new conv3x regression test

This commit is contained in:
Blaise Tine 2024-03-26 16:30:47 -07:00
parent c8dd0aafb0
commit 8ab4c53e27
5 changed files with 387 additions and 0 deletions

View file

@ -11,6 +11,7 @@ all:
$(MAKE) -C no_mf_ext
$(MAKE) -C vecaddx
$(MAKE) -C sgemmx
$(MAKE) -C conv3x
run-simx:
$(MAKE) -C basic run-simx
@ -25,6 +26,7 @@ run-simx:
$(MAKE) -C no_mf_ext run-simx
$(MAKE) -C vecaddx run-simx
$(MAKE) -C sgemmx run-simx
$(MAKE) -C conv3x run-simx
run-rtlsim:
$(MAKE) -C basic run-rtlsim
@ -39,6 +41,7 @@ run-rtlsim:
$(MAKE) -C no_mf_ext run-rtlsim
$(MAKE) -C vecaddx run-rtlsim
$(MAKE) -C sgemmx run-rtlsim
$(MAKE) -C conv3x run-rtlsim
run-opae:
$(MAKE) -C basic run-opae
@ -53,6 +56,7 @@ run-opae:
$(MAKE) -C no_mf_ext run-opae
$(MAKE) -C vecaddx run-opae
$(MAKE) -C sgemmx run-opae
$(MAKE) -C conv3x run-opae
clean:
$(MAKE) -C basic clean
@ -67,6 +71,7 @@ clean:
$(MAKE) -C no_mf_ext clean
$(MAKE) -C vecaddx clean
$(MAKE) -C sgemmx clean
$(MAKE) -C conv3x clean
clean-all:
$(MAKE) -C basic clean-all
@ -81,3 +86,4 @@ clean-all:
$(MAKE) -C no_mf_ext clean-all
$(MAKE) -C vecaddx clean-all
$(MAKE) -C sgemmx clean-all
$(MAKE) -C conv3x clean-all

View file

@ -0,0 +1,9 @@
PROJECT = conv3x
SRCS = main.cpp
VX_SRCS = kernel.cpp
OPTS ?= -n64
include ../common.mk

View file

@ -0,0 +1,20 @@
#ifndef _COMMON_H_
#define _COMMON_H_
#define KERNEL_ARG_DEV_MEM_ADDR 0x7ffff000
#ifndef TYPE
#define TYPE float
#endif
typedef struct {
uint32_t num_tasks;
uint32_t width;
uint32_t log2_width;
uint64_t lmem_addr;
uint64_t I_addr;
uint64_t W_addr;
uint64_t O_addr;
} kernel_arg_t;
#endif

View file

@ -0,0 +1,59 @@
#include <stdint.h>
#include <vx_intrinsics.h>
#include <vx_spawn.h>
#include "common.h"
inline char is_log2(uint32_t x) {
return ((x & (x-1)) == 0);
}
void kernel_body(uint32_t task_id, kernel_arg_t* __UNIFORM__ arg) {
auto I = reinterpret_cast<TYPE*>(arg->I_addr);
auto W = reinterpret_cast<TYPE*>((arg->lmem_addr != 0) ? arg->lmem_addr : arg->W_addr);
auto O = reinterpret_cast<TYPE*>(arg->O_addr);
auto width = arg->width;
uint32_t row, col;
if (is_log2(width)) {
row = task_id >> arg->log2_width;
col = task_id & (width-1);
} else {
row = task_id / width;
}
// Adjust for padded borders
int paddedWidth = width + 2;
int paddedX = col + 1;
int paddedY = row + 1;
// Compute 3x3 convolution sum
float sum = 0.0f;
sum += I[(paddedY - 1) * paddedWidth + (paddedX - 1)] * W[0]; // Top-left
sum += I[(paddedY - 1) * paddedWidth + paddedX] * W[1]; // Top-center
sum += I[(paddedY - 1) * paddedWidth + (paddedX + 1)] * W[2]; // Top-right
sum += I[paddedY * paddedWidth + (paddedX - 1)] * W[3]; // Middle-left
sum += I[paddedY * paddedWidth + paddedX] * W[4]; // Center
sum += I[paddedY * paddedWidth + (paddedX + 1)] * W[5]; // Middle-right
sum += I[(paddedY + 1) * paddedWidth + (paddedX - 1)] * W[6]; // Bottom-left
sum += I[(paddedY + 1) * paddedWidth + paddedX] * W[7]; // Bottom-center
sum += I[(paddedY + 1) * paddedWidth + (paddedX + 1)] * W[8]; // Bottom-right
O[row * width + col] = sum;
}
int main() {
kernel_arg_t* arg = (kernel_arg_t*)KERNEL_ARG_DEV_MEM_ADDR;
if (arg->lmem_addr != 0) {
// populate local memory
auto W = reinterpret_cast<TYPE*>(arg->W_addr);
auto L = reinterpret_cast<TYPE*>(arg->lmem_addr);
for (int i = 0; i < (3*3); ++i) {
L[i] = W[i];
}
}
vx_spawn_tasks(arg->num_tasks, (vx_spawn_tasks_cb)kernel_body, arg);
return 0;
}

