runtime refactoring

This commit is contained in:
Blaise Tine 2024-05-27 18:55:42 -07:00
parent 319c18158a
commit 47d578c4d2
9 changed files with 1903 additions and 2855 deletions

View file

@ -1,3 +1,16 @@
// Copyright © 2019-2023
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef CALLBACKS_H
#define CALLBACKS_H
@ -60,31 +73,6 @@ typedef struct {
int vx_dev_init(callbacks_t* callbacks);
#define __VX_DEV_INT(drv) \
extern int vx_dev_init(callbacks_t* callbacks) { \
if (nullptr == callbacks) \
return -1; \
*callbacks = { \
vx_##drv##_dev_open, \
vx_##drv##_dev_close, \
vx_##drv##_dev_caps, \
vx_##drv##_mem_alloc, \
vx_##drv##_mem_reserve, \
vx_##drv##_mem_free, \
vx_##drv##_mem_access, \
vx_##drv##_mem_address, \
vx_##drv##_mem_info, \
vx_##drv##_copy_to_dev, \
vx_##drv##_copy_from_dev, \
vx_##drv##_start, \
vx_##drv##_ready_wait, \
vx_##drv##_dcr_read, \
vx_##drv##_dcr_write, \
vx_##drv##_mpm_query \
}; \
return 0; \
}
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,225 @@
// Copyright © 2019-2023
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
struct vx_buffer {
vx_device* device;
uint64_t addr;
uint64_t size;
};
extern int vx_dev_init(callbacks_t* callbacks) {
if (nullptr == callbacks)
return -1;
callbacks->dev_open = [](vx_device_h* hdevice)->int {
if (nullptr == hdevice)
return -1;
auto device = new vx_device();
if (device == nullptr)
return -1;
CHECK_ERR(device->init(), {
delete device;
return err;
});
DBGPRINT("DEV_OPEN: hdevice=%p\n", (void*)device);
*hdevice = device;
return 0;
};
callbacks->dev_close = [](vx_device_h hdevice)->int {
if (nullptr == hdevice)
return -1;
DBGPRINT("DEV_CLOSE: hdevice=%p\n", hdevice);
auto device = ((vx_device*)hdevice);
delete device;
return 0;
};
callbacks->dev_caps = [](vx_device_h hdevice, uint32_t caps_id, uint64_t *value)->int {
if (nullptr == hdevice)
return -1;
vx_device *device = ((vx_device*)hdevice);
uint64_t _value;
CHECK_ERR(device->get_caps(caps_id, &_value), {
return err;
});
DBGPRINT("DEV_CAPS: hdevice=%p, caps_id=%d, value=%ld\n", hdevice, caps_id, _value);
*value = _value;
return 0;
};
callbacks->mem_alloc = [](vx_device_h hdevice, uint64_t size, int flags, vx_buffer_h* hbuffer)->int {
if (nullptr == hdevice
|| nullptr == hbuffer
|| 0 == size)
return -1;
auto device = ((vx_device*)hdevice);
uint64_t dev_addr;
CHECK_ERR(device->mem_alloc(size, flags, &dev_addr), {
return err;
});
auto buffer = new vx_buffer{device, dev_addr, size};
if (nullptr == buffer) {
device->mem_free(dev_addr);
return -1;
}
DBGPRINT("MEM_ALLOC: hdevice=%p, size=%ld, flags=0x%d, hbuffer=%p\n", hdevice, size, flags, (void*)buffer);
*hbuffer = buffer;
return 0;
};
callbacks->mem_reserve = [](vx_device_h hdevice, uint64_t address, uint64_t size, int flags, vx_buffer_h* hbuffer) {
if (nullptr == hdevice
|| nullptr == hbuffer
|| 0 == size)
return -1;
auto device = ((vx_device*)hdevice);
CHECK_ERR(device->mem_reserve(address, size, flags), {
return err;
});
auto buffer = new vx_buffer{device, address, size};
if (nullptr == buffer) {
device->mem_free(address);
return -1;
}
DBGPRINT("MEM_RESERVE: hdevice=%p, address=0x%lx, size=%ld, flags=0x%d, hbuffer=%p\n", hdevice, address, size, flags, (void*)buffer);
*hbuffer = buffer;
return 0;
};
callbacks->mem_free = [](vx_buffer_h hbuffer) {
if (nullptr == hbuffer)
return 0;
DBGPRINT("MEM_FREE: hbuffer=%p\n", hbuffer);
auto buffer = ((vx_buffer*)hbuffer);
auto device = ((vx_device*)buffer->device);
vx_mem_access(hbuffer, 0, buffer->size, 0);
int err = device->mem_free(buffer->addr);
delete buffer;
return err;
};
callbacks->mem_access = [](vx_buffer_h hbuffer, uint64_t offset, uint64_t size, int flags) {
if (nullptr == hbuffer)
return -1;
auto buffer = ((vx_buffer*)hbuffer);
auto device = ((vx_device*)buffer->device);
if ((offset + size) > buffer->size)
return -1;
DBGPRINT("MEM_ACCESS: hbuffer=%p, offset=%ld, size=%ld, flags=%d\n", hbuffer, offset, size, flags);
return device->mem_access(buffer->addr + offset, size, flags);
};
callbacks->mem_address = [](vx_buffer_h hbuffer, uint64_t* address) {
if (nullptr == hbuffer)
return -1;
auto buffer = ((vx_buffer*)hbuffer);
DBGPRINT("MEM_ADDRESS: hbuffer=%p, address=0x%lx\n", hbuffer, buffer->addr);
*address = buffer->addr;
return 0;
};
callbacks->mem_info = [](vx_device_h hdevice, uint64_t* mem_free, uint64_t* mem_used) {
if (nullptr == hdevice)
return -1;
auto device = ((vx_device*)hdevice);
uint64_t _mem_free, _mem_used;
CHECK_ERR(device->mem_info(&_mem_free, &_mem_used), {
return err;
});
DBGPRINT("MEM_INFO: hdevice=%p, mem_free=%ld, mem_used=%ld\n", hdevice, _mem_free, _mem_used);
if (mem_free) {
*mem_free = _mem_free;
}
if (mem_used) {
*mem_used = _mem_used;
}
return 0;
};
callbacks->copy_to_dev = [](vx_buffer_h hbuffer, const void* host_ptr, uint64_t dst_offset, uint64_t size) {
if (nullptr == hbuffer || nullptr == host_ptr)
return -1;
auto buffer = ((vx_buffer*)hbuffer);
auto device = ((vx_device*)buffer->device);
if ((dst_offset + size) > buffer->size)
return -1;
DBGPRINT("COPY_TO_DEV: hbuffer=%p, host_addr=%p, dst_offset=%ld, size=%ld\n", hbuffer, host_ptr, dst_offset, size);
return device->upload(buffer->addr + dst_offset, host_ptr, size);
};
callbacks->copy_from_dev = [](void* host_ptr, vx_buffer_h hbuffer, uint64_t src_offset, uint64_t size) {
if (nullptr == hbuffer || nullptr == host_ptr)
return -1;
auto buffer = ((vx_buffer*)hbuffer);
auto device = ((vx_device*)buffer->device);
if ((src_offset + size) > buffer->size)
return -1;
DBGPRINT("COPY_FROM_DEV: hbuffer=%p, host_addr=%p, src_offset=%ld, size=%ld\n", hbuffer, host_ptr, src_offset, size);
return device->download(host_ptr, buffer->addr + src_offset, size);
};
callbacks->start = [](vx_device_h hdevice, vx_buffer_h hkernel, vx_buffer_h harguments) {
if (nullptr == hdevice || nullptr == hkernel || nullptr == harguments)
return -1;
DBGPRINT("START: hdevice=%p, hkernel=%p, harguments=%p\n", hdevice, hkernel, harguments);
auto device = ((vx_device*)hdevice);
auto kernel = ((vx_buffer*)hkernel);
auto arguments = ((vx_buffer*)harguments);
return device->start(kernel->addr, arguments->addr);
};
callbacks->ready_wait = [](vx_device_h hdevice, uint64_t timeout) {
if (nullptr == hdevice)
return -1;
DBGPRINT("READY_WAIT: hdevice=%p, timeout=%ld\n", hdevice, timeout);
auto device = ((vx_device*)hdevice);
return device->ready_wait(timeout);
};
callbacks->dcr_read = [](vx_device_h hdevice, uint32_t addr, uint32_t* value) {
if (nullptr == hdevice || NULL == value)
return -1;
auto device = ((vx_device*)hdevice);
uint32_t _value;
CHECK_ERR(device->dcr_read(addr, &_value), {
return err;
});
DBGPRINT("DCR_READ: hdevice=%p, addr=0x%x, value=0x%x\n", hdevice, addr, _value);
*value = _value;
return 0;
};
callbacks->dcr_write = [](vx_device_h hdevice, uint32_t addr, uint32_t value) {
if (nullptr == hdevice)
return -1;
DBGPRINT("DCR_WRITE: hdevice=%p, addr=0x%x, value=0x%x\n", hdevice, addr, value);
auto device = ((vx_device*)hdevice);
return device->dcr_write(addr, value);
};
callbacks->mpm_query = [](vx_device_h hdevice, uint32_t addr, uint32_t core_id, uint64_t* value) {
if (nullptr == hdevice)
return -1;
auto device = ((vx_device*)hdevice);
uint64_t _value;
CHECK_ERR(device->mpm_query(addr, core_id, &_value), {
return err;
});
DBGPRINT("MPM_QUERY: hdevice=%p, addr=0x%x, core_id=%d, value=0x%lx\n", hdevice, addr, core_id, _value);
*value = _value;
return 0;
};
return 0;
}

