average.
|
BIN
docs/maps/images/heatmap_layer.png
Normal file
After Width: | Height: | Size: 350 KiB |
BIN
docs/maps/images/sample_data_ecommerce.png
Normal file
After Width: | Height: | Size: 1.2 MiB |
BIN
docs/maps/images/terms_join.png
Normal file
After Width: | Height: | Size: 849 KiB |
BIN
docs/maps/images/terms_join_metric_config.png
Normal file
After Width: | Height: | Size: 62 KiB |
BIN
docs/maps/images/terms_join_shared_key_config.png
Normal file
After Width: | Height: | Size: 121 KiB |
BIN
docs/maps/images/terms_join_tooltip.png
Normal file
After Width: | Height: | Size: 111 KiB |
BIN
docs/maps/images/tile_layer.png
Normal file
After Width: | Height: | Size: 752 KiB |
BIN
docs/maps/images/vector_layer.png
Normal file
After Width: | Height: | Size: 467 KiB |
BIN
docs/maps/images/vector_style_dynamic.png
Normal file
After Width: | Height: | Size: 12 KiB |
BIN
docs/maps/images/vector_style_static.png
Normal file
After Width: | Height: | Size: 8.9 KiB |
18
docs/maps/index.asciidoc
Normal file
|
@ -0,0 +1,18 @@
|
|||
[[maps]]
|
||||
= Maps
|
||||
|
||||
[partintro]
|
||||
--
|
||||
|
||||
beta[]
|
||||
|
||||
The **Maps** application enables you to parse through your geographical data at scale, with speed, and in real time. With features like multiple layers and indices in a map, plotting of raw documents, dynamic client-side styling, and global search across multiple layers, you can understand and monitor your data with ease.
|
||||
|
||||
[role="screenshot"]
|
||||
image::maps/images/sample_data_ecommerce.png[]
|
||||
|
||||
--
|
||||
|
||||
include::heatmap-layer.asciidoc[]
|
||||
include::tile-layer.asciidoc[]
|
||||
include::vector-layer.asciidoc[]
|
94
docs/maps/terms-join.asciidoc
Normal file
|
@ -0,0 +1,94 @@
|
|||
[[terms-join]]
|
||||
=== Terms join
|
||||
|
||||
Terms joins use a shared key to combine the results of an Elasticsearch terms aggregation and vector features.
|
||||
You can augment vector features with property values that symbolize features and provide richer tooltip content.
|
||||
|
||||
[role="screenshot"]
|
||||
image::maps/images/terms_join.png[]
|
||||
|
||||
Follow the example below to understand how *Terms joins* work.
|
||||
This example uses Elastic Maps Service(EMS) World Countries as the vector source and
|
||||
the Kibana sample data set "Sample web logs" as the Elasticsearch index.
|
||||
|
||||
Example feature from World Countries:
|
||||
--------------------------------------------------
|
||||
{
|
||||
geometry: {
|
||||
coordinates: [...],
|
||||
type: "Polygon"
|
||||
},
|
||||
properties: {
|
||||
name: "Sweden",
|
||||
iso2: "SE",
|
||||
iso3: "SWE"
|
||||
},
|
||||
type: "Feature"
|
||||
}
|
||||
--------------------------------------------------
|
||||
|
||||
Example documents from Sample web logs:
|
||||
--------------------------------------------------
|
||||
{
|
||||
bytes: 1837,
|
||||
geo: {
|
||||
src: "SE"
|
||||
},
|
||||
timestamp: "Feb 28, 2019 @ 07:23:08.754"
|
||||
},
|
||||
{
|
||||
bytes: 971,
|
||||
geo: {
|
||||
src: "SE"
|
||||
},
|
||||
timestamp: "Feb 27, 2019 @ 08:10:45.205"
|
||||
},
|
||||
{
|
||||
bytes: 4277,
|
||||
geo: {
|
||||
src: "SE"
|
||||
},
|
||||
timestamp: "Feb 21, 2019 @ 05:24:33.945"
|
||||
},
|
||||
{
|
||||
bytes: 5624,
|
||||
geo: {
|
||||
src: "SE"
|
||||
},
|
||||
timestamp: "Feb 21, 2019 @ 04:57:05.921"
|
||||
}
|
||||
--------------------------------------------------
|
||||
|
||||
The JOIN configuration links the vector source "World Countries" to the Elasticsearch index "kibana_sample_data_logs"
|
||||
on the shared key *iso2 = geo.src*.
