mirror of
https://github.com/vortexgpgpu/vortex.git
synced 2025-06-28 01:28:42 -04:00
tensor api + test
This commit is contained in:
parent
df68e4359a
commit
dd500fb5af
9 changed files with 656 additions and 30 deletions
|
@ -221,24 +221,6 @@ inline void vx_fence() {
|
|||
__asm__ volatile ("fence iorw, iorw");
|
||||
}
|
||||
|
||||
//Matrix load
|
||||
inline void vx_matrix_load(unsigned dest, unsigned addr)
|
||||
{
|
||||
__asm__ volatile (".insn i 0x7b, 0, x0, %0(%1)" :: "i"(dest), "r"(addr));
|
||||
}
|
||||
|
||||
//Matrix Store
|
||||
inline void vx_matrix_store(unsigned addr)
|
||||
{
|
||||
__asm__ volatile (".insn i 0x7b, 1, x0, 0(%0)" :: "r"(addr));
|
||||
}
|
||||
|
||||
//Matrix Mul
|
||||
inline void vx_matrix_mul()
|
||||
{
|
||||
__asm__ volatile (".insn i 0x7b, 2, x0, 0(x0)");
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
65
kernel/include/vx_tensor.h
Normal file
65
kernel/include/vx_tensor.h
Normal file
|
@ -0,0 +1,65 @@
|
|||
// Copyright © 2019-2023
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef __VX_TENSOR_H__
|
||||
#define __VX_TENSOR_H__
|
||||
|
||||
#include <stdint.h>
|
||||
#include <vx_intrinsics.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
namespace tensor {
|
||||
|
||||
enum frag_layout_t { row_major, col_major };
|
||||
enum mem_layout_t { mem_row_major, mem_col_major };
|
||||
|
||||
template <typename T, frag_layout_t L>
|
||||
struct fragment {
|
||||
typedef T DType;
|
||||
static const frag_layout_t Layout = L;
|
||||
typedef T VType __attribute__((vector_size(8 * sizeof(void*))));
|
||||
VType data;
|
||||
};
|
||||
|
||||
template <typename Frag>
|
||||
void fill_fragment(Frag &frag, size_t value) {
|
||||
// empty skeleton
|
||||
}
|
||||
|
||||
template <typename Frag>
|
||||
void load_matrix_sync(Frag &frag, const void *ptr, size_t ld) {
|
||||
// empty skeleton
|
||||
}
|
||||
|
||||
// Perform the matrix multiply-accumulate: D = A * B + C
|
||||
template <typename FragD, typename FragA, typename FragB, typename FragC>
|
||||
void mma_sync(FragD &D, const FragA &A, const FragB &B, const FragC &C) {
|
||||
// empty skeleton
|
||||
}
|
||||
|
||||
// Store a fragment result back to global memory
|
||||
template <typename Type, typename Frag>
|
||||
void store_matrix_sync(void *ptr, const Frag &frag, size_t ld, mem_layout_t layout) {
|
||||
// empty skeleton
|
||||
}
|
||||
|
||||
} // namespace wmma
|
||||
|
||||
#endif // __VX_TENSOR_H__
|
|
@ -548,18 +548,6 @@ Word Emulator::get_csr(uint32_t addr, uint32_t wid, uint32_t tid) {
|
|||
CSR_READ_64(VX_CSR_MPM_LMEM_BANK_ST, lmem_perf.bank_stalls);
|
||||
}
|
||||
} break;
|
||||
#ifdef EXT_V_ENABLE
|
||||
case VX_DCR_MPM_CLASS_VEC: {
|
||||
VecUnit::PerfStats vec_perf_stats;
|
||||
vec_perf_stats += vec_unit_->perf_stats();
|
||||
switch (addr) {
|
||||
CSR_READ_64(VX_CSR_MPM_VEC_READS, vec_perf_stats.reads);
|
||||
CSR_READ_64(VX_CSR_MPM_VEC_WRITES, vec_perf_stats.writes);
|
||||
CSR_READ_64(VX_CSR_MPM_VEC_LAT, vec_perf_stats.latency);
|
||||
CSR_READ_64(VX_CSR_MPM_VEC_ST, vec_perf_stats.stalls);
|
||||
}
|
||||
} break;
|
||||
#endif
|
||||
default:
|
||||
std::cerr << "Error: invalid MPM CLASS: value=" << perf_class << std::endl;
|
||||
std::abort();
|
||||
|
|
97
sim/simx/tensor_unit.cpp
Normal file
97
sim/simx/tensor_unit.cpp
Normal file
|
@ -0,0 +1,97 @@
|