View file

@ -22,16 +22,16 @@
#include <cstdint>
#include <unordered_map>
#define CACHE_BLOCK_SIZE 64
#define CACHE_BLOCK_SIZE 64
#define RAM_PAGE_SIZE 4096
#define RAM_PAGE_SIZE 4096
#define ALLOC_BASE_ADDR CACHE_BLOCK_SIZE
#define ALLOC_BASE_ADDR CACHE_BLOCK_SIZE
#if (XLEN == 64)
#define GLOBAL_MEM_SIZE 0x200000000 // 8 GB
#define GLOBAL_MEM_SIZE 0x200000000 // 8 GB
#else
#define GLOBAL_MEM_SIZE 0x100000000 // 4 GB
#define GLOBAL_MEM_SIZE 0x100000000 // 4 GB
#endif
#ifndef NDEBUG
@ -40,30 +40,29 @@
#define DBGPRINT(format, ...) ((void)0)
#endif
#define CHECK_ERR(_expr, _cleanup) \
do { \
auto err = _expr; \
if (err == 0) \
break; \
printf("[VXDRV] Error: '%s' returned %d!\n", #_expr, (int)err); \
_cleanup \
} while (false)
#define CHECK_ERR(_expr, _cleanup) \
do { \
auto err = _expr; \
if (err == 0) \
break; \
printf("[VXDRV] Error: '%s' returned %d!\n", #_expr, (int)err); \
_cleanup \
} while (false)
class DeviceConfig {
public:
void write(uint32_t addr, uint32_t value) {
store_[addr] = value;
}
int read(uint32_t addr, uint32_t* value) const {
auto it = store_.find(addr);
if (it == store_.end())
return -1;
*value = it->second;
return 0;
}
void write(uint32_t addr, uint32_t value) {
store_[addr] = value;
}
int read(uint32_t addr, uint32_t* value) const {
auto it = store_.find(addr);
if (it == store_.end())
return -1;
*value = it->second;
return 0;
}
private:
std::unordered_map<uint32_t, uint32_t> store_;
std::unordered_map<uint32_t, uint32_t> store_;
};
inline uint64_t aligned_size(uint64_t size, uint64_t alignment) {