|
||||
[role="screenshot"]
|
||||
image::maps/images/terms_join_shared_key_config.png[]
|
||||
|
||||
The METRICS configuration defines two metric aggregations:
|
||||
the count of all documents in the terms bucket and
|
||||
the average of the field "bytes" for all documents in the terms bucket.
|
||||
[role="screenshot"]
|
||||
image::maps/images/terms_join_metric_config.png[]
|
||||
|
||||
Example terms aggregation response:
|
||||
--------------------------------------------------
|
||||
{
|
||||
aggregations: {
|
||||
join: {
|
||||
buckets: [
|
||||
{
|
||||
doc_count: 4,
|
||||
key: "SE",
|
||||
avg_of_bytes: {
|
||||
value: 3177.25
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
--------------------------------------------------
|
||||
|
||||
Finally, the terms aggregation response is joined with the vector features.
|
||||
[role="screenshot"]
|
||||
image::maps/images/terms_join_tooltip.png[]
|
18
docs/maps/tile-layer.asciidoc
Normal file
|
@ -0,0 +1,18 @@
|
|||
[[tile-layer]]
|
||||
== Tile layer
|
||||
|
||||
The tile layer displays image tiles served from a tile server.
|
||||
|
||||
[role="screenshot"]
|
||||
image::maps/images/tile_layer.png[]
|
||||
|
||||
You can create a tile layer from the following data sources:
|
||||
|
||||
*Custom Tile Map Service*:: Map tiles configured in kibana.yml.
|
||||
See map.tilemap.url in <<settings>> for details.
|
||||
|
||||
*Tiles*:: Map tiles from https://www.elastic.co/elastic-maps-service[Elastic Maps Service].
|
||||
|
||||
*Tile Map Service from URL*:: Map tiles from a URL that includes the XYZ coordinates.
|
||||
|
||||
*Web Map Service*:: Maps from OGC Standard WMS.
|
24
docs/maps/vector-layer.asciidoc
Normal file
|
@ -0,0 +1,24 @@
|
|||
[[vector-layer]]
|
||||
== Vector layer
|
||||
|
||||
The vector layer displays points, lines, and polygons.
|
||||
|
||||
[role="screenshot"]
|
||||
image::maps/images/vector_layer.png[]
|
||||
|
||||
You can create a vector layer from the following sources:
|
||||
|
||||
*Custom vector shapes*:: Vector shapes from static files configured in kibana.yml.
|
||||
See map.regionmap.* in <<settings>> for details.
|
||||
|
||||
*Documents*:: Geospatial data from a Kibana index pattern.
|
||||
The index must contain at least one field mapped as {ref}/geo-point.html[geo_point] or {ref}/geo-shape.html[geo_shape].
|
||||
|
||||
*Grid aggregation*:: Geospatial data grouped in grids with metrics for each gridded cell.
|
||||
Set *Show as* to *grid rectangles* or *points*.
|
||||
The index must contain at least one field mapped as {ref}/geo-point.html[geo_point].
|
||||
|
||||
*Vector shapes*:: Vector shapes of administrative boundaries from https://www.elastic.co/elastic-maps-service[Elastic Maps Service].
|
||||
|
||||
include::terms-join.asciidoc[]
|
||||
include::vector-style.asciidoc[]
|
20
docs/maps/vector-style.asciidoc
Normal file
|
@ -0,0 +1,20 @@
|
|||
[[vector-style]]
|
||||
=== Vector style
|
||||
|
||||
*Border color*:: Defines the border color of the vector features.
|
||||
|
||||
*Border width*:: Defines the border width of the vector features.
|
||||
|
||||
*Fill color*:: Defines the fill color of the vector features.
|
||||
|
||||
*Symbol size*:: Defines the symbol size of point features.
|
||||
|
||||
Click the *link* button to toggle between static styling and data-driven styling.
|
||||
|
||||
[role="screenshot"]
|
||||
image::maps/images/vector_style_static.png[]
|
||||
|
||||
[role="screenshot"]
|
||||
image::maps/images/vector_style_dynamic.png[]
|
||||
|
||||
NOTE: The *link* button is only available when your vector features contain numeric properties.
|