|||
|
||||
// Copyright © 2019-2023
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "tensor_unit.h"
|
||||
|
||||
using namespace vortex;
|
||||
|
||||
template <typename T>
|
||||
class FMAD : public SimObject<FMAD<T>> {
|
||||
public:
|
||||
SimPort<T> Input;
|
||||
SimPort<T> Output;
|
||||
|
||||
FMAD(const SimContext &ctx, const char* name)
|
||||
: SimObject<FMAD<T>>(ctx, name)
|
||||
, Input(this)
|
||||
, Output(this)
|
||||
{}
|
||||
|
||||
virtual ~FMAD() {}
|
||||
|
||||
void reset() {
|
||||
//--
|
||||
}
|
||||
|
||||
void tick() {
|
||||
//--
|
||||
}
|
||||
};
|
||||
|
||||
class TensorUnit::Impl {
|
||||
public:
|
||||
Impl(TensorUnit* simobject, const Config& config, Core* core)
|
||||
: simobject_(simobject)
|
||||
, config_(config)
|
||||
, core_(core)
|
||||
, perf_stats_()
|
||||
{}
|
||||
|
||||
~Impl() {
|
||||
// Destructor logic if needed
|
||||
}
|
||||
|
||||
void reset() {
|
||||
perf_stats_ = PerfStats();
|
||||
}
|
||||
|
||||
void tick() {
|
||||
// Implement the tick logic here
|
||||
}
|
||||
|
||||
const PerfStats& perf_stats() const {
|
||||
return perf_stats_;
|
||||
}
|
||||
|
||||
private:
|
||||
TensorUnit* simobject_;
|
||||
Config config_;
|
||||
Core* core_;
|
||||
PerfStats perf_stats_;
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
TensorUnit::TensorUnit(const SimContext &ctx, const char* name, const Config& config, Core* core)
|
||||
: SimObject<TensorUnit>(ctx, name)
|
||||
, Inputs(config.num_ports, this)
|
||||
, Outputs(config.num_ports, this)
|
||||
, impl_(new Impl(this, config, core))
|
||||
{}
|
||||
|
||||
TensorUnit::~TensorUnit() {
|
||||
delete impl_;
|
||||
}
|
||||
|
||||
void TensorUnit::reset() {
|
||||
impl_->reset();
|
||||
}
|
||||
|
||||
void TensorUnit::tick() {
|
||||
impl_->tick();
|
||||
}
|
||||
|
||||
const TensorUnit::PerfStats &TensorUnit::perf_stats() const {
|
||||
return impl_->perf_stats();
|
||||
}
|
66
sim/simx/tensor_unit.h
Normal file
66
sim/simx/tensor_unit.h
Normal file
|
@ -0,0 +1,66 @@
|
|||
// Copyright © 2019-2023
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <simobject.h>
|
||||
#include "instr_trace.h"
|
||||
|
||||
namespace vortex {
|
||||
|
||||
class Core;
|
||||
|
||||
class TensorUnit : public SimObject<TensorUnit> {
|
||||
public:
|
||||
struct Config {
|
||||
uint8_t num_ports;
|
||||
uint8_t mac_latency;
|
||||
|
||||
Config()
|
||||
: num_ports(0)
|
||||
, mac_latency(0)
|
||||
{}
|
||||
};
|
||||
|
||||
struct PerfStats {
|
||||
uint64_t latency;
|
||||
|
||||
PerfStats()
|
||||
: latency(0)
|
||||
{}
|
||||
|
||||
PerfStats& operator+=(const PerfStats& rhs) {
|
||||
this->latency += rhs.latency;
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
std::vector<SimPort<instr_trace_t*>> Inputs;
|
||||
std::vector<SimPort<instr_trace_t*>> Outputs;
|
||||
|
||||
TensorUnit(const SimContext &ctx, const char* name, const Config& config, Core* core);
|
||||
|
||||
virtual ~TensorUnit();
|
||||
|
||||
virtual void reset();
|
||||
|
||||
virtual void tick();
|
||||
|
||||
const PerfStats& perf_stats() const;
|
||||
|
||||
private:
|
||||
class Impl;
|
||||
Impl* impl_;
|
||||
};
|
||||
|
||||
} // namespace vortex
|
14
tests/regression/sgemm_tpu/Makefile
Normal file
14
tests/regression/sgemm_tpu/Makefile
Normal file
|
@ -0,0 +1,14 @@
|
|||
ROOT_DIR := $(realpath ../../..)