File diff suppressed because it is too large Load diff

View file

@ -30,512 +30,227 @@ using namespace vortex;
class vx_device {
public:
vx_device()
: ram_(0, RAM_PAGE_SIZE)
, global_mem_(ALLOC_BASE_ADDR, GLOBAL_MEM_SIZE - ALLOC_BASE_ADDR, RAM_PAGE_SIZE, CACHE_BLOCK_SIZE)
{
processor_.attach_ram(&ram_);
vx_device()
: ram_(0, RAM_PAGE_SIZE)
, global_mem_(ALLOC_BASE_ADDR, GLOBAL_MEM_SIZE - ALLOC_BASE_ADDR, RAM_PAGE_SIZE, CACHE_BLOCK_SIZE)
{
processor_.attach_ram(&ram_);
}
~vx_device() {
if (future_.valid()) {
future_.wait();
}
}
int init() {
return 0;
}
int get_caps(uint32_t caps_id, uint64_t *value) {
uint64_t _value;
switch (caps_id) {
case VX_CAPS_VERSION:
_value = IMPLEMENTATION_ID;
break;
case VX_CAPS_NUM_THREADS:
_value = NUM_THREADS;
break;
case VX_CAPS_NUM_WARPS:
_value = NUM_WARPS;
break;
case VX_CAPS_NUM_CORES:
_value = NUM_CORES * NUM_CLUSTERS;
break;
case VX_CAPS_NUM_BARRIERS:
_value = NUM_BARRIERS;
break;
case VX_CAPS_CACHE_LINE_SIZE:
_value = CACHE_BLOCK_SIZE;
break;
case VX_CAPS_GLOBAL_MEM_SIZE:
_value = GLOBAL_MEM_SIZE;
break;
case VX_CAPS_LOCAL_MEM_SIZE:
_value = (1 << LMEM_LOG_SIZE);
break;
case VX_CAPS_LOCAL_MEM_ADDR:
_value = LMEM_BASE_ADDR;
break;
case VX_CAPS_ISA_FLAGS:
_value = ((uint64_t(MISA_EXT))<<32) | ((log2floor(XLEN)-4) << 30) | MISA_STD;
break;
default:
std::cout << "invalid caps id: " << caps_id << std::endl;
std::abort();
return -1;
}
*value = _value;
return 0;
}
int mem_alloc(uint64_t size, int flags, uint64_t* dev_addr) {
uint64_t addr;
CHECK_ERR(global_mem_.allocate(size, &addr), {
return err;
});
CHECK_ERR(this->mem_access(addr, size, flags), {
global_mem_.release(addr);
return err;
});
*dev_addr = addr;
return 0;
}
int mem_reserve(uint64_t dev_addr, uint64_t size, int flags) {
CHECK_ERR(global_mem_.reserve(dev_addr, size), {
return err;
});
CHECK_ERR(this->mem_access(dev_addr, size, flags), {
global_mem_.release(dev_addr);
return err;
});
return 0;
}
int mem_free(uint64_t dev_addr) {
return global_mem_.release(dev_addr);
}
int mem_access(uint64_t dev_addr, uint64_t size, int flags) {
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (dev_addr + asize > GLOBAL_MEM_SIZE)
return -1;
ram_.set_acl(dev_addr, size, flags);
return 0;
}
int mem_info(uint64_t* mem_free, uint64_t* mem_used) const {
if (mem_free)
*mem_free = global_mem_.free();
if (mem_used)
*mem_used = global_mem_.allocated();
return 0;
}
int upload(uint64_t dest_addr, const void* src, uint64_t size) {
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (dest_addr + asize > GLOBAL_MEM_SIZE)
return -1;
ram_.enable_acl(false);
ram_.write((const uint8_t*)src, dest_addr, size);
ram_.enable_acl(true);
/*printf("VXDRV: upload %ld bytes from 0x%lx:", size, uintptr_t((uint8_t*)src));
for (int i = 0; i < (asize / CACHE_BLOCK_SIZE); ++i) {
printf("\n0x%08lx=", dest_addr + i * CACHE_BLOCK_SIZE);
for (int j = 0; j < CACHE_BLOCK_SIZE; ++j) {
printf("%02x", *((uint8_t*)src + i * CACHE_BLOCK_SIZE + CACHE_BLOCK_SIZE - 1 - j));
}
}
printf("\n");*/
return 0;
}
int download(void* dest, uint64_t src_addr, uint64_t size) {
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (src_addr + asize > GLOBAL_MEM_SIZE)
return -1;
ram_.enable_acl(false);
ram_.read((uint8_t*)dest, src_addr, size);
ram_.enable_acl(true);
/*printf("VXDRV: download %ld bytes to 0x%lx:", size, uintptr_t((uint8_t*)dest));
for (int i = 0; i < (asize / CACHE_BLOCK_SIZE); ++i) {
printf("\n0x%08lx=", src_addr + i * CACHE_BLOCK_SIZE);
for (int j = 0; j < CACHE_BLOCK_SIZE; ++j) {
printf("%02x", *((uint8_t*)dest + i * CACHE_BLOCK_SIZE + CACHE_BLOCK_SIZE - 1 - j));
}
}
printf("\n");*/
return 0;
}
int start(uint64_t krnl_addr, uint64_t args_addr) {
// ensure prior run completed
if (future_.valid()) {
future_.wait();
}
~vx_device() {
if (future_.valid()) {
future_.wait();
}
// set kernel info
this->dcr_write(VX_DCR_BASE_STARTUP_ADDR0, krnl_addr & 0xffffffff);
this->dcr_write(VX_DCR_BASE_STARTUP_ADDR1, krnl_addr >> 32);
this->dcr_write(VX_DCR_BASE_STARTUP_ARG0, args_addr & 0xffffffff);
this->dcr_write(VX_DCR_BASE_STARTUP_ARG1, args_addr >> 32);
// start new run
future_ = std::async(std::launch::async, [&]{
processor_.run();
});
// clear mpm cache
mpm_cache_.clear();
return 0;
}
int ready_wait(uint64_t timeout) {
if (!future_.valid())
return 0;
uint64_t timeout_sec = timeout / 1000;
std::chrono::seconds wait_time(1);
for (;;) {
// wait for 1 sec and check status
auto status = future_.wait_for(wait_time);
if (status == std::future_status::ready)
break;
if (0 == timeout_sec--)
return -1;
}
return 0;
}
int init() {
return 0;
int dcr_write(uint32_t addr, uint32_t value) {
if (future_.valid()) {
future_.wait(); // ensure prior run completed
}
processor_.dcr_write(addr, value);
dcrs_.write(addr, value);
return 0;
}
int get_caps(uint32_t caps_id, uint64_t *value) {
uint64_t _value;
switch (caps_id) {
case VX_CAPS_VERSION:
_value = IMPLEMENTATION_ID;
break;
case VX_CAPS_NUM_THREADS:
_value = NUM_THREADS;
break;
case VX_CAPS_NUM_WARPS:
_value = NUM_WARPS;
break;
case VX_CAPS_NUM_CORES:
_value = NUM_CORES * NUM_CLUSTERS;
break;
case VX_CAPS_NUM_BARRIERS:
_value = NUM_BARRIERS;
break;
case VX_CAPS_CACHE_LINE_SIZE:
_value = CACHE_BLOCK_SIZE;
break;
case VX_CAPS_GLOBAL_MEM_SIZE:
_value = GLOBAL_MEM_SIZE;
break;
case VX_CAPS_LOCAL_MEM_SIZE:
_value = (1 << LMEM_LOG_SIZE);
break;
case VX_CAPS_LOCAL_MEM_ADDR:
_value = LMEM_BASE_ADDR;
break;
case VX_CAPS_ISA_FLAGS:
_value = ((uint64_t(MISA_EXT))<<32) | ((log2floor(XLEN)-4) << 30) | MISA_STD;
break;
default:
std::cout << "invalid caps id: " << caps_id << std::endl;
std::abort();
return -1;
}
*value = _value;
return 0;
}
int mem_alloc(uint64_t size, int flags, uint64_t* dev_addr) {
uint64_t addr;
CHECK_ERR(global_mem_.allocate(size, &addr), {
return err;
});
CHECK_ERR(this->mem_access(addr, size, flags), {
global_mem_.release(addr);
return err;
});
*dev_addr = addr;
return 0;
}
int mem_reserve(uint64_t dev_addr, uint64_t size, int flags) {
CHECK_ERR(global_mem_.reserve(dev_addr, size), {
return err;
});
CHECK_ERR(this->mem_access(dev_addr, size, flags), {
global_mem_.release(dev_addr);
return err;
});
return 0;
}
int mem_free(uint64_t dev_addr) {
return global_mem_.release(dev_addr);
}
int mem_access(uint64_t dev_addr, uint64_t size, int flags) {
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (dev_addr + asize > GLOBAL_MEM_SIZE)
return -1;
ram_.set_acl(dev_addr, size, flags);
return 0;
}
int mem_info(uint64_t* mem_free, uint64_t* mem_used) const {
if (mem_free)
*mem_free = global_mem_.free();
if (mem_used)
*mem_used = global_mem_.allocated();
return 0;
}
int upload(uint64_t dest_addr, const void* src, uint64_t size) {
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (dest_addr + asize > GLOBAL_MEM_SIZE)
return -1;
ram_.enable_acl(false);
ram_.write((const uint8_t*)src, dest_addr, size);
ram_.enable_acl(true);
/*printf("VXDRV: upload %ld bytes from 0x%lx:", size, uintptr_t((uint8_t*)src));
for (int i = 0; i < (asize / CACHE_BLOCK_SIZE); ++i) {
printf("\n0x%08lx=", dest_addr + i * CACHE_BLOCK_SIZE);
for (int j = 0; j < CACHE_BLOCK_SIZE; ++j) {
printf("%02x", *((uint8_t*)src + i * CACHE_BLOCK_SIZE + CACHE_BLOCK_SIZE - 1 - j));
}
}
printf("\n");*/
return 0;
}
int download(void* dest, uint64_t src_addr, uint64_t size) {
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (src_addr + asize > GLOBAL_MEM_SIZE)
return -1;
ram_.enable_acl(false);
ram_.read((uint8_t*)dest, src_addr, size);
ram_.enable_acl(true);
/*printf("VXDRV: download %ld bytes to 0x%lx:", size, uintptr_t((uint8_t*)dest));
for (int i = 0; i < (asize / CACHE_BLOCK_SIZE); ++i) {
printf("\n0x%08lx=", src_addr + i * CACHE_BLOCK_SIZE);
for (int j = 0; j < CACHE_BLOCK_SIZE; ++j) {
printf("%02x", *((uint8_t*)dest + i * CACHE_BLOCK_SIZE + CACHE_BLOCK_SIZE - 1 - j));
}
}
printf("\n");*/
return 0;
}
int start(uint64_t krnl_addr, uint64_t args_addr) {
// ensure prior run completed
if (future_.valid()) {
future_.wait();
}
// set kernel info
this->dcr_write(VX_DCR_BASE_STARTUP_ADDR0, krnl_addr & 0xffffffff);
this->dcr_write(VX_DCR_BASE_STARTUP_ADDR1, krnl_addr >> 32);
this->dcr_write(VX_DCR_BASE_STARTUP_ARG0, args_addr & 0xffffffff);
this->dcr_write(VX_DCR_BASE_STARTUP_ARG1, args_addr >> 32);
// start new run
future_ = std::async(std::launch::async, [&]{
processor_.run();
});
// clear mpm cache
mpm_cache_.clear();
return 0;
}
int ready_wait(uint64_t timeout) {
if (!future_.valid())
return 0;
uint64_t timeout_sec = timeout / 1000;
std::chrono::seconds wait_time(1);
for (;;) {
// wait for 1 sec and check status
auto status = future_.wait_for(wait_time);
if (status == std::future_status::ready)
break;
if (0 == timeout_sec--)
return -1;
}
return 0;
}
int dcr_write(uint32_t addr, uint32_t value) {
if (future_.valid()) {
future_.wait(); // ensure prior run completed
}
processor_.dcr_write(addr, value);
dcrs_.write(addr, value);
return 0;
}
int dcr_read(uint32_t addr, uint32_t* value) const {
return dcrs_.read(addr, value);
}
int mpm_query(uint32_t addr, uint32_t core_id, uint64_t* value) {
uint32_t offset = addr - VX_CSR_MPM_BASE;
if (offset > 31)
return -1;
if (mpm_cache_.count(core_id) == 0) {
uint64_t mpm_mem_addr = IO_MPM_ADDR + core_id * 32 * sizeof(uint64_t);
CHECK_ERR(this->download(mpm_cache_[core_id].data(), mpm_mem_addr, 32 * sizeof(uint64_t)), {
return err;
});
}
*value = mpm_cache_.at(core_id).at(offset);
return 0;
int dcr_read(uint32_t addr, uint32_t* value) const {
return dcrs_.read(addr, value);
}
int mpm_query(uint32_t addr, uint32_t core_id, uint64_t* value) {
uint32_t offset = addr - VX_CSR_MPM_BASE;
if (offset > 31)
return -1;
if (mpm_cache_.count(core_id) == 0) {
uint64_t mpm_mem_addr = IO_MPM_ADDR + core_id * 32 * sizeof(uint64_t);
CHECK_ERR(this->download(mpm_cache_[core_id].data(), mpm_mem_addr, 32 * sizeof(uint64_t)), {
return err;
});
}
*value = mpm_cache_.at(core_id).at(offset);
return 0;
}
private:
RAM ram_;
Processor processor_;
MemoryAllocator global_mem_;
DeviceConfig dcrs_;
std::future<void> future_;
std::unordered_map<uint32_t, std::array<uint64_t, 32>> mpm_cache_;
RAM ram_;
Processor processor_;
MemoryAllocator global_mem_;
DeviceConfig dcrs_;
std::future<void> future_;
std::unordered_map<uint32_t, std::array<uint64_t, 32>> mpm_cache_;
};
struct vx_buffer {
vx_device* device;
uint64_t addr;
uint64_t size;
};
///////////////////////////////////////////////////////////////////////////////
int vx_rtlsim_dev_open(vx_device_h* hdevice) {
if (nullptr == hdevice)
return -1;
auto device = new vx_device();
if (device == nullptr)
return -1;
CHECK_ERR(device->init(), {
delete device;
return err;
});
DBGPRINT("DEV_OPEN: hdevice=%p\n", (void*)device);
*hdevice = device;
return 0;
}
int vx_rtlsim_dev_close(vx_device_h hdevice) {
if (nullptr == hdevice)
return -1;
DBGPRINT("DEV_CLOSE: hdevice=%p\n", hdevice);
auto device = ((vx_device*)hdevice);
delete device;
return 0;
}
int vx_rtlsim_dev_caps(vx_device_h hdevice, uint32_t caps_id, uint64_t *value) {
if (nullptr == hdevice)
return -1;
vx_device *device = ((vx_device*)hdevice);