View file

@ -0,0 +1,293 @@
#include <iostream>
#include <unistd.h>
#include <string.h>
#include <vector>
#include <chrono>
#include <vortex.h>
#include <cmath>
#include "common.h"
#define FLOAT_ULP 6
#define RT_CHECK(_expr) \
do { \
int _ret = _expr; \
if (0 == _ret) \
break; \
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
cleanup(); \
exit(-1); \
} while (false)
///////////////////////////////////////////////////////////////////////////////
template <typename Type>
class Comparator {};
template <>
class Comparator<int> {
public:
static const char* type_str() {
return "integer";
}
static int generate() {
return rand();
}
static bool compare(int a, int b, int index, int errors) {
if (a != b) {
if (errors < 100) {
printf("*** error: [%d] expected=%d, actual=%d\n", index, a, b);
}
return false;
}
return true;
}
};
template <>
class Comparator<float> {
public:
static const char* type_str() {
return "float";
}
static int generate() {
return static_cast<float>(rand()) / RAND_MAX;
}
static bool compare(float a, float b, int index, int errors) {
union fi_t { float f; int32_t i; };
fi_t fa, fb;
fa.f = a;
fb.f = b;
auto d = std::abs(fa.i - fb.i);
if (d > FLOAT_ULP) {
if (errors < 100) {
printf("*** error: [%d] expected=%f, actual=%f\n", index, a, b);
}
return false;
}
return true;
}
};
static void convolution_cpu(TYPE *O, TYPE *I, TYPE *W, int32_t width, int32_t height) {
int paddedWidth = width + 2;
for (int32_t y = 0; y < height; ++y) {
for (int32_t x = 0; x < width; ++x) {
int paddedY = y + 1;
int paddedX = x + 1;
TYPE sum(0);
for (int32_t ky = -1; ky <= 1; ++ky) {
for (int32_t kx = -1; kx <= 1; ++kx) {
int32_t iy = paddedY + ky;
int32_t ix = paddedX + kx;
TYPE value = I[iy * paddedWidth + ix];
TYPE weight = W[(ky + 1) * 3 + (kx + 1)];
sum += value * weight;
}
}
O[y * width + x] = sum;
}
}
}
const char* kernel_file = "kernel.bin";
int size = 32;
bool use_lmem = false;
vx_device_h device = nullptr;
std::vector<uint8_t> staging_buf;
kernel_arg_t kernel_arg = {};
static void show_usage() {
std::cout << "Vortex Test." << std::endl;
std::cout << "Usage: [-k kernel] [-l: local memory] [-n size] [-h|?: help]" << std::endl;
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "n:k:lh?")) != -1) {
switch (c) {
case 'n':
size = atoi(optarg);
break;
case 'l':
use_lmem = true;
break;
case 'k':
kernel_file = optarg;
break;
case 'h':
case '?': {
show_usage();
exit(0);
} break;
default:
show_usage();
exit(-1);
}
}
}
void cleanup() {
if (device) {
vx_mem_free(device, kernel_arg.I_addr);
if (!use_lmem) {
vx_mem_free(device, kernel_arg.W_addr);
}
vx_mem_free(device, kernel_arg.O_addr);
vx_dev_close(device);
}
}
int main(int argc, char *argv[]) {
// parse command arguments
parse_args(argc, argv);
std::srand(50);
// open device connection
std::cout << "open device connection" << std::endl;
RT_CHECK(vx_dev_open(&device));
uint32_t num_points = size * size;
std::cout << "data type: " << Comparator<TYPE>::type_str() << std::endl;
std::cout << "matrix size: " << size << "x" << size << std::endl;
uint32_t o_points = size * size;
uint32_t i_points = (size+2) * (size+2);
uint32_t w_points = 3 * 3;
// upload program
std::cout << "upload program" << std::endl;
RT_CHECK(vx_upload_kernel_file(device, kernel_file));
// allocate device memory
std::cout << "allocate device memory" << std::endl;
size_t i_nbytes = i_points * sizeof(TYPE);
size_t w_nbytes = w_points * sizeof(TYPE);
size_t o_nbytes = o_points * sizeof(TYPE);
RT_CHECK(vx_mem_alloc(device, i_nbytes, &kernel_arg.I_addr));
RT_CHECK(vx_mem_alloc(device, o_nbytes, &kernel_arg.O_addr));
RT_CHECK(vx_mem_alloc(device, w_nbytes, &kernel_arg.W_addr));
if (use_lmem) {
uint64_t dev_local_mem_size;
RT_CHECK(vx_dev_caps(device, VX_CAPS_LOCAL_MEM_SIZE, &dev_local_mem_size));
if (w_nbytes > dev_local_mem_size) {
std::cout << "Error: Not enough local memory: needed=" << w_nbytes << ", available=" << dev_local_mem_size << std::endl;
cleanup();
exit(1);
}
RT_CHECK(vx_dev_caps(device, VX_CAPS_LOCAL_MEM_ADDR, &kernel_arg.lmem_addr));
std::cout << "using local memory: base_addr=" << std::hex << kernel_arg.lmem_addr << std::dec << std::endl;
} else {
kernel_arg.lmem_addr = 0;
}
kernel_arg.num_tasks = num_points;
kernel_arg.width = size;
kernel_arg.log2_width = log2(size);
std::cout << "dev_argI=0x" << std::hex << kernel_arg.I_addr << std::endl;
std::cout << "dev_argW=0x" << std::hex << kernel_arg.W_addr << std::endl;
std::cout << "dev_argO=0x" << std::hex << kernel_arg.O_addr << std::endl;
// allocate staging buffer
std::cout << "allocate staging buffer" << std::endl;
uint32_t alloc_size = std::max<uint32_t>(i_nbytes, sizeof(kernel_arg_t));
staging_buf.resize(alloc_size);
// upload kernel argument
std::cout << "upload kernel argument" << std::endl;
memcpy(staging_buf.data(), &kernel_arg, sizeof(kernel_arg_t));
RT_CHECK(vx_copy_to_dev(device, KERNEL_ARG_DEV_MEM_ADDR, staging_buf.data(), sizeof(kernel_arg_t)));
// Generate input values
std::vector<TYPE> h_I(i_points);
std::vector<TYPE> h_W(w_points);
std::vector<TYPE> h_O(o_points);
for (int32_t y = -1; y < size+1; ++y) {
for (int32_t x = -1; x < size+1; ++x) {
if (x >= 0 && x < size && y >= 0 && y < size) {
h_I[(y+1) * (size+2) + (x+1)] = static_cast<TYPE>(rand()) / RAND_MAX;
} else {
h_I[(y+1) * (size+2) + (x+1)] = 0;
}
}
}
for (uint32_t i = 0; i < w_points; ++i) {
h_W[i] = static_cast<TYPE>(rand()) / RAND_MAX;
}
convolution_cpu(h_O.data(), h_I.data(), h_W.data(), size, size);
// upload input buffer
{
std::cout << "upload source buffer" << std::endl;
auto buf_ptr = (TYPE*)staging_buf.data();
for (uint32_t i = 0; i < i_points; ++i) {
buf_ptr[i] = h_I[i];
}
RT_CHECK(vx_copy_to_dev(device, kernel_arg.I_addr, staging_buf.data(), i_nbytes));
}
// upload weight buffer
{
std::cout << "upload weight buffer" << std::endl;
auto buf_ptr = (TYPE*)staging_buf.data();
for (uint32_t i = 0; i < w_points; ++i) {
buf_ptr[i] = h_W[i];
}
RT_CHECK(vx_copy_to_dev(device, kernel_arg.W_addr, staging_buf.data(), w_nbytes));
}
// clear destination buffer
std::cout << "clear destination buffer" << std::endl;
memset(staging_buf.data(), 0, o_nbytes);
RT_CHECK(vx_copy_to_dev(device, kernel_arg.O_addr, staging_buf.data(), o_nbytes));
auto time_start = std::chrono::high_resolution_clock::now();
// start device
std::cout << "start device" << std::endl;
RT_CHECK(vx_start(device));
// wait for completion
std::cout << "wait for completion" << std::endl;
RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT));
auto time_end = std::chrono::high_resolution_clock::now();
double elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start).count();
printf("Elapsed time: %lg ms\n", elapsed);
// download destination buffer
std::cout << "download destination buffer" << std::endl;
RT_CHECK(vx_copy_from_dev(device, staging_buf.data(), kernel_arg.O_addr, o_nbytes));
// verify result
std::cout << "verify result" << std::endl;
{
int errors = 0;
auto buf_ptr = (TYPE*)staging_buf.data();
for (uint32_t i = 0; i < h_O.size(); ++i) {
auto ref = h_O[i];
auto cur = buf_ptr[i];
if (!Comparator<TYPE>::compare(cur, ref, i, errors)) {
++errors;
}
}
if (errors != 0) {
std::cout << "Found " << std::dec << errors << " errors!" << std::endl;
std::cout << "FAILED!" << std::endl;
return 1;
}
}
// cleanup
std::cout << "cleanup" << std::endl;
cleanup();
std::cout << "PASSED!" << std::endl;
return 0;
}