|
||||
include $(ROOT_DIR)/config.mk
|
||||
|
||||
PROJECT := sgemm_tpu
|
||||
|
||||
SRC_DIR := $(VORTEX_HOME)/tests/regression/$(PROJECT)
|
||||
|
||||
SRCS := $(SRC_DIR)/main.cpp
|
||||
|
||||
VX_SRCS := $(SRC_DIR)/kernel.cpp
|
||||
|
||||
OPTS ?= -n32
|
||||
|
||||
include ../common.mk
|
25
tests/regression/sgemm_tpu/common.h
Normal file
25
tests/regression/sgemm_tpu/common.h
Normal file
|
@ -0,0 +1,25 @@
|
|||
#ifndef _COMMON_H_
|
||||
#define _COMMON_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#include <hfloats.h>
|
||||
|
||||
#ifndef I_TYPE
|
||||
#define I_TYPE vortex::half_t
|
||||
#endif
|
||||
|
||||
#ifndef O_TYPE
|
||||
#define O_TYPE float
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
uint32_t grid_dim[2];
|
||||
uint32_t block_dim[2];
|
||||
uint32_t tileM, tileN, tileK;
|
||||
uint32_t M, N, K;
|
||||
uint64_t A_addr;
|
||||
uint64_t B_addr;
|
||||
uint64_t C_addr;
|
||||
} kernel_arg_t;
|
||||
|
||||
#endif
|
46
tests/regression/sgemm_tpu/kernel.cpp
Normal file
46
tests/regression/sgemm_tpu/kernel.cpp
Normal file
|
@ -0,0 +1,46 @@
|
|||
#include <vx_spawn.h>
|
||||
#include <vx_tensor.h>
|
||||
#include "common.h"
|
||||
|
||||
void kernel_body(kernel_arg_t* __UNIFORM__ arg) {
|
||||
auto A = reinterpret_cast<I_TYPE*>(arg->A_addr);
|
||||
auto B = reinterpret_cast<I_TYPE*>(arg->B_addr);
|
||||
auto C = reinterpret_cast<O_TYPE*>(arg->C_addr);
|
||||
|
||||
tensor::fragment<tensor::half_t, tensor::row_major> fragA;
|
||||
tensor::fragment<tensor::half_t, tensor::row_major> fragB;
|
||||
tensor::fragment<float, tensor::row_major> fragC;
|
||||
|
||||
// calculate tile row & column based on block index
|
||||
uint32_t tile_row = blockIdx.y * arg->tileM;
|
||||
uint32_t tile_col = blockIdx.x * arg->tileN;
|
||||
|
||||
uint32_t N = arg->N;
|
||||
uint32_t K = arg->K;
|
||||
uint32_t tileK = arg->tileK;
|
||||
|
||||
// Initialize accumulator tile to zero
|
||||
tensor::fill_fragment(fragC, 0.0f);
|
||||
|
||||
for (int i = 0; i < K; i += tileK) {
|
||||
// Load A tile
|
||||
auto tileA = A + (tile_row * K + i);
|
||||
tensor::load_matrix_sync(fragA, tileA, K);
|
||||
|
||||
// Load B tile
|
||||
auto tileB = B + (i * k + tile_col);
|
||||
tensor::load_matrix_sync(fragB, tileB, K);
|
||||
|
||||
// Matrix multiply-accumulate: c += a * b
|
||||
tensor::mma_sync(fragC, fragA, fragB, fragC);
|
||||
}
|
||||
|
||||
// Store the computed C tile
|
||||
auto tileC = C + (tile_row * N + tile_col);
|
||||
tensor::store_matrix_sync(tileC, fragC, N, tensor::mem_row_major);
|
||||
}
|
||||
|
||||
int main() {
|
||||
kernel_arg_t* arg = (kernel_arg_t*)csr_read(VX_CSR_MSCRATCH);
|
||||
return vx_spawn_threads(2, arg->grid_dim, arg->block_dim, (vx_kernel_func_cb)kernel_body, arg);
|
||||
}
|
343
tests/regression/sgemm_tpu/main.cpp
Normal file
343
tests/regression/sgemm_tpu/main.cpp
Normal file
|
@ -0,0 +1,343 @@
|
|||
#include <iostream>
|
||||
#include <unistd.h>
|
||||
#include <string.h>
|
||||
#include <vector>
|
||||
#include <chrono>
|
||||
#include <vortex.h>
|
||||
#include <cmath>
|
||||
#include "common.h"
|
||||
#include <hfloats.h>
|
||||
|
||||
#define FLOAT_ULP 6
|
||||
|
||||
#define RT_CHECK(_expr) \
|
||||
do { \
|
||||
int _ret = _expr; \
|
||||
if (0 == _ret) \
|
||||
break; \
|
||||