uint64_t _value;
CHECK_ERR(device->get_caps(caps_id, &_value), {
return err;
});
DBGPRINT("DEV_CAPS: hdevice=%p, caps_id=%d, value=%ld\n", hdevice, caps_id, _value);
*value = _value;
return 0;
}
int vx_rtlsim_mem_alloc(vx_device_h hdevice, uint64_t size, int flags, vx_buffer_h* hbuffer) {
if (nullptr == hdevice
|| nullptr == hbuffer
|| 0 == size)
return -1;
auto device = ((vx_device*)hdevice);
uint64_t dev_addr;
CHECK_ERR(device->mem_alloc(size, flags, &dev_addr), {
return err;
});
auto buffer = new vx_buffer{device, dev_addr, size};
if (nullptr == buffer) {
device->mem_free(dev_addr);
return -1;
}
DBGPRINT("MEM_ALLOC: hdevice=%p, size=%ld, flags=0x%d, hbuffer=%p\n", hdevice, size, flags, (void*)buffer);
*hbuffer = buffer;
return 0;
}
int vx_rtlsim_mem_reserve(vx_device_h hdevice, uint64_t address, uint64_t size, int flags, vx_buffer_h* hbuffer) {
if (nullptr == hdevice
|| nullptr == hbuffer
|| 0 == size)
return -1;
auto device = ((vx_device*)hdevice);
CHECK_ERR(device->mem_reserve(address, size, flags), {
return err;
});
auto buffer = new vx_buffer{device, address, size};
if (nullptr == buffer) {
device->mem_free(address);
return -1;
}
DBGPRINT("MEM_RESERVE: hdevice=%p, address=0x%lx, size=%ld, flags=0x%d, hbuffer=%p\n", hdevice, address, size, flags, (void*)buffer);
*hbuffer = buffer;
return 0;
}
int vx_rtlsim_mem_free(vx_buffer_h hbuffer) {
if (nullptr == hbuffer)
return 0;
DBGPRINT("MEM_FREE: hbuffer=%p\n", hbuffer);
auto buffer = ((vx_buffer*)hbuffer);
auto device = ((vx_device*)buffer->device);
vx_mem_access(hbuffer, 0, buffer->size, 0);
int err = device->mem_free(buffer->addr);
delete buffer;
return err;
}
int vx_rtlsim_mem_access(vx_buffer_h hbuffer, uint64_t offset, uint64_t size, int flags) {
if (nullptr == hbuffer)
return -1;
auto buffer = ((vx_buffer*)hbuffer);
auto device = ((vx_device*)buffer->device);
if ((offset + size) > buffer->size)
return -1;
DBGPRINT("MEM_ACCESS: hbuffer=%p, offset=%ld, size=%ld, flags=%d\n", hbuffer, offset, size, flags);
return device->mem_access(buffer->addr + offset, size, flags);
}
int vx_rtlsim_mem_address(vx_buffer_h hbuffer, uint64_t* address) {
if (nullptr == hbuffer)
return -1;
auto buffer = ((vx_buffer*)hbuffer);
DBGPRINT("MEM_ADDRESS: hbuffer=%p, address=0x%lx\n", hbuffer, buffer->addr);
*address = buffer->addr;
return 0;
}
int vx_rtlsim_mem_info(vx_device_h hdevice, uint64_t* mem_free, uint64_t* mem_used) {
if (nullptr == hdevice)
return -1;
auto device = ((vx_device*)hdevice);
uint64_t _mem_free, _mem_used;
CHECK_ERR(device->mem_info(&_mem_free, &_mem_used), {
return err;
});
DBGPRINT("MEM_INFO: hdevice=%p, mem_free=%ld, mem_used=%ld\n", hdevice, _mem_free, _mem_used);
if (mem_free) {
*mem_free = _mem_free;
}
if (mem_used) {
*mem_used = _mem_used;
}
return 0;
}
int vx_rtlsim_copy_to_dev(vx_buffer_h hbuffer, const void* host_ptr, uint64_t dst_offset, uint64_t size) {
if (nullptr == hbuffer || nullptr == host_ptr)
return -1;
auto buffer = ((vx_buffer*)hbuffer);
auto device = ((vx_device*)buffer->device);
if ((dst_offset + size) > buffer->size)
return -1;
DBGPRINT("COPY_TO_DEV: hbuffer=%p, host_addr=%p, dst_offset=%ld, size=%ld\n", hbuffer, host_ptr, dst_offset, size);
return device->upload(buffer->addr + dst_offset, host_ptr, size);
}
int vx_rtlsim_copy_from_dev(void* host_ptr, vx_buffer_h hbuffer, uint64_t src_offset, uint64_t size) {
if (nullptr == hbuffer || nullptr == host_ptr)
return -1;
auto buffer = ((vx_buffer*)hbuffer);
auto device = ((vx_device*)buffer->device);
if ((src_offset + size) > buffer->size)
return -1;
DBGPRINT("COPY_FROM_DEV: hbuffer=%p, host_addr=%p, src_offset=%ld, size=%ld\n", hbuffer, host_ptr, src_offset, size);
return device->download(host_ptr, buffer->addr + src_offset, size);
}
int vx_rtlsim_start(vx_device_h hdevice, vx_buffer_h hkernel, vx_buffer_h harguments) {
if (nullptr == hdevice || nullptr == hkernel || nullptr == harguments)
return -1;
DBGPRINT("START: hdevice=%p, hkernel=%p, harguments=%p\n", hdevice, hkernel, harguments);
auto device = ((vx_device*)hdevice);
auto kernel = ((vx_buffer*)hkernel);
auto arguments = ((vx_buffer*)harguments);
return device->start(kernel->addr, arguments->addr);
}
int vx_rtlsim_ready_wait(vx_device_h hdevice, uint64_t timeout) {
if (nullptr == hdevice)
return -1;
DBGPRINT("READY_WAIT: hdevice=%p, timeout=%ld\n", hdevice, timeout);
auto device = ((vx_device*)hdevice);
return device->ready_wait(timeout);
}
int vx_rtlsim_dcr_read(vx_device_h hdevice, uint32_t addr, uint32_t* value) {
if (nullptr == hdevice || NULL == value)
return -1;
auto device = ((vx_device*)hdevice);
uint32_t _value;
CHECK_ERR(device->dcr_read(addr, &_value), {
return err;
});
DBGPRINT("DCR_READ: hdevice=%p, addr=0x%x, value=0x%x\n", hdevice, addr, _value);
*value = _value;
return 0;
}
int vx_rtlsim_dcr_write(vx_device_h hdevice, uint32_t addr, uint32_t value) {
if (nullptr == hdevice)
return -1;
DBGPRINT("DCR_WRITE: hdevice=%p, addr=0x%x, value=0x%x\n", hdevice, addr, value);
auto device = ((vx_device*)hdevice);
return device->dcr_write(addr, value);
}
int vx_rtlsim_mpm_query(vx_device_h hdevice, uint32_t addr, uint32_t core_id, uint64_t* value) {
if (nullptr == hdevice)
return -1;
auto device = ((vx_device*)hdevice);
uint64_t _value;
CHECK_ERR(device->mpm_query(addr, core_id, &_value), {
return err;
});
DBGPRINT("MPM_QUERY: hdevice=%p, addr=0x%x, core_id=%d, value=0x%lx\n", hdevice, addr, core_id, _value);
*value = _value;
return 0;
}
__VX_DEV_INT(rtlsim)
#include <callbacks.inc>

View file

@ -31,506 +31,221 @@ using namespace vortex;
class vx_device {
public:
vx_device()
: arch_(NUM_THREADS, NUM_WARPS, NUM_CORES)
, ram_(0, RAM_PAGE_SIZE)
, processor_(arch_)
, global_mem_(ALLOC_BASE_ADDR, GLOBAL_MEM_SIZE - ALLOC_BASE_ADDR, RAM_PAGE_SIZE, CACHE_BLOCK_SIZE)
{
// attach memory module
processor_.attach_ram(&ram_);
vx_device()
: arch_(NUM_THREADS, NUM_WARPS, NUM_CORES)
, ram_(0, RAM_PAGE_SIZE)
, processor_(arch_)
, global_mem_(ALLOC_BASE_ADDR, GLOBAL_MEM_SIZE - ALLOC_BASE_ADDR, RAM_PAGE_SIZE, CACHE_BLOCK_SIZE)
{
// attach memory module
processor_.attach_ram(&ram_);
}
~vx_device() {
if (future_.valid()) {
future_.wait();
}
}
int init() {
return 0;
}
int get_caps(uint32_t caps_id, uint64_t *value) {
uint64_t _value;
switch (caps_id) {
case VX_CAPS_VERSION:
_value = IMPLEMENTATION_ID;
break;
case VX_CAPS_NUM_THREADS:
_value = NUM_THREADS;
break;
case VX_CAPS_NUM_WARPS:
_value = NUM_WARPS;
break;
case VX_CAPS_NUM_CORES:
_value = NUM_CORES * NUM_CLUSTERS;
break;
case VX_CAPS_NUM_BARRIERS:
_value = NUM_BARRIERS;
break;
case VX_CAPS_CACHE_LINE_SIZE:
_value = CACHE_BLOCK_SIZE;
break;
case VX_CAPS_GLOBAL_MEM_SIZE:
_value = GLOBAL_MEM_SIZE;
break;
case VX_CAPS_LOCAL_MEM_SIZE:
_value = (1 << LMEM_LOG_SIZE);
break;
case VX_CAPS_LOCAL_MEM_ADDR:
_value = LMEM_BASE_ADDR;
break;
case VX_CAPS_ISA_FLAGS:
_value = ((uint64_t(MISA_EXT))<<32) | ((log2floor(XLEN)-4) << 30) | MISA_STD;
break;
default:
std::cout << "invalid caps id: " << caps_id << std::endl;
std::abort();
return -1;
}
*value = _value;
return 0;
}
int mem_alloc(uint64_t size, int flags, uint64_t* dev_addr) {
uint64_t addr;
CHECK_ERR(global_mem_.allocate(size, &addr), {
return err;
});
CHECK_ERR(this->mem_access(addr, size, flags), {
global_mem_.release(addr);
return err;
});
*dev_addr = addr;
return 0;
}
int mem_reserve(uint64_t dev_addr, uint64_t size, int flags) {
CHECK_ERR(global_mem_.reserve(dev_addr, size), {
return err;
});
CHECK_ERR(this->mem_access(dev_addr, size, flags), {
global_mem_.release(dev_addr);
return err;
});
return 0;
}
int mem_free(uint64_t dev_addr) {
return global_mem_.release(dev_addr);
}
int mem_access(uint64_t dev_addr, uint64_t size, int flags) {
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (dev_addr + asize > GLOBAL_MEM_SIZE)
return -1;
ram_.set_acl(dev_addr, size, flags);
return 0;
}
int mem_info(uint64_t* mem_free, uint64_t* mem_used) const {
if (mem_free)
*mem_free = global_mem_.free();
if (mem_used)
*mem_used = global_mem_.allocated();
return 0;
}
int upload(uint64_t dest_addr, const void* src, uint64_t size) {
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (dest_addr + asize > GLOBAL_MEM_SIZE)
return -1;
ram_.enable_acl(false);
ram_.write((const uint8_t*)src, dest_addr, size);
ram_.enable_acl(true);
/*DBGPRINT("upload %ld bytes to 0x%lx\n", size, dest_addr);
for (uint64_t i = 0; i < size && i < 1024; i += 4) {
DBGPRINT(" 0x%lx <- 0x%x\n", dest_addr + i, *(uint32_t*)((uint8_t*)src + i));
}*/
return 0;
}
int download(void* dest, uint64_t src_addr, uint64_t size) {
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (src_addr + asize > GLOBAL_MEM_SIZE)
return -1;
ram_.enable_acl(false);
ram_.read((uint8_t*)dest, src_addr, size);
ram_.enable_acl(true);
/*DBGPRINT("download %ld bytes from 0x%lx\n", size, src_addr);
for (uint64_t i = 0; i < size && i < 1024; i += 4) {
DBGPRINT(" 0x%lx -> 0x%x\n", src_addr + i, *(uint32_t*)((uint8_t*)dest + i));
}*/
return 0;
}
int start(uint64_t krnl_addr, uint64_t args_addr) {
// ensure prior run completed
if (future_.valid()) {
future_.wait();
}
~vx_device() {
if (future_.valid()) {
future_.wait();
}
// set kernel info
this->dcr_write(VX_DCR_BASE_STARTUP_ADDR0, krnl_addr & 0xffffffff);
this->dcr_write(VX_DCR_BASE_STARTUP_ADDR1, krnl_addr >> 32);
this->dcr_write(VX_DCR_BASE_STARTUP_ARG0, args_addr & 0xffffffff);
this->dcr_write(VX_DCR_BASE_STARTUP_ARG1, args_addr >> 32);
// start new run
future_ = std::async(std::launch::async, [&]{
processor_.run();
});
// clear mpm cache
mpm_cache_.clear();
return 0;
}
int ready_wait(uint64_t timeout) {
if (!future_.valid())
return 0;
uint64_t timeout_sec = timeout / 1000;
std::chrono::seconds wait_time(1);
for (;;) {
// wait for 1 sec and check status
auto status = future_.wait_for(wait_time);
if (status == std::future_status::ready)
break;
if (0 == timeout_sec--)
return -1;
}
return 0;
}
int init() {
return 0;
int dcr_write(uint32_t addr, uint32_t value) {
if (future_.valid()) {
future_.wait(); // ensure prior run completed
}
processor_.dcr_write(addr, value);
dcrs_.write(addr, value);
return 0;
}
int get_caps(uint32_t caps_id, uint64_t *value) {
uint64_t _value;
switch (caps_id) {
case VX_CAPS_VERSION:
_value = IMPLEMENTATION_ID;
break;
case VX_CAPS_NUM_THREADS:
_value = NUM_THREADS;
break;
case VX_CAPS_NUM_WARPS:
_value = NUM_WARPS;
break;
case VX_CAPS_NUM_CORES:
_value = NUM_CORES * NUM_CLUSTERS;
break;
case VX_CAPS_NUM_BARRIERS:
_value = NUM_BARRIERS;
break;
case VX_CAPS_CACHE_LINE_SIZE:
_value = CACHE_BLOCK_SIZE;
break;
case VX_CAPS_GLOBAL_MEM_SIZE:
_value = GLOBAL_MEM_SIZE;
break;
case VX_CAPS_LOCAL_MEM_SIZE:
_value = (1 << LMEM_LOG_SIZE);
break;
case VX_CAPS_LOCAL_MEM_ADDR:
_value = LMEM_BASE_ADDR;
break;
case VX_CAPS_ISA_FLAGS:
_value = ((uint64_t(MISA_EXT))<<32) | ((log2floor(XLEN)-4) << 30) | MISA_STD;
break;
default:
std::cout << "invalid caps id: " << caps_id << std::endl;
std::abort();
return -1;
}
*value = _value;
return 0;
}
int mem_alloc(uint64_t size, int flags, uint64_t* dev_addr) {
uint64_t addr;
CHECK_ERR(global_mem_.allocate(size, &addr), {
return err;
});
CHECK_ERR(this->mem_access(addr, size, flags), {
global_mem_.release(addr);
return err;
});
*dev_addr = addr;
return 0;
}
int mem_reserve(uint64_t dev_addr, uint64_t size, int flags) {
CHECK_ERR(global_mem_.reserve(dev_addr, size), {
return err;
});
CHECK_ERR(this->mem_access(dev_addr, size, flags), {
global_mem_.release(dev_addr);
return err;
});
return 0;
}
int mem_free(uint64_t dev_addr) {
return global_mem_.release(dev_addr);
}
int mem_access(uint64_t dev_addr, uint64_t size, int flags) {
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (dev_addr + asize > GLOBAL_MEM_SIZE)
return -1;
ram_.set_acl(dev_addr, size, flags);
return 0;
}
int mem_info(uint64_t* mem_free, uint64_t* mem_used) const {
if (mem_free)
*mem_free = global_mem_.free();
if (mem_used)
*mem_used = global_mem_.allocated();
return 0;
}
int upload(uint64_t dest_addr, const void* src, uint64_t size) {
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (dest_addr + asize > GLOBAL_MEM_SIZE)
return -1;
ram_.enable_acl(false);
ram_.write((const uint8_t*)src, dest_addr, size);
ram_.enable_acl(true);
/*DBGPRINT("upload %ld bytes to 0x%lx\n", size, dest_addr);
for (uint64_t i = 0; i < size && i < 1024; i += 4) {
DBGPRINT(" 0x%lx <- 0x%x\n", dest_addr + i, *(uint32_t*)((uint8_t*)src + i));
}*/
return 0;
}
int download(void* dest, uint64_t src_addr, uint64_t size) {
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (src_addr + asize > GLOBAL_MEM_SIZE)
return -1;
ram_.enable_acl(false);
ram_.read((uint8_t*)dest, src_addr, size);
ram_.enable_acl(true);
/*DBGPRINT("download %ld bytes from 0x%lx\n", size, src_addr);
for (uint64_t i = 0; i < size && i < 1024; i += 4) {
DBGPRINT(" 0x%lx -> 0x%x\n", src_addr + i, *(uint32_t*)((uint8_t*)dest + i));
}*/
return 0;
}
int start(uint64_t krnl_addr, uint64_t args_addr) {
// ensure prior run completed
if (future_.valid()) {
future_.wait();
}
// set kernel info
this->dcr_write(VX_DCR_BASE_STARTUP_ADDR0, krnl_addr & 0xffffffff);
this->dcr_write(VX_DCR_BASE_STARTUP_ADDR1, krnl_addr >> 32);
this->dcr_write(VX_DCR_BASE_STARTUP_ARG0, args_addr & 0xffffffff);
this->dcr_write(VX_DCR_BASE_STARTUP_ARG1, args_addr >> 32);
// start new run
future_ = std::async(std::launch::async, [&]{
processor_.run();
});
// clear mpm cache
mpm_cache_.clear();
return 0;
}
int ready_wait(uint64_t timeout) {
if (!future_.valid())
return 0;
uint64_t timeout_sec = timeout / 1000;
std::chrono::seconds wait_time(1);
for (;;) {
// wait for 1 sec and check status
auto status = future_.wait_for(wait_time);
if (status == std::future_status::ready)
break;
if (0 == timeout_sec--)
return -1;
}
return 0;
}
int dcr_write(uint32_t addr, uint32_t value) {
if (future_.valid()) {
future_.wait(); // ensure prior run completed
}
processor_.dcr_write(addr, value);
dcrs_.write(addr, value);
return 0;
}
int dcr_read(uint32_t addr, uint32_t* value) const {
return dcrs_.read(addr, value);
}
int mpm_query(uint32_t addr, uint32_t core_id, uint64_t* value) {
uint32_t offset = addr - VX_CSR_MPM_BASE;
if (offset > 31)
return -1;
if (mpm_cache_.count(core_id) == 0) {
uint64_t mpm_mem_addr = IO_MPM_ADDR + core_id * 32 * sizeof(uint64_t);
CHECK_ERR(this->download(mpm_cache_[core_id].data(), mpm_mem_addr, 32 * sizeof(uint64_t)), {
return err;
});
}
*value = mpm_cache_.at(core_id).at(offset);
return 0;
int dcr_read(uint32_t addr, uint32_t* value) const {
return dcrs_.read(addr, value);
}
int mpm_query(uint32_t addr, uint32_t core_id, uint64_t* value) {
uint32_t offset = addr - VX_CSR_MPM_BASE;
if (offset > 31)
return -1;
if (mpm_cache_.count(core_id) == 0) {
uint64_t mpm_mem_addr = IO_MPM_ADDR + core_id * 32 * sizeof(uint64_t);
CHECK_ERR(this->download(mpm_cache_[core_id].data(), mpm_mem_addr, 32 * sizeof(uint64_t)), {
return err;
});
}
*value = mpm_cache_.at(core_id).at(offset);
return 0;
}
private:
Arch arch_;
RAM ram_;
Processor processor_;
MemoryAllocator global_mem_;
DeviceConfig dcrs_;
std::future<void> future_;
std::unordered_map<uint32_t, std::array<uint64_t, 32>> mpm_cache_;
Arch arch_;
RAM ram_;
Processor processor_;
MemoryAllocator global_mem_;
DeviceConfig dcrs_;
std::future<void> future_;
std::unordered_map<uint32_t, std::array<uint64_t, 32>> mpm_cache_;
};
struct vx_buffer {
vx_device* device;
uint64_t addr;
uint64_t size;
};
///////////////////////////////////////////////////////////////////////////////
int vx_simx_dev_open(vx_device_h* hdevice) {
if (nullptr == hdevice)
return -1;
auto device = new vx_device();
if (device == nullptr)
return -1;
CHECK_ERR(device->init(), {
delete device;
return err;
});
DBGPRINT("DEV_OPEN: hdevice=%p\n", (void*)device);
*hdevice = device;
return 0;
}
int vx_simx_dev_close(vx_device_h hdevice) {
if (nullptr == hdevice)
return -1;
DBGPRINT("DEV_CLOSE: hdevice=%p\n", hdevice);
auto device = ((vx_device*)hdevice);
delete device;
return 0;
}
int vx_simx_dev_caps(vx_device_h hdevice, uint32_t caps_id, uint64_t *value) {
if (nullptr == hdevice)
return -1;
vx_device *device = ((vx_device*)hdevice);
uint64_t _value;
CHECK_ERR(device->get_caps(caps_id, &_value), {
return err;
});
DBGPRINT("DEV_CAPS: hdevice=%p, caps_id=%d, value=%ld\n", hdevice, caps_id, _value);
*value = _value;
return 0;
}
int vx_simx_mem_alloc(vx_device_h hdevice, uint64_t size, int flags, vx_buffer_h* hbuffer) {
if (nullptr == hdevice
|| nullptr == hbuffer
|| 0 == size)
return -1;
auto device = ((vx_device*)hdevice);
uint64_t dev_addr;
CHECK_ERR(device->mem_alloc(size, flags, &dev_addr), {
return err;
});
auto buffer = new vx_buffer{device, dev_addr, size};
if (nullptr == buffer) {
device->mem_free(dev_addr);
return -1;
}
DBGPRINT("MEM_ALLOC: hdevice=%p, size=%ld, flags=0x%d, hbuffer=%p\n", hdevice, size, flags, (void*)buffer);
*hbuffer = buffer;
return 0;
}
int vx_simx_mem_reserve(vx_device_h hdevice, uint64_t address, uint64_t size, int flags, vx_buffer_h* hbuffer) {
if (nullptr == hdevice
|| nullptr == hbuffer
|| 0 == size)
return -1;
auto device = ((vx_device*)hdevice);
CHECK_ERR(device->mem_reserve(address, size, flags), {
return err;
});
auto buffer = new vx_buffer{device, address, size};
if (nullptr == buffer) {
device->mem_free(address);
return -1;
}
DBGPRINT("MEM_RESERVE: hdevice=%p, address=0x%lx, size=%ld, flags=0x%d, hbuffer=%p\n", hdevice, address, size, flags, (void*)buffer);
*hbuffer = buffer;
return 0;
}
int vx_simx_mem_free(vx_buffer_h hbuffer) {
if (nullptr == hbuffer)
return 0;
DBGPRINT("MEM_FREE: hbuffer=%p\n", hbuffer);
auto buffer = ((vx_buffer*)hbuffer);
auto device = ((vx_device*)buffer->device);
vx_mem_access(hbuffer, 0, buffer->size, 0);
int err = device->mem_free(buffer->addr);
delete buffer;
return err;
}
int vx_simx_mem_access(vx_buffer_h hbuffer, uint64_t offset, uint64_t size, int flags) {
if (nullptr == hbuffer)
return -1;
auto buffer = ((vx_buffer*)hbuffer);
auto device = ((vx_device*)buffer->device);
if ((offset + size) > buffer->size)
return -1;
DBGPRINT("MEM_ACCESS: hbuffer=%p, offset=%ld, size=%ld, flags=%d\n", hbuffer, offset, size, flags);
return device->mem_access(buffer->addr + offset, size, flags);
}
int vx_simx_mem_address(vx_buffer_h hbuffer, uint64_t* address) {
if (nullptr == hbuffer)
return -1;
auto buffer = ((vx_buffer*)hbuffer);
DBGPRINT("MEM_ADDRESS: hbuffer=%p, address=0x%lx\n", hbuffer, buffer->addr);
*address = buffer->addr;
return 0;
}
int vx_simx_mem_info(vx_device_h hdevice, uint64_t* mem_free, uint64_t* mem_used) {
if (nullptr == hdevice)
return -1;
auto device = ((vx_device*)hdevice);
uint64_t _mem_free, _mem_used;
CHECK_ERR(device->mem_info(&_mem_free, &_mem_used), {
return err;
});
DBGPRINT("MEM_INFO: hdevice=%p, mem_free=%ld, mem_used=%ld\n", hdevice, _mem_free, _mem_used);
if (mem_free) {
*mem_free = _mem_free;
}
if (mem_used) {
*mem_used = _mem_used;
}
return 0;
}
int vx_simx_copy_to_dev(vx_buffer_h hbuffer, const void* host_ptr, uint64_t dst_offset, uint64_t size) {
if (nullptr == hbuffer || nullptr == host_ptr)
return -1;
auto buffer = ((vx_buffer*)hbuffer);
auto device = ((vx_device*)buffer->device);
if ((dst_offset + size) > buffer->size)
return -1;
DBGPRINT("COPY_TO_DEV: hbuffer=%p, host_addr=%p, dst_offset=%ld, size=%ld\n", hbuffer, host_ptr, dst_offset, size);
return device->upload(buffer->addr + dst_offset, host_ptr, size);
}
int vx_simx_copy_from_dev(void* host_ptr, vx_buffer_h hbuffer, uint64_t src_offset, uint64_t size) {
if (nullptr == hbuffer || nullptr == host_ptr)
return -1;
auto buffer = ((vx_buffer*)hbuffer);
auto device = ((vx_device*)buffer->device);
if ((src_offset + size) > buffer->size)
return -1;
DBGPRINT("COPY_FROM_DEV: hbuffer=%p, host_addr=%p, src_offset=%ld, size=%ld\n", hbuffer, host_ptr, src_offset, size);
return device->download(host_ptr, buffer->addr + src_offset, size);
}
int vx_simx_start(vx_device_h hdevice, vx_buffer_h hkernel, vx_buffer_h harguments) {
if (nullptr == hdevice || nullptr == hkernel || nullptr == harguments)
return -1;
DBGPRINT("START: hdevice=%p, hkernel=%p, harguments=%p\n", hdevice, hkernel, harguments);
auto device = ((vx_device*)hdevice);
auto kernel = ((vx_buffer*)hkernel);
auto arguments = ((vx_buffer*)harguments);
return device->start(kernel->addr, arguments->addr);
}
int vx_simx_ready_wait(vx_device_h hdevice, uint64_t timeout) {
if (nullptr == hdevice)
return -1;
DBGPRINT("READY_WAIT: hdevice=%p, timeout=%ld\n", hdevice, timeout);
auto device = ((vx_device*)hdevice);
return device->ready_wait(timeout);
}
int vx_simx_dcr_read(vx_device_h hdevice, uint32_t addr, uint32_t* value) {
if (nullptr == hdevice || NULL == value)
return -1;
auto device = ((vx_device*)hdevice);
uint32_t _value;
CHECK_ERR(device->dcr_read(addr, &_value), {
return err;
});
DBGPRINT("DCR_READ: hdevice=%p, addr=0x%x, value=0x%x\n", hdevice, addr, _value);
*value = _value;
return 0;
}
int vx_simx_dcr_write(vx_device_h hdevice, uint32_t addr, uint32_t value) {
if (nullptr == hdevice)
return -1;
DBGPRINT("DCR_WRITE: hdevice=%p, addr=0x%x, value=0x%x\n", hdevice, addr, value);
auto device = ((vx_device*)hdevice);
return device->dcr_write(addr, value);
}
int vx_simx_mpm_query(vx_device_h hdevice, uint32_t addr, uint32_t core_id, uint64_t* value) {
if (nullptr == hdevice)
return -1;
auto device = ((vx_device*)hdevice);
uint64_t _value;
CHECK_ERR(device->mpm_query(addr, core_id, &_value), {
return err;
});
DBGPRINT("MPM_QUERY: hdevice=%p, addr=0x%x, core_id=%d, value=0x%lx\n", hdevice, addr, core_id, _value);
*value = _value;
return 0;
}
__VX_DEV_INT(simx)
#include <callbacks.inc>

View file

@ -56,111 +56,111 @@ static void* g_drv_handle = nullptr;
typedef int (*vx_dev_init_t)(callbacks_t*);
extern int vx_dev_open(vx_device_h* hdevice) {
{
const char* driverName = getenv("VORTEX_DRIVER");
if (driverName == nullptr) {
driverName = "simx";
}
std::string driverName_s(driverName);
std::string libName = "libvortex-" + driverName_s + ".so";
auto handle = dlopen(libName.c_str(), RTLD_LAZY);
if (handle == nullptr) {
std::cerr << "Cannot open library: " << dlerror() << std::endl;
return 1;
}
auto vx_dev_init = (vx_dev_init_t)dlsym(handle, "vx_dev_init");
auto dlsym_error = dlerror();
if (dlsym_error) {
std::cerr << "Cannot load symbol 'vx_init': " << dlsym_error << std::endl;
dlclose(handle);
return 1;
}
vx_dev_init(&g_callbacks);
g_drv_handle = handle;
{
const char* driverName = getenv("VORTEX_DRIVER");
if (driverName == nullptr) {
driverName = "simx";
}
std::string driverName_s(driverName);
std::string libName = "libvortex-" + driverName_s + ".so";
auto handle = dlopen(libName.c_str(), RTLD_LAZY);
if (handle == nullptr) {
std::cerr << "Cannot open library: " << dlerror() << std::endl;
return 1;
}
vx_device_h _hdevice;
auto vx_dev_init = (vx_dev_init_t)dlsym(handle, "vx_dev_init");
auto dlsym_error = dlerror();
if (dlsym_error) {
std::cerr << "Cannot load symbol 'vx_init': " << dlsym_error << std::endl;
dlclose(handle);
return 1;
}
CHECK_ERR((g_callbacks.dev_open)(&_hdevice), {
return err;
});
vx_dev_init(&g_callbacks);
g_drv_handle = handle;
}
CHECK_ERR(dcr_initialize(_hdevice), {
return err;
});
vx_device_h _hdevice;
*hdevice = _hdevice;
CHECK_ERR((g_callbacks.dev_open)(&_hdevice), {
return err;
});
return 0;
CHECK_ERR(dcr_initialize(_hdevice), {
return err;
});
*hdevice = _hdevice;
return 0;
}
extern int vx_dev_close(vx_device_h hdevice) {
vx_dump_perf(hdevice, stdout);
int ret = (g_callbacks.dev_close)(hdevice);
dlclose(g_drv_handle);
return ret;
vx_dump_perf(hdevice, stdout);
int ret = (g_callbacks.dev_close)(hdevice);
dlclose(g_drv_handle);
return ret;
}
extern int vx_dev_caps(vx_device_h hdevice, uint32_t caps_id, uint64_t* value) {
return (g_callbacks.dev_caps)(hdevice, caps_id, value);
return (g_callbacks.dev_caps)(hdevice, caps_id, value);
}
extern int vx_mem_alloc(vx_device_h hdevice, uint64_t size, int flags, vx_buffer_h* hbuffer) {
return (g_callbacks.mem_alloc)(hdevice, size, flags, hbuffer);
return (g_callbacks.mem_alloc)(hdevice, size, flags, hbuffer);
}
extern int vx_mem_reserve(vx_device_h hdevice, uint64_t address, uint64_t size, int flags, vx_buffer_h* hbuffer) {
return (g_callbacks.mem_reserve)(hdevice, address, size, flags, hbuffer);
return (g_callbacks.mem_reserve)(hdevice, address, size, flags, hbuffer);
}
extern int vx_mem_free(vx_buffer_h hbuffer) {
return (g_callbacks.mem_free)(hbuffer);
return (g_callbacks.mem_free)(hbuffer);
}
extern int vx_mem_access(vx_buffer_h hbuffer, uint64_t offset, uint64_t size, int flags) {
return (g_callbacks.mem_access)(hbuffer, offset, size, flags);
return (g_callbacks.mem_access)(hbuffer, offset, size, flags);
}
extern int vx_mem_address(vx_buffer_h hbuffer, uint64_t* address) {
return (g_callbacks.mem_address)(hbuffer, address);
return (g_callbacks.mem_address)(hbuffer, address);
}
extern int vx_mem_info(vx_device_h hdevice, uint64_t* mem_free, uint64_t* mem_used) {
return (g_callbacks.mem_info)(hdevice, mem_free, mem_used);
return (g_callbacks.mem_info)(hdevice, mem_free, mem_used);
}
extern int vx_copy_to_dev(vx_buffer_h hbuffer, const void* host_ptr, uint64_t dst_offset, uint64_t size) {
return (g_callbacks.copy_to_dev)(hbuffer, host_ptr, dst_offset, size);
return (g_callbacks.copy_to_dev)(hbuffer, host_ptr, dst_offset, size);
}
extern int vx_copy_from_dev(void* host_ptr, vx_buffer_h hbuffer, uint64_t src_offset, uint64_t size) {
return (g_callbacks.copy_from_dev)(host_ptr, hbuffer, src_offset, size);
return (g_callbacks.copy_from_dev)(host_ptr, hbuffer, src_offset, size);
}
extern int vx_start(vx_device_h hdevice, vx_buffer_h hkernel, vx_buffer_h harguments) {
int profiling_mode = get_profiling_mode();
if (profiling_mode != 0) {
CHECK_ERR(vx_dcr_write(hdevice, VX_DCR_BASE_MPM_CLASS, profiling_mode), {
return err;
});
}
return (g_callbacks.start)(hdevice, hkernel, harguments);
int profiling_mode = get_profiling_mode();
if (profiling_mode != 0) {
CHECK_ERR(vx_dcr_write(hdevice, VX_DCR_BASE_MPM_CLASS, profiling_mode), {
return err;
});
}
return (g_callbacks.start)(hdevice, hkernel, harguments);
}
extern int vx_ready_wait(vx_device_h hdevice, uint64_t timeout) {
return (g_callbacks.ready_wait)(hdevice, timeout);
return (g_callbacks.ready_wait)(hdevice, timeout);
}
extern int vx_dcr_read(vx_device_h hdevice, uint32_t addr, uint32_t* value) {
return (g_callbacks.dcr_read)(hdevice, addr, value);
return (g_callbacks.dcr_read)(hdevice, addr, value);
}
extern int vx_dcr_write(vx_device_h hdevice, uint32_t addr, uint32_t value) {
return (g_callbacks.dcr_write)(hdevice, addr, value);
return (g_callbacks.dcr_write)(hdevice, addr, value);
}
extern int vx_mpm_query(vx_device_h hdevice, uint32_t addr, uint32_t core_id, uint64_t* value) {
return (g_callbacks.mpm_query)(hdevice, addr, core_id, value);
return (g_callbacks.mpm_query)(hdevice, addr, core_id, value);
}

File diff suppressed because it is too large Load diff

View file

@ -26,6 +26,12 @@ else
CXXFLAGS += -O2 -DNDEBUG
endif
# Enable perf counters
ifdef PERF
VL_FLAGS += -DPERF_ENABLE
CXXFLAGS += -DPERF_ENABLE
endif
PROJECT := simx
all: $(DESTDIR)/$(PROJECT)