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
|
||||
cleanup(); \
|
||||
exit(-1); \
|
||||
} while (false)
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename Type>
|
||||
class Comparator {};
|
||||
|
||||
template <>
|
||||
class Comparator<int8_t> {
|
||||
public:
|
||||
static const char* type_str() {
|
||||
return "int8";
|
||||
}
|
||||
static int8_t generate() {
|
||||
return (int8_t)rand();
|
||||
}
|
||||
static bool compare(int a, int b, int index, int errors) {
|
||||
if (a != b) {
|
||||
if (errors < 100) {
|
||||
printf("*** error: [%d] expected=%d, actual=%d\n", index, b, a);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
class Comparator<int> {
|
||||
public:
|
||||
static const char* type_str() {
|
||||
return "int8";
|
||||
}
|
||||
static int generate() {
|
||||
return (int)rand();
|
||||
}
|
||||
static bool compare(int a, int b, int index, int errors) {
|
||||
if (a != b) {
|
||||
if (errors < 100) {
|
||||
printf("*** error: [%d] expected=%d, actual=%d\n", index, b, a);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
class Comparator<vortex::half_t> {
|
||||
public:
|
||||
static const char* type_str() {
|
||||
return "f16";
|
||||
}
|
||||
static vortex::half_t generate() {
|
||||
return static_cast<vortex::half_t>(float(rand()) / RAND_MAX);
|
||||
}
|
||||
static bool compare(float a, float b, int index, int errors) {
|
||||
union fi_t { float f; int32_t i; };
|
||||
fi_t fa, fb;
|
||||
fa.f = a;
|
||||
fb.f = b;
|
||||
auto d = std::abs(fa.i - fb.i);
|
||||
if (d > FLOAT_ULP) {
|
||||
if (errors < 100) {
|
||||
printf("*** error: [%d] expected=%f, actual=%f\n", index, b, a);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
class Comparator<float> {
|
||||
public:
|
||||
static const char* type_str() {
|
||||
return "float";
|
||||
}
|
||||
static int generate() {
|
||||
return static_cast<float>(rand()) / RAND_MAX;
|
||||
}
|
||||
static bool compare(float a, float b, int index, int errors) {
|
||||
union fi_t { float f; int32_t i; };
|
||||
fi_t fa, fb;
|
||||
fa.f = a;
|
||||
fb.f = b;
|
||||
auto d = std::abs(fa.i - fb.i);
|
||||
if (d > FLOAT_ULP) {
|
||||
if (errors < 100) {
|
||||
printf("*** error: [%d] expected=%f, actual=%f\n", index, b, a);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
static void matmul_cpu(O_TYPE* C, const I_TYPE* A, const I_TYPE* B, uint32_t M, uint32_t N, uint32_t K) {
|
||||
for (uint32_t m = 0; m < M; ++m) {
|
||||
for (uint32_t n = 0; n < N; ++n) {
|
||||
O_TYPE sum(0);
|
||||
for (uint32_t k = 0; k < K; ++k) {
|
||||
sum += O_TYPE(A[m*K + k] * B[k*N + n]);
|
||||
}
|
||||
C[m*N + n] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const char* kernel_file = "kernel.vxbin";
|
||||
uint32_t M = 32;
|
||||
uint32_t N = 32;
|
||||
uint32_t K = 32;
|
||||
|
||||
vx_device_h device = nullptr;
|
||||
vx_buffer_h A_buffer = nullptr;
|
||||
vx_buffer_h B_buffer = nullptr;
|
||||
vx_buffer_h C_buffer = nullptr;
|
||||
vx_buffer_h krnl_buffer = nullptr;
|
||||
vx_buffer_h args_buffer = nullptr;
|
||||
kernel_arg_t kernel_arg = {};
|
||||
|
||||
static void show_usage() {
|
||||
std::cout << "Vortex Test." << std::endl;
|
||||
std::cout << "Usage: [-m: m] [-n N] [-k: K] [-h: help]" << std::endl;
|
||||
}
|
||||
|
||||
static void parse_args(int argc, char **argv) {
|
||||
int c;
|
||||
while ((c = getopt(argc, argv, "m:n:k:h")) != -1) {
|
||||
switch (c) {
|
||||
case 'm':
|
||||
M = atoi(optarg);
|
||||
break;
|
||||
case 'n':
|
||||
N = atoi(optarg);
|
||||
break;
|
||||
case 'k':
|
||||
K = atoi(optarg);
|
||||
break;
|
||||
case 'h':
|
||||
show_usage();
|
||||
exit(0);
|
||||
break;
|
||||
default:
|
||||
show_usage();
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cleanup() {
|
||||
if (device) {
|
||||
vx_mem_free(A_buffer);
|
||||
vx_mem_free(B_buffer);
|
||||
vx_mem_free(C_buffer);
|
||||
vx_mem_free(krnl_buffer);
|
||||
vx_mem_free(args_buffer);
|
||||
vx_dev_close(device);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
// parse command arguments
|
||||
parse_args(argc, argv);
|
||||
|
||||
std::srand(50);
|
||||
|
||||
// open device connection
|
||||
std::cout << "open device connection" << std::endl;
|
||||
RT_CHECK(vx_dev_open(&device));
|
||||
|
||||
uint64_t NT;
|
||||
RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_THREADS, &NT));
|
||||
std::cout << "GPU warp size: " << NT << std::endl;
|
||||
|
||||
uint64_t isa_flags;
|
||||
RT_CHECK(vx_dev_caps(device, VX_CAPS_ISA_FLAGS, &isa_flags));
|
||||
uint32_t XlenB = 4 * VX_ISA_ARCH(isa_flags);
|
||||
std::cout << "GPU XLEN: " << 8 * XlenB << std::endl;
|
||||
|
||||
// tile format ratio
|
||||
uint32_t o_ratio = XlenB / sizeof(O_TYPE);
|
||||
uint32_t i_ratio = XlenB / sizeof(I_TYPE);
|
||||
|
||||
// determine tensor tile size
|
||||
uint32_t logNT = log2(NT);
|
||||
uint32_t tileM = 4 * (1 << (logNT / 2)) * o_ratio;
|
||||
uint32_t tileN = (logNT % 2 == 0) ? tileM / 2 : tileN;
|
||||
uint32_t tileK = std::min(tileM, tileN) * i_ratio;
|
||||
|
||||
std::cout << "GPU tensor tileM=" << tileM << ", tileN=" << tileM << ", tileK=" << tileM << std::endl;
|
||||
|
||||
if ((M & (tileM - 1)) != 0) {
|
||||
std::cout << "Error: M must be a multiple of tensor tileM!" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if ((N & (tileN - 1)) != 0) {
|
||||
std::cout << "Error: M must be a multiple of tensor tileN!" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if ((K & (tileK - 1)) != 0) {
|
||||
std::cout << "Error: M must be a multiple of tensor tileK!" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
kernel_arg.tileM = tileM;
|
||||
kernel_arg.tileN = tileN;
|
||||
kernel_arg.tileK = tileK;
|
||||
|
||||
size_t sizeA = M * K;
|
||||
size_t sizeB = K * N;
|
||||
size_t sizeC = M * N;
|
||||
|
||||
std::cout << "input data type: " << Comparator<I_TYPE>::type_str() << std::endl;
|
||||
std::cout << "output data type: " << Comparator<O_TYPE>::type_str() << std::endl;
|
||||
std::cout << "matrix A: " << M << "x" << K << std::endl;
|
||||
std::cout << "matrix B: " << K << "x" << N << std::endl;
|
||||
std::cout << "matrix C: " << M << "x" << N << std::endl;
|
||||
|
||||
// set block size to warp size
|
||||
kernel_arg.grid_dim[0] = N / tileN;
|
||||
kernel_arg.grid_dim[1] = M / tileM;
|
||||
kernel_arg.block_dim[0] = NT; // warp size
|
||||
kernel_arg.block_dim[1] = 1;
|
||||
|
||||
// set matrix dimensions
|
||||
kernel_arg.M = M;
|
||||
kernel_arg.N = N;
|
||||
kernel_arg.K = K;
|
||||
|
||||
// allocate device memory
|
||||
std::cout << "allocate device memory" << std::endl;
|
||||
RT_CHECK(vx_mem_alloc(device, sizeA * sizeof(I_TYPE), VX_MEM_READ, &A_buffer));
|
||||
RT_CHECK(vx_mem_address(A_buffer, &kernel_arg.A_addr));
|
||||
RT_CHECK(vx_mem_alloc(device, sizeB * sizeof(I_TYPE), VX_MEM_READ, &B_buffer));
|
||||
RT_CHECK(vx_mem_address(B_buffer, &kernel_arg.B_addr));
|
||||
RT_CHECK(vx_mem_alloc(device, sizeC * sizeof(O_TYPE), VX_MEM_WRITE, &C_buffer));
|
||||
RT_CHECK(vx_mem_address(C_buffer, &kernel_arg.C_addr));
|
||||
|
||||
std::cout << "A_addr=0x" << std::hex << kernel_arg.A_addr << std::endl;
|
||||
std::cout << "B_addr=0x" << std::hex << kernel_arg.B_addr << std::endl;
|
||||
std::cout << "C_addr=0x" << std::hex << kernel_arg.C_addr << std::endl;
|
||||
|
||||
// generate source data
|
||||
std::vector<I_TYPE> h_A(sizeA);
|
||||
std::vector<I_TYPE> h_B(sizeB);
|
||||
for (uint32_t i = 0; i < sizeA; ++i) {
|
||||
h_A[i] = Comparator<I_TYPE>::generate();
|
||||
}
|
||||
for (uint32_t i = 0; i < sizeB; ++i) {
|
||||
h_B[i] = Comparator<I_TYPE>::generate();
|
||||
}
|
||||
|
||||
// upload matrix A buffer
|
||||
{
|
||||
std::cout << "upload matrix A buffer" << std::endl;
|
||||
RT_CHECK(vx_copy_to_dev(A_buffer, h_A.data(), 0, sizeA * sizeof(I_TYPE)));
|
||||
}
|
||||
|
||||
// upload matrix B buffer
|
||||
{
|
||||
std::cout << "upload matrix B buffer" << std::endl;
|
||||
RT_CHECK(vx_copy_to_dev(B_buffer, h_B.data(), 0, sizeB * sizeof(I_TYPE)));
|
||||
}
|
||||
|
||||
// upload program
|
||||
std::cout << "upload program" << std::endl;
|
||||
RT_CHECK(vx_upload_kernel_file(device, kernel_file, &krnl_buffer));
|
||||
|
||||
// upload kernel argument
|
||||
std::cout << "upload kernel argument" << std::endl;
|
||||
RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &args_buffer));
|
||||
|
||||
auto time_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
// start device
|
||||
std::cout << "start device" << std::endl;
|
||||
RT_CHECK(vx_start(device, krnl_buffer, args_buffer));
|
||||
|
||||
// wait for completion
|
||||
std::cout << "wait for completion" << std::endl;
|
||||
RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT));
|
||||
|
||||
auto time_end = std::chrono::high_resolution_clock::now();
|
||||
double elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start).count();
|
||||
printf("Elapsed time: %lg ms\n", elapsed);
|
||||
|
||||
// download destination buffer
|
||||
std::vector<O_TYPE> h_C(sizeC);
|
||||
std::cout << "download destination buffer" << std::endl;
|
||||
RT_CHECK(vx_copy_from_dev(h_C.data(), C_buffer, 0, sizeC * sizeof(O_TYPE)));
|
||||
|
||||
// verify result
|
||||
std::cout << "verify result" << std::endl;
|
||||
int errors = 0;
|
||||
{
|
||||
std::vector<O_TYPE> h_ref(sizeC);
|
||||
matmul_cpu(h_ref.data(), h_A.data(), h_B.data(), M, N, K);
|
||||
|
||||
for (uint32_t i = 0; i < h_ref.size(); ++i) {
|
||||
if (!Comparator<O_TYPE>::compare(h_C[i], h_ref[i], i, errors)) {
|
||||
++errors;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// cleanup
|
||||
std::cout << "cleanup" << std::endl;
|
||||
cleanup();
|
||||
|
||||
if (errors != 0) {
|
||||
std::cout << "Found " << std::dec << errors << " errors!" << std::endl;
|
||||
std::cout << "FAILED!" << std::endl;
|
||||
return errors;
|
||||
}
|
||||
|
||||
std::cout << "PASSED!" << std::endl;
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue