Merge Vortex 2.2

This commit is contained in:
Jaewon Lee 2024-06-22 23:55:01 -04:00 committed by Hanran Wu
parent 9942f251e0
commit e21bf9afbd
15 changed files with 512 additions and 462 deletions

View file

@ -33,6 +33,9 @@
`endif
///////////////////////////////////////////////////////////////////////////////
`ifndef VM_DISABLE
`define VM_ENABLE
`endif
`ifndef EXT_M_DISABLE
`define EXT_M_ENABLE
@ -171,12 +174,11 @@
`define IO_BASE_ADDR 64'h000000040
`endif
`ifdef VM_ENABLE
`ifndef PAGE_TABLE_BASE_ADDR
`define PAGE_TABLE_BASE_ADDR 64'h1F0000000
`endif
`ifndef PAGE_TABLE_SIZE
`define PAGE_TABLE_SIZE 4096
`endif
`else // XLEN_32
@ -197,12 +199,11 @@
`define IO_BASE_ADDR 32'h00000040
`endif
`ifdef VM_ENABLE
`ifndef PAGE_TABLE_BASE_ADDR
`define PAGE_TABLE_BASE_ADDR 32'hF0000000
`endif
`ifndef PAGE_TABLE_SIZE
`define PAGE_TABLE_SIZE 4096
`endif
`endif
@ -270,40 +271,58 @@
`endif
// Virtual Memory Configuration ///////////////////////////////////////////////////////
`ifndef VM_DISABLE
`define VM_ENABLE
`endif
`ifdef VM_ENABLE
`ifndef VM_ADDR_MODE
`define VM_ADDR_MODE SV32
`endif
`ifndef PTE_SIZE
`ifdef XLEN_32
`define PTE_SIZE 4
`define NUM_PTE_ENTRY 1024
`else
`ifdef XLEN_64
`define PTE_SIZE 8
`define NUM_PTE_ENTRY 1024
`else
`define PTE_SIZE 8
`define NUM_PTE_ENTRY 1024
`endif
`ifdef XLEN_32
`ifndef VM_ADDR_MODE
`define VM_ADDR_MODE SV32 //or BARE
`endif
`ifndef PTE_SIZE
`define PTE_SIZE (4)
`endif
`ifndef SATP_MODE_IDX
`define SATP_MODE_IDX (31)
`endif
`ifndef SATP_PPN_WIDTH
`define SATP_PPN_WIDTH (22)
`endif
`else
`ifndef VM_ADDR_MODE
`define VM_ADDR_MODE SV64 //or BARE
`endif
`ifndef PTE_SIZE
`define PTE_SIZE (8)
`endif
`ifndef SATP_MODE_IDX
`define SATP_MODE_IDX (63)
`endif
`ifndef SATP_PPN_WIDTH
`define SATP_PPN_WIDTH (44)
`endif
`define PT_SIZE (PTE_SIZE * NUM_PTE_ENTRY)
`endif
`ifndef NUM_PTE_ENTRY
`define NUM_PTE_ENTRY (1024)
`endif
`ifndef PT_SIZE
`define PT_SIZE (PTE_SIZE * NUM_PTE_ENTRY)
`endif
`ifndef PT_TOTAL_SIZE
`define PT_TOTAL_SIZE (PT_SIZE*(1+NUM_PTE_ENTRY))
`endif
`ifndef TLB_SIZE
`define TLB_SIZE 32
`endif
`ifndef SUPER_PAGING
`define SUPER_PAGING 0
`define TLB_SIZE (32)
`endif
`endif
`ifndef MEM_PAGE_SIZE
`define MEM_PAGE_SIZE (4096)
`endif
// Pipeline Configuration /////////////////////////////////////////////////////
// Issue width

View file

@ -28,11 +28,11 @@
#include <chrono>
#ifdef VM_ENABLE
#include <vortex.h>
#include <utils.h>
#include <VX_config.h>
// #include <vortex.h>
//#include <utils.h>
#include <malloc.h>
#include <VX_config.h>
#include <VX_types.h>
#include <util.h>
@ -50,7 +50,6 @@
using namespace vortex;
#ifdef VM_ENABLE
#ifndef NDEBUG
#define DBGPRINT(format, ...) do { printf("[VXDRV] " format "", ##__VA_ARGS__); } while (0)
#else
@ -85,13 +84,9 @@ class vx_device {
public:
vx_device()
: arch_(NUM_THREADS, NUM_WARPS, NUM_CORES)
#ifdef VM_ENABLE
, ram_(0, RAM_PAGE_SIZE<<11)
#else
, ram_(0, RAM_PAGE_SIZE)
#endif
, ram_(0, MEM_PAGE_SIZE)
, processor_(arch_)
, global_mem_(ALLOC_BASE_ADDR, GLOBAL_MEM_SIZE - ALLOC_BASE_ADDR, RAM_PAGE_SIZE, CACHE_BLOCK_SIZE)
, global_mem_(ALLOC_BASE_ADDR, GLOBAL_MEM_SIZE - ALLOC_BASE_ADDR, MEM_PAGE_SIZE, CACHE_BLOCK_SIZE)
{
// attach memory module
processor_.attach_ram(&ram_);
@ -150,133 +145,141 @@ public:
return 0;
}
#ifdef VM_ENABLE
// virtual to phycial mapping
uint64_t map_p2v(uint64_t pAddr)
{
return pAddr + 0xf000000;
}
bool need_trans(uint64_t dev_pAddr)
{
// Check if the this is the BARE mode
bool isBAREMode = (get_mode() == VA_MODE::BARE);
// Check if the address is reserved
bool isReserved = (dev_pAddr >= PAGE_TABLE_BASE_ADDR);
// Check if the address falls within the startup address range
bool isStartAddress = (STARTUP_ADDR <= dev_pAddr) && (dev_pAddr <= (STARTUP_ADDR + 0x40000));
// Print the boolean results for debugging purposes
// printf("%p, %u, %u\n", (void *)dev_pAddr, isReserved, isStartAddress);
// Return true if the address needs translation (i.e., it's not reserved and not a start address)
return (!isBAREMode && !isReserved && !isStartAddress);
}
uint64_t phy_to_virt_map(uint64_t size, uint64_t* dev_pAddr, uint32_t flags)
{
// DBGPRINT("====%s====\n", __PRETTY_FUNCTION__);
DBGPRINT("(size = 0x%lx, dev_pAddr= 0x%lx, flags = 0x%x)\n", size, *dev_pAddr, flags);
DBGPRINT("bit mode: %d\n", XLEN);
// if (*dev_pAddr == STARTUP_ADDR || *dev_pAddr == 0x7FFFF000) {
if (!need_trans(*dev_pAddr))
{
DBGPRINT("Translation is not needed.\n");
return 0;
}
uint64_t init_pAddr = *dev_pAddr;
uint64_t init_vAddr = map_p2v(init_pAddr);
uint64_t ppn = 0, vpn = 0 ;
//dev_pAddr can be of size greater than a page, but we have to map and update
//page tables on a page table granularity. So divide the allocation into pages.
bool is_start = false;
for (ppn = (*dev_pAddr) >> 12; ppn < ((*dev_pAddr) >> 12) + (size/RAM_PAGE_SIZE) + 1; ppn++)
{
vpn = map_p2v(ppn << 12) >> 12;
if (is_start == false) {
DBGPRINT("**Search vpn in page table:0x%lx\n", vpn);
is_start = true;
}
else {
DBGPRINT("Next vpn: 0x%lx\n",vpn);
}
//Currently a 1-1 mapping is used, this can be changed here to support different
//mapping schemes
//If ppn to vpn mapping doesnt exist.
if (addr_mapping.find(vpn) == addr_mapping.end())
{
//Create mapping.
update_page_table(ppn, vpn, flags);
addr_mapping[vpn] = ppn;
}
}
DBGPRINT("Mapped virtual addr: 0x%lx to physical addr: %lx\n", init_vAddr, init_pAddr);
// Sanity check
uint64_t pAddr = page_table_walk(init_vAddr);
if (pAddr != init_pAddr)
{
assert(pAddr == init_pAddr && "ERROR: translated virtual Addresses are not the same with physical Address");
}
*dev_pAddr = init_vAddr; // commit vpn to be returned to host
DBGPRINT("Translated device virtual addr: 0x%lx\n", *dev_pAddr);
return 0;
}
#endif
int mem_alloc(uint64_t size, int flags, uint64_t* dev_addr) {
uint64_t addr;
DBGPRINT("mem_alloc size: 0x%lx\n",size);
CHECK_ERR(global_mem_.allocate(size, &addr), {
return err;
});
CHECK_ERR(this->mem_access(addr, size, flags), {
global_mem_.release(addr);
return err;
});
*dev_addr = addr;
#ifdef VM_ENABLE
// VM address translation
phy_to_virt_map(size, dev_addr,flags);
// virtual to phycial mapping
uint64_t map_p2v(uint64_t pAddr)
{
return pAddr + 0xf000000;
}
bool need_trans(uint64_t dev_pAddr)
{
// Check if the this is the BARE mode
bool isBAREMode = (get_mode() == VA_MODE::BARE);
// Check if the address is reserved for system usage
bool isReserved = (dev_pAddr >= PAGE_TABLE_BASE_ADDR);
// Check if the address is reserved for IO usage
bool isIO = (dev_pAddr < USER_BASE_ADDR);
// Check if the address falls within the startup address range
bool isStartAddress = (STARTUP_ADDR <= dev_pAddr) && (dev_pAddr <= (STARTUP_ADDR + 0x40000));
// Print the boolean results for debugging purposes
// printf("%p, %u, %u\n", (void *)dev_pAddr, isReserved, isStartAddress);
// Return true if the address needs translation (i.e., it's not reserved and not a start address)
return (!isBAREMode && !isReserved && !isIO && !isStartAddress);
}
uint64_t phy_to_virt_map(uint64_t size, uint64_t *dev_pAddr, uint32_t flags)
{
// DBGPRINT("====%s====\n", __PRETTY_FUNCTION__);
DBGPRINT(" [RT:PTV_MAP] size = 0x%lx, dev_pAddr= 0x%lx, flags = 0x%x\n", size, *dev_pAddr, flags);
DBGPRINT(" [RT:PTV_MAP] bit mode: %d\n", XLEN);
// if (*dev_pAddr == STARTUP_ADDR || *dev_pAddr == 0x7FFFF000) {
if (!need_trans(*dev_pAddr))
{
DBGPRINT(" [RT:PTV_MAP] Translation is not needed.\n");
return 0;
}
uint64_t init_pAddr = *dev_pAddr;
uint64_t init_vAddr = map_p2v(init_pAddr);
uint64_t ppn = 0, vpn = 0;
// dev_pAddr can be of size greater than a page, but we have to map and update
// page tables on a page table granularity. So divide the allocation into pages.
bool is_start = false;
for (ppn = (*dev_pAddr) >> 12; ppn < ((*dev_pAddr) >> 12) + (size / MEM_PAGE_SIZE) + 1; ppn++)
{
vpn = map_p2v(ppn << 12) >> 12;
if (is_start == false)
{
DBGPRINT(" [RT:PTV_MAP] Search vpn in page table:0x%lx\n", vpn);
is_start = true;
}
else
{
DBGPRINT(" [RT:PTV_MAP] Next vpn: 0x%lx\n", vpn);
}
// Currently a 1-1 mapping is used, this can be changed here to support different
// mapping schemes
// If ppn to vpn mapping doesnt exist.
if (addr_mapping.find(vpn) == addr_mapping.end())
{
// Create mapping.
update_page_table(ppn, vpn, flags);
addr_mapping[vpn] = ppn;
}
}
DBGPRINT(" [RT:PTV_MAP] Mapped virtual addr: 0x%lx to physical addr: %lx\n", init_vAddr, init_pAddr);
// Sanity check
uint64_t pAddr = page_table_walk(init_vAddr);
if (pAddr != init_pAddr)
{
assert(pAddr == init_pAddr && "ERROR: translated virtual Addresses are not the same with physical Address");
}
*dev_pAddr = init_vAddr; // commit vpn to be returned to host
DBGPRINT(" [RT:PTV_MAP] Translated device virtual addr: 0x%lx\n", *dev_pAddr);
return 0;
}
#endif
return 0;
}
int mem_reserve(uint64_t dev_addr, uint64_t size, int flags) {
CHECK_ERR(global_mem_.reserve(dev_addr, size), {
return err;
});
DBGPRINT("mem_reserve: addr: 0x%lx, size: 0x%lx\n",dev_addr, size);
CHECK_ERR(this->mem_access(dev_addr, size, flags), {
global_mem_.release(dev_addr);
return err;
});
int mem_alloc(uint64_t size, int flags, uint64_t *dev_addr)
{
uint64_t addr;
DBGPRINT(" [RT:mem_alloc] mem_alloc size: 0x%lx\n", size);
CHECK_ERR(global_mem_.allocate(size, &addr), {
return err;
});
CHECK_ERR(this->mem_access(addr, size, flags), {
global_mem_.release(addr);
return err;
});
*dev_addr = addr;
#ifdef VM_ENABLE
uint64_t paddr = dev_addr;
phy_to_virt_map(size, &paddr, flags);
// VM address translation
phy_to_virt_map(size, dev_addr, flags);
#endif
return 0;
}
return 0;
}
int mem_free(uint64_t dev_addr) {
int mem_reserve(uint64_t dev_addr, uint64_t size, int flags)
{
CHECK_ERR(global_mem_.reserve(dev_addr, size), {
return err;
});
DBGPRINT(" [RT:mem_reserve] mem_reserve: addr: 0x%lx, size: 0x%lx\n", dev_addr, size);
CHECK_ERR(this->mem_access(dev_addr, size, flags), {
global_mem_.release(dev_addr);
return err;
});
#ifdef VM_ENABLE
uint64_t pAddr = page_table_walk(dev_addr);
// VM address translation
return global_mem_.release(pAddr);
uint64_t paddr = dev_addr;
phy_to_virt_map(size, &paddr, flags);
#endif
return 0;
}
int mem_free(uint64_t dev_addr)
{
#ifdef VM_ENABLE
uint64_t pAddr = page_table_walk(dev_addr);
// VM address translation
return global_mem_.release(pAddr);
#else
return global_mem_.release(dev_addr);
return global_mem_.release(dev_addr);
#endif
}
}
int mem_access(uint64_t dev_addr, uint64_t size, int flags) {
int mem_access(uint64_t dev_addr, uint64_t size, int flags)
{
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (dev_addr + asize > GLOBAL_MEM_SIZE)
return -1;
@ -285,7 +288,8 @@ public:
return 0;
}
int mem_info(uint64_t* mem_free, uint64_t* mem_used) const {
int mem_info(uint64_t *mem_free, uint64_t *mem_used) const
{
if (mem_free)
*mem_free = global_mem_.free();
if (mem_used)
@ -293,21 +297,23 @@ public:
return 0;
}
int upload(uint64_t dest_addr, const void* src, uint64_t size) {
// DBGPRINT("====%s====\n", __PRETTY_FUNCTION__);
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (dest_addr + asize > GLOBAL_MEM_SIZE)
return -1;
int upload(uint64_t dest_addr, const void *src, uint64_t size)
{
// DBGPRINT("====%s====\n", __PRETTY_FUNCTION__);
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (dest_addr + asize > GLOBAL_MEM_SIZE)
return -1;
#ifdef VM_ENABLE
uint64_t pAddr = page_table_walk(dest_addr);
DBGPRINT("Upload data to vAddr = 0x%lx (pAddr=0x%lx)\n", dest_addr, pAddr);
uint64_t pAddr = page_table_walk(dest_addr);
DBGPRINT(" [RT:upload] Upload data to vAddr = 0x%lx (pAddr=0x%lx)\n", dest_addr, pAddr);
dest_addr = pAddr; //Overwirte
#endif
ram_.enable_acl(false);
ram_.write((const uint8_t*)src, dest_addr, size);
ram_.write((const uint8_t *)src, dest_addr, size);
ram_.enable_acl(true);
/*DBGPRINT("upload %ld bytes to 0x%lx\n", size, dest_addr);
for (uint64_t i = 0; i < size && i < 1024; i += 4) {
DBGPRINT(" 0x%lx <- 0x%x\n", dest_addr + i, *(uint32_t*)((uint8_t*)src + i));
@ -316,17 +322,19 @@ public:
return 0;
}
int download(void* dest, uint64_t src_addr, uint64_t size) {
int download(void *dest, uint64_t src_addr, uint64_t size)
{
uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
if (src_addr + asize > GLOBAL_MEM_SIZE)
return -1;
#ifdef VM_ENABLE
uint64_t pAddr = page_table_walk(src_addr);
DBGPRINT("Download data to vAddr = 0x%lx (pAddr=0x%lx)\n", src_addr, pAddr);
uint64_t pAddr = page_table_walk(src_addr);
DBGPRINT(" [RT:download] Download data to vAddr = 0x%lx (pAddr=0x%lx)\n", src_addr, pAddr);
src_addr = pAddr; //Overwirte
#endif
ram_.enable_acl(false);
ram_.read((uint8_t*)dest, src_addr, size);
ram_.read((uint8_t *)dest, src_addr, size);
ram_.enable_acl(true);
/*DBGPRINT("download %ld bytes from 0x%lx\n", size, src_addr);
@ -337,9 +345,11 @@ public:
return 0;
}
int start(uint64_t krnl_addr, uint64_t args_addr) {
int start(uint64_t krnl_addr, uint64_t args_addr)
{
// ensure prior run completed
if (future_.valid()) {
if (future_.valid())
{
future_.wait();
}
@ -350,9 +360,8 @@ public:
this->dcr_write(VX_DCR_BASE_STARTUP_ARG1, args_addr >> 32);
// start new run
future_ = std::async(std::launch::async, [&]{
processor_.run();
});
future_ = std::async(std::launch::async, [&]
{ processor_.run(); });
// clear mpm cache
mpm_cache_.clear();
@ -360,12 +369,14 @@ public:
return 0;
}
int ready_wait(uint64_t timeout) {
int ready_wait(uint64_t timeout)
{
if (!future_.valid())
return 0;
uint64_t timeout_sec = timeout / 1000;
std::chrono::seconds wait_time(1);
for (;;) {
for (;;)
{
// wait for 1 sec and check status
auto status = future_.wait_for(wait_time);
if (status == std::future_status::ready)
@ -376,8 +387,10 @@ public:
return 0;
}
int dcr_write(uint32_t addr, uint32_t value) {
if (future_.valid()) {
int dcr_write(uint32_t addr, uint32_t value)
{
if (future_.valid())
{
future_.wait(); // ensure prior run completed
}
processor_.dcr_write(addr, value);
@ -385,15 +398,18 @@ public:
return 0;
}
int dcr_read(uint32_t addr, uint32_t* value) const {
int dcr_read(uint32_t addr, uint32_t *value) const
{
return dcrs_.read(addr, value);
}
int mpm_query(uint32_t addr, uint32_t core_id, uint64_t* value) {
int mpm_query(uint32_t addr, uint32_t core_id, uint64_t *value)
{
uint32_t offset = addr - VX_CSR_MPM_BASE;
if (offset > 31)
return -1;
if (mpm_cache_.count(core_id) == 0) {
if (mpm_cache_.count(core_id) == 0)
{
uint64_t mpm_mem_addr = IO_MPM_ADDR + core_id * 32 * sizeof(uint64_t);
CHECK_ERR(this->download(mpm_cache_[core_id].data(), mpm_mem_addr, 32 * sizeof(uint64_t)), {
return err;
@ -404,247 +420,250 @@ public:
}
#ifdef VM_ENABLE
/* VM Management */
void set_processor_satp(VA_MODE mode)
/* VM Management */
void set_processor_satp(VA_MODE mode)
{
// DBGPRINT("====%s====\n", __PRETTY_FUNCTION__);
uint64_t satp = 0;
if (mode == VA_MODE::BARE)
{
// DBGPRINT("====%s====\n", __PRETTY_FUNCTION__);
uint32_t satp;
if (mode == VA_MODE::BARE)
{
DBGPRINT("VA_MODE = BARE MODE");
satp = 0;
}
else if (mode == VA_MODE::SV32)
{
satp = (alloc_2nd_level_page_table() >> 12) | 0x80000000;
DBGPRINT("VA_MODE = SV32 MODE(satp = 0x%x)\n",satp);
}
processor_.set_satp(satp);
DBGPRINT(" [RT:set_satp] VA_MODE = BARE MODE");
}
else
{
satp = (alloc_2nd_level_page_table() / MEM_PAGE_SIZE) | (1 << SATP_MODE_IDX);
DBGPRINT(" [RT:set_satp] VA_MODE = SV mode (satp = 0x%lx)\n", satp);
}
processor_.set_satp(satp);
}
uint64_t get_ptbr()
{
// return processor_.get_satp();
return processor_.get_satp() & ((1 << SATP_PPN_WIDTH) - 1);
}
uint64_t get_pte_address(uint64_t base_page, uint64_t vpn)
{
return (base_page * MEM_PAGE_SIZE) + (vpn * PTE_SIZE);
}
VA_MODE get_mode()
{
#ifdef XLEN_32
return processor_.get_satp() & (1 << SATP_MODE_IDX) ? VA_MODE::SV32 : VA_MODE::BARE;
#else // 64 bit
return processor_.get_satp() & (1 << SATP_MODE_IDX) ? VA_MODE::SV64 : VA_MODE::BARE;
#endif
}
void update_page_table(uint64_t ppn, uint64_t vpn, uint32_t flag)
{
// DBGPRINT("====%s====\n", __PRETTY_FUNCTION__);
DBGPRINT(" [RT:Update PT] Mapping vpn 0x%05lx to ppn 0x%05lx(flags = %u)\n", vpn, ppn, flag);
assert((((ppn >> 20) == 0) && ((vpn >> 20) == 0)) && "Upper 12 bits are not zero!");
// Updating page table with the following mapping of (vAddr) to (pAddr).
// uint32_t page_bit_shift = log2ceil(PTE_SIZE*NUM_PTE_ENTRY);
uint64_t ppn_1 = 0, pte_addr = 0, pte_bytes = 0;
uint64_t vpn_1 = bits(vpn, 10, 19);
uint64_t vpn_0 = bits(vpn, 0, 9);
// Read first level PTE.
DBGPRINT(" [RT:Update PT]Start second-level page table\n");
pte_addr = get_pte_address(get_ptbr(), vpn_1);
pte_bytes = read_pte(pte_addr);
DBGPRINT(" [RT:Update PT] PTE addr 0x%lx, PTE bytes 0x%lx\n", pte_addr, pte_bytes);
ppn_1 = (pte_bytes >> 10);
if (bit(pte_bytes, 0) && ((pte_bytes & 0xFFFFFFFF) != 0xbaadf00d))
{
// If valid bit set, proceed to next level using new ppn form PTE.
DBGPRINT(" [RT:Update PT] PTE valid (ppn 0x%lx), continuing the walk...\n", ppn_1);
}
else
{
// If valid bit not set, allocate a second level page table
// in device memory and store ppn in PTE. Set rwx = 000 in PTE
// to indicate this is a pointer to the next level of the page table.
DBGPRINT(" [RT:Update PT] PTE Invalid (ppn 0x%lx), continuing the walk...\n", ppn_1);
ppn_1 = (alloc_1st_level_page_table(vpn_1) >> 12);
pte_bytes = ((ppn_1 << 10) | 0b0000000001);
assert((pte_addr >> 32) == 0 && "Upper 32 bits are not zero!");
write_pte(pte_addr, pte_bytes);
// if (pte_bytes != read_pte(pte_addr))
// DBGPRINT("Read/write values are different!\n");
}
uint32_t get_ptbr()
{
// return processor_.get_satp();
return processor_.get_satp() & 0x003fffff;
DBGPRINT(" [RT:Update PT] Move to first-level page table\n");
// Read second level PTE.
pte_addr = get_pte_address(ppn_1, vpn_0);
pte_bytes = read_pte(pte_addr);
if (bit(pte_bytes, 0) && ((pte_bytes & 0xFFFFFFFF) != 0xbaadf00d))
{
DBGPRINT(" [RT:Update PT] ERROR, shouldn't be here\n");
exit(1);
// If valid bit is set, then the page is already allocated.
// Should not reach this point, a sanity check.
}
uint64_t get_pte_address(uint64_t base_page, uint64_t vpn)
else
{
return (base_page << 12) + (vpn * PTE_SIZE);
}
// If valid bit not set, write ppn of pAddr in PTE. Set rwx = 111 in PTE
// to indicate this is a leaf PTE and has the stated permissions.
pte_bytes = ((ppn << 10) | 0b0000001111);
write_pte(pte_addr, pte_bytes);
if (pte_bytes != read_pte(pte_addr))
DBGPRINT(" [RT:Update PT] PTE write value and read value are not matched!\n");
}
}
VA_MODE get_mode()
uint64_t page_table_walk(uint64_t vAddr_bits)
{
// DBGPRINT("====%s====\n", __PRETTY_FUNCTION__);
DBGPRINT(" [RT:PTW] start vAddr: 0x%lx\n", vAddr_bits);
if (!need_trans(vAddr_bits))
{
return processor_.get_satp() & 0x80000000 ? VA_MODE::SV32 : VA_MODE::BARE;
}
DBGPRINT(" [RT:PTW] Translation is not needed.\n");
return vAddr_bits;
}
uint64_t LEVELS = 2;
vAddr_SV32_t vAddr(vAddr_bits);
uint64_t pte_addr, pte_bytes;
uint64_t pt_ba = get_ptbr() << 12;
void update_page_table(uint64_t ppn, uint64_t vpn, uint32_t flag) {
// DBGPRINT("====%s====\n", __PRETTY_FUNCTION__);
DBGPRINT("Mapping vpn 0x%05lx to ppn 0x%05lx(flags = %u)\n", vpn, ppn,flag);
assert((((ppn>> 20) == 0) && ((vpn >> 20) == 0)) && "Upper 12 bits are not zero!");
//Updating page table with the following mapping of (vAddr) to (pAddr).
// uint32_t page_bit_shift = log2ceil(PTE_SIZE*NUM_PTE_ENTRY);
uint64_t ppn_1 = 0, pte_addr = 0, pte_bytes = 0;
uint64_t vpn_1 = bits(vpn, 10, 19);
uint64_t vpn_0 = bits(vpn, 0, 9);
// Get base page table.
//Read first level PTE.
DBGPRINT("Start second-level page table\n");
pte_addr = get_pte_address(get_ptbr(), vpn_1);
pte_bytes = read_pte(pte_addr);
DBGPRINT("[PTE] addr 0x%lx, PTE 0x%lx\n", pte_addr, pte_bytes);
ppn_1 = (pte_bytes >> 10);
for (int i = LEVELS - 1; i >= 0; i--)
{
// Read PTE.
pte_addr = pt_ba + vAddr.vpn[i] * PTE_SIZE;
pte_bytes = read_pte(pte_addr);
PTE_SV32_t pte(pte_bytes);
DBGPRINT(" [RT:PTW] Level[%u] pte_bytes = 0x%lx, pte flags = %u)\n", i, pte.ppn, pte.flags);
if ( bit(pte_bytes, 0) && ((pte_bytes & 0xFFFFFFFF) != 0xbaadf00d))
// Check if it has invalid flag bits.
if ((pte.v == 0) | ((pte.r == 0) & (pte.w == 1)))
{
std::string msg = " [RT:PTW] Page Fault : Attempted to access invalid entry. Entry: 0x";
throw Page_Fault_Exception(msg);
}
if ((pte.r == 0) & (pte.w == 0) & (pte.x == 0))
{
// Not a leaf node as rwx == 000
if (i == 0)
{
//If valid bit set, proceed to next level using new ppn form PTE.
DBGPRINT("PTE valid (ppn 0x%lx), continuing the walk...\n",ppn_1);
throw Page_Fault_Exception(" [RT:PTW] Page Fault : No leaf node found.");
}
else
{
//If valid bit not set, allocate a second level page table
// in device memory and store ppn in PTE. Set rwx = 000 in PTE
//to indicate this is a pointer to the next level of the page table.
DBGPRINT("PTE Invalid (ppn 0x%lx), continuing the walk...\n",ppn_1);
ppn_1 = (alloc_1st_level_page_table(vpn_1) >> 12);
pte_bytes = ((ppn_1 << 10) | 0b0000000001) ;
assert((pte_addr>> 32) == 0 && "Upper 32 bits are not zero!");
write_pte(pte_addr, pte_bytes);
// if (pte_bytes != read_pte(pte_addr))
// DBGPRINT("Read/write values are different!\n");
}
DBGPRINT("Move to first-level page table\n");
//Read second level PTE.
pte_addr = get_pte_address(ppn_1, vpn_0);
pte_bytes = read_pte(pte_addr);
if ( bit(pte_bytes, 0) && ((pte_bytes & 0xFFFFFFFF) != 0xbaadf00d))
{
DBGPRINT("ERROR, shouldn't be here\n");
exit(1);
//If valid bit is set, then the page is already allocated.
//Should not reach this point, a sanity check.
}
else
{
//If valid bit not set, write ppn of pAddr in PTE. Set rwx = 111 in PTE
//to indicate this is a leaf PTE and has the stated permissions.
pte_bytes = ( (ppn << 10) | 0b0000001111) ;
write_pte(pte_addr, pte_bytes);
if (pte_bytes != read_pte(pte_addr))
DBGPRINT("Read/write values are different!\n");
// Continue on to next level.
pt_ba = pte.ppn << 12;
DBGPRINT(" [RT:PTW] next pt_ba: %p\n", (void *)pt_ba);
}
}
else
{
// Leaf node found, finished walking.
pt_ba = pte.ppn << 12;
DBGPRINT(" [RT:PTW] Found PT_Base_Address [%d] = %lx\n", i, pt_ba);
break;
}
}
uint64_t page_table_walk(uint64_t vAddr_bits)
{
// DBGPRINT("====%s====\n", __PRETTY_FUNCTION__);
DBGPRINT("PTW on vAddr: 0x%lx\n", vAddr_bits);
if (!need_trans(vAddr_bits))
{
DBGPRINT("Translation is not needed.\n");
return vAddr_bits;
}
uint64_t LEVELS = 2;
vAddr_SV32_t vAddr(vAddr_bits);
uint64_t pte_addr, pte_bytes;
uint64_t pt_ba = get_ptbr() << 12;
//Get base page table.
for ( int i = LEVELS-1 ; i >= 0 ; i--)
{
//Read PTE.
pte_addr = pt_ba+vAddr.vpn[i]*PTE_SIZE;
pte_bytes = read_pte(pte_addr);
PTE_SV32_t pte(pte_bytes);
DBGPRINT("pte_bytes = 0x%lx, pte flags = %u)\n", pte.ppn , pte.flags);
//Check if it has invalid flag bits.
if ( (pte.v == 0) | ( (pte.r == 0) & (pte.w == 1) ) )
{
std::string msg= "Page Fault : Attempted to access invalid entry. Entry: 0x";
throw Page_Fault_Exception(msg);
}
if ( (pte.r == 0) & (pte.w == 0) & (pte.x == 0))
{
//Not a leaf node as rwx == 000
if (i == 0)
{
throw Page_Fault_Exception("Page Fault : No leaf node found.");
}
else
{
//Continue on to next level.
pt_ba = pte.ppn << 12;
DBGPRINT("next pt_ba: %p\n", (void *)pt_ba);
}
}
else
{
//Leaf node found, finished walking.
pt_ba = pte.ppn << 12;
DBGPRINT("Found PT_Base_Address [%d] = %lx\n", i, pt_ba);
break;
}
}
// pte_bytes is final leaf
PTE_SV32_t pte(pte_bytes);
//Check RWX permissions according to access type.
if (pte.r == 0)
{
throw Page_Fault_Exception("Page Fault : TYPE LOAD, Incorrect permissions.");
}
uint64_t paddr = pt_ba + vAddr.pgoff;
return paddr;
// pte_bytes is final leaf
PTE_SV32_t pte(pte_bytes);
// Check RWX permissions according to access type.
if (pte.r == 0)
{
throw Page_Fault_Exception(" [RT:PTW] Page Fault : TYPE LOAD, Incorrect permissions.");
}
uint64_t alloc_2nd_level_page_table() {
// DBGPRINT("====%s====\n", __PRETTY_FUNCTION__);
uint64_t addr=PAGE_TABLE_BASE_ADDR;
uint64_t size=1<<23; // 8MB !!!FIXME!!!
CHECK_ERR(this->mem_reserve(addr, size, VX_MEM_READ_WRITE), {
return err;
});
init_page_table(addr);
return addr;
uint64_t paddr = pt_ba + vAddr.pgoff;
return paddr;
}
uint64_t alloc_2nd_level_page_table()
{
uint64_t addr = PAGE_TABLE_BASE_ADDR;
uint64_t size = PT_TOTAL_SIZE;
CHECK_ERR(this->mem_reserve(addr, size, VX_MEM_READ_WRITE), {
return err;
});
init_page_table(addr);
return addr;
}
uint64_t alloc_1st_level_page_table(uint64_t vpn_1)
{
uint64_t addr = PAGE_TABLE_BASE_ADDR + PT_SIZE * (1 + vpn_1);
init_page_table(addr);
return addr;
}
// Initialize to zero the target page table area. 32bit 4K, 64bit 8K
void init_page_table(uint64_t addr)
{
uint64_t asize = aligned_size(PT_SIZE, CACHE_BLOCK_SIZE);
DBGPRINT(" [RT:init_page_table] (addr=0x%lx, size=0x%lx)\n", addr, asize);
uint8_t *src = new uint8_t[asize];
for (uint64_t i = 0; i < PT_SIZE; ++i)
{
src[i] = 0;
}
uint64_t alloc_1st_level_page_table(uint64_t vpn_1) {
// DBGPRINT("====%s====\n", __PRETTY_FUNCTION__);
uint64_t addr = PAGE_TABLE_BASE_ADDR + PTE_SIZE * NUM_PTE_ENTRY*(1+vpn_1);
init_page_table(addr);
return addr;
ram_.enable_acl(false);
ram_.write((const uint8_t *)src, addr, asize);
ram_.enable_acl(true);
}
// void read_page_table(uint64_t addr) {
// uint8_t *dest = new uint8_t[MEM_PAGE_SIZE];
// download(dest, addr, MEM_PAGE_SIZE);
// DBGPRINT("VXDRV: download %d bytes from 0x%x\n", MEM_PAGE_SIZE, addr);
// for (int i = 0; i < MEM_PAGE_SIZE; i += 4) {
// DBGPRINT("mem-read: 0x%x -> 0x%x\n", addr + i, *(uint64_t*)((uint8_t*)dest + i));
// }
// }
void write_pte(uint64_t addr, uint64_t value = 0xbaadf00d)
{
DBGPRINT(" [RT:Write_pte] writing pte 0x%lx to pAddr: 0x%lx\n", value, addr);
uint8_t *src = new uint8_t[PTE_SIZE];
for (uint64_t i = 0; i < PTE_SIZE; ++i)
{
src[i] = (value >> (i << 3)) & 0xff;
}
// std::cout << "writing PTE to RAM addr 0x" << std::hex << addr << std::endl;
ram_.enable_acl(false);
ram_.write((const uint8_t *)src, addr, PTE_SIZE);
ram_.enable_acl(true);
}
void init_page_table(uint64_t addr) {
// DBGPRINT("====%s====\n", __PRETTY_FUNCTION__);
DBGPRINT("int_page_table (addr=0x%lx)\n", addr);
uint64_t asize = aligned_size(RAM_PAGE_SIZE, CACHE_BLOCK_SIZE);
// uint64_t asize = aligned_size(size, CACHE_BLOCK_SIZE);
uint8_t *src = new uint8_t[RAM_PAGE_SIZE];
for (uint64_t i = 0; i < RAM_PAGE_SIZE; ++i) {
src[i] = 0;
}
ram_.enable_acl(false);
ram_.write((const uint8_t*)src, addr, asize);
ram_.enable_acl(true);
}
uint64_t read_pte(uint64_t addr)
{
uint8_t *dest = new uint8_t[PTE_SIZE];
#ifdef XLEN_32
uint64_t mask = 0x00000000FFFFFFFF;
#else // 64bit
uint64_t mask = 0xFFFFFFFFFFFFFFFF;
#endif
// void read_page_table(uint64_t addr) {
// uint8_t *dest = new uint8_t[RAM_PAGE_SIZE];
// download(dest, addr, RAM_PAGE_SIZE);
// DBGPRINT("VXDRV: download %d bytes from 0x%x\n", RAM_PAGE_SIZE, addr);
// for (int i = 0; i < RAM_PAGE_SIZE; i += 4) {
// DBGPRINT("mem-read: 0x%x -> 0x%x\n", addr + i, *(uint64_t*)((uint8_t*)dest + i));
// }
// }
ram_.read((uint8_t *)dest, addr, PTE_SIZE);
uint64_t ret = (*(uint64_t *)((uint8_t *)dest)) & mask;
DBGPRINT(" [RT:read_pte] reading PTE 0x%lx from RAM addr 0x%lx\n", ret, addr);
void write_pte(uint64_t addr, uint64_t value = 0xbaadf00d) {
DBGPRINT("[Write_pte] writing pte 0x%lx to pAddr: 0x%lx\n", value, addr);
uint8_t *src = new uint8_t[PTE_SIZE];
for (uint64_t i = 0; i < PTE_SIZE; ++i) {
src[i] = (value >> (i << 3)) & 0xff;
}
//std::cout << "writing PTE to RAM addr 0x" << std::hex << addr << std::endl;
ram_.enable_acl(false);
ram_.write((const uint8_t*)src, addr, PTE_SIZE);
ram_.enable_acl(true);
}
uint64_t read_pte(uint64_t addr) {
uint8_t *dest = new uint8_t[PTE_SIZE];
uint64_t mask = 0;
if (XLEN == 32)
mask = 0x00000000FFFFFFFF;
else if (XLEN == 64)
mask = 0xFFFFFFFFFFFFFFFF;
else
assert(0 && "XLEN is not either 32 or 64");
ram_.read((uint8_t*)dest, addr, PTE_SIZE);
uint64_t ret = (*(uint64_t*)((uint8_t*)dest)) & mask;
DBGPRINT("[read_pte] reading PTE 0x%lx from RAM addr 0x%lx\n", ret, addr);
return ret;
}
return ret;
}
#endif // JAEWON
private:
Arch arch_;
RAM ram_;
Processor processor_;
MemoryAllocator global_mem_;
DeviceConfig dcrs_;
std::future<void> future_;
Arch arch_;
RAM ram_;
Processor processor_;
MemoryAllocator global_mem_;
DeviceConfig dcrs_;
std::future<void> future_;
std::unordered_map<uint32_t, std::array<uint64_t, 32>> mpm_cache_;
#ifdef VM_ENABLE
std::unordered_map<uint64_t, uint64_t> addr_mapping;
std::unordered_map<uint64_t, uint64_t> addr_mapping;
#endif
};

View file

@ -21,6 +21,13 @@
#include <bitset>
using namespace vortex;
#ifdef VM_ENABLE
#ifndef NDEBUG
#define DBGPRINT(format, ...) do { printf("[VXDRV] " format "", ##__VA_ARGS__); } while (0)
#else
#define DBGPRINT(format, ...) ((void)0)
#endif
#endif
uint64_t bits(uint64_t addr, uint8_t s_idx, uint8_t e_idx)
{
@ -115,7 +122,6 @@ void MemoryUnit::ADecoder::map(uint64_t start, uint64_t end, MemDevice &md) {
}
void MemoryUnit::ADecoder::read(void* data, uint64_t addr, uint64_t size) {
// printf("====%s (addr= 0x%lx, size= 0x%lx) ====\n", __PRETTY_FUNCTION__,addr,size);
mem_accessor_t ma;
if (!this->lookup(addr, size, &ma)) {
std::cout << "lookup of 0x" << std::hex << addr << " failed.\n";
@ -125,7 +131,6 @@ void MemoryUnit::ADecoder::read(void* data, uint64_t addr, uint64_t size) {
}
void MemoryUnit::ADecoder::write(const void* data, uint64_t addr, uint64_t size) {
// printf("====%s====\n", __PRETTY_FUNCTION__);
mem_accessor_t ma;
if (!this->lookup(addr, size, &ma)) {
std::cout << "lookup of 0x" << std::hex << addr << " failed.\n";
@ -138,7 +143,9 @@ void MemoryUnit::ADecoder::write(const void* data, uint64_t addr, uint64_t size)
MemoryUnit::MemoryUnit(uint64_t pageSize)
: pageSize_(pageSize)
#ifndef VM_ENABLE
, enableVM_(pageSize != 0)
#endif
, amo_reservation_({0x0, false})
#ifdef VM_ENABLE
, TLB_HIT(0)
@ -158,9 +165,9 @@ void MemoryUnit::attach(MemDevice &m, uint64_t start, uint64_t end) {
decoder_.map(start, end, m);
}
#ifdef VM_ENABLE
std::pair<bool, uint64_t> MemoryUnit::tlbLookup(uint64_t vAddr, ACCESS_TYPE type, uint64_t* size_bits) {
// printf("====%s====\n", __PRETTY_FUNCTION__);
//Find entry while accounting for different sizes.
for (auto entry : tlb_)
@ -201,7 +208,7 @@ std::pair<bool, uint64_t> MemoryUnit::tlbLookup(uint64_t vAddr, ACCESS_TYPE type
}
//Check access permissions.
if ( (type == ACCESS_TYPE::FETCH) & ((e.r == 0) | (e.x == 0)) )
if ( (type == ACCESS_TYPE::FENCE) & ((e.r == 0) | (e.x == 0)) )
{
throw Page_Fault_Exception("Page Fault : Incorrect permissions.");
}
@ -251,7 +258,7 @@ uint64_t MemoryUnit::toPhyAddr(uint64_t addr, uint32_t flagMask) {
#ifdef VM_ENABLE
void MemoryUnit::read(void* data, uint64_t addr, uint32_t size, ACCESS_TYPE type) {
// printf("====%s====\n", __PRETTY_FUNCTION__);
DBGPRINT(" [MMU:read] 0x%lx, 0x%x, %u\n",addr,size,type);
uint64_t pAddr;
pAddr = vAddr_to_pAddr(addr, type);
return decoder_.read(data, pAddr, size);
@ -264,7 +271,7 @@ void MemoryUnit::read(void* data, uint64_t addr, uint32_t size, bool sup) {
#endif
#ifdef VM_ENABLE
void MemoryUnit::write(const void* data, uint64_t addr, uint32_t size, ACCESS_TYPE type) {
// printf("====%s====\n", __PRETTY_FUNCTION__);
DBGPRINT(" [MMU:Write] 0x%lx, 0x%x, %u\n",addr,size,type);
uint64_t pAddr;
pAddr = vAddr_to_pAddr(addr, type);
decoder_.write(data, pAddr, size);
@ -280,6 +287,7 @@ void MemoryUnit::write(const void* data, uint64_t addr, uint32_t size, bool sup)
#ifdef VM_ENABLE
void MemoryUnit::amo_reserve(uint64_t addr) {
DBGPRINT(" [MMU:amo_reserve] 0x%lx\n",addr);
uint64_t pAddr = this->vAddr_to_pAddr(addr,ACCESS_TYPE::LOAD);
amo_reservation_.addr = pAddr;
amo_reservation_.valid = true;
@ -294,6 +302,7 @@ void MemoryUnit::amo_reserve(uint64_t addr) {
#ifdef VM_ENABLE
bool MemoryUnit::amo_check(uint64_t addr) {
DBGPRINT(" [MMU:amo_check] 0x%lx\n",addr);
uint64_t pAddr = this->vAddr_to_pAddr(addr, ACCESS_TYPE::LOAD);
return amo_reservation_.valid && (amo_reservation_.addr == pAddr);
}
@ -593,30 +602,30 @@ void RAM::loadHexImage(const char* filename) {
#ifdef VM_ENABLE
bool MemoryUnit::need_trans(uint64_t dev_pAddr)
{
// Check if the this is the BARE mode
bool isBAREMode = (this->mode == VA_MODE::BARE);
// Check if the address is reserved
bool isReserved = (dev_pAddr >= PAGE_TABLE_BASE_ADDR);
// Check if the address falls within the startup address range
bool isStartAddress = (STARTUP_ADDR <= dev_pAddr) && (dev_pAddr < (STARTUP_ADDR + 0x40000));
// Print the boolean results for debugging purposes
// printf("0x%lx, %u, %u, %u \n", dev_pAddr,isBAREMode, isReserved, isStartAddress);
// Return true if the address needs translation (i.e., it's not reserved and not a start address)
return (!isBAREMode && !isReserved && !isStartAddress);
}
{
// Check if the this is the BARE mode
bool isBAREMode = (this->mode == VA_MODE::BARE);
// Check if the address is reserved for system usage
bool isReserved = (dev_pAddr >= PAGE_TABLE_BASE_ADDR);
// Check if the address is reserved for IO usage
bool isIO= (dev_pAddr < USER_BASE_ADDR);
// Check if the address falls within the startup address range
bool isStartAddress = (STARTUP_ADDR <= dev_pAddr) && (dev_pAddr <= (STARTUP_ADDR + 0x40000));
// Print the boolean results for debugging purposes
// printf("%p, %u, %u\n", (void *)dev_pAddr, isReserved, isStartAddress);
// Return true if the address needs translation (i.e., it's not reserved and not a start address)
return (!isBAREMode && !isReserved && !isIO && !isStartAddress);
}
uint64_t MemoryUnit::vAddr_to_pAddr(uint64_t vAddr, ACCESS_TYPE type)
{
uint64_t pfn;
uint64_t size_bits;
// printf("====%s====\n", __PRETTY_FUNCTION__);
// printf("vaddr = 0x%lx, type = 0x%u\n",vAddr,type);
DBGPRINT(" [MMU: V2P] vaddr = 0x%lx, type = 0x%u\n",vAddr,type);
if (!need_trans(vAddr))
{
// printf("Translation is not needed.\n");
DBGPRINT(" [MMU: V2P] Translation is not needed.\n");
return vAddr;
}
@ -640,18 +649,18 @@ uint64_t MemoryUnit::vAddr_to_pAddr(uint64_t vAddr, ACCESS_TYPE type)
}
//Construct final address using pfn and offset.
// std::cout << "[MemoryUnit] translated vAddr: 0x" << std::hex << vAddr << " to pAddr: 0x" << std::hex << ((pfn << size_bits) + (vAddr & ((1 << size_bits) - 1))) << std::endl;
DBGPRINT(" [MMU: V2P] translated vAddr: 0x%lx to pAddr 0x%lx",vAddr,((pfn << size_bits) + (vAddr & ((1 << size_bits) - 1))));
return (pfn << size_bits) + (vAddr & ((1 << size_bits) - 1));
}
std::pair<uint64_t, uint8_t> MemoryUnit::page_table_walk(uint64_t vAddr_bits, ACCESS_TYPE type, uint64_t* size_bits)
{
// printf("====%s====\n", __PRETTY_FUNCTION__);
// printf("vaddr = 0x%lx, type = %u, size_bits %lu\n", vAddr_bits, type, *size_bits);
DBGPRINT(" [MMU:PTW] Start: vaddr = 0x%lx, type = %u, size_bits %lu\n", vAddr_bits, type, *size_bits);
uint64_t LEVELS = 2;
vAddr_SV32_t vAddr(vAddr_bits);
uint64_t pte_bytes = 0;
uint64_t pte_addr =0;
//Get base page table.
uint64_t pt_ba = this->ptbr << 12;
int i = LEVELS - 1;
@ -660,14 +669,15 @@ std::pair<uint64_t, uint8_t> MemoryUnit::page_table_walk(uint64_t vAddr_bits, AC
{
//Read PTE.
decoder_.read(&pte_bytes, pt_ba+vAddr.vpn[i]*PTE_SIZE, PTE_SIZE);
pte_addr = pt_ba+vAddr.vpn[i] * PTE_SIZE;
decoder_.read(&pte_bytes, pte_addr, PTE_SIZE);
PTE_SV32_t pte(pte_bytes);
DBGPRINT(" [MMU:PTW] Level[%u] pte_bytes = 0x%lx, pte flags = %u)\n", i, pte.ppn , pte.flags);
//Check if it has invalid flag bits.
if ( (pte.v == 0) | ( (pte.r == 0) & (pte.w == 1) ) )
{
printf("Error: PTE FLAGS=0x%x\n",pte.flags);
throw Page_Fault_Exception("Page Fault : Attempted to access invalid entry.");
throw Page_Fault_Exception(" [MMU:PTW] Page Fault : Attempted to access invalid entry.");
}
if ( (pte.r == 0) & (pte.w == 0) & (pte.x == 0))
@ -676,8 +686,7 @@ std::pair<uint64_t, uint8_t> MemoryUnit::page_table_walk(uint64_t vAddr_bits, AC
i--;
if (i < 0)
{
printf("Error: PTE FLAGS=0x%x\n",pte.flags);
throw Page_Fault_Exception("Page Fault : No leaf node found.");
throw Page_Fault_Exception(" [MMU:PTW] Page Fault : No leaf node found.");
}
else
{
@ -696,35 +705,35 @@ std::pair<uint64_t, uint8_t> MemoryUnit::page_table_walk(uint64_t vAddr_bits, AC
PTE_SV32_t pte(pte_bytes);
//Check RWX permissions according to access type.
if ( (type == ACCESS_TYPE::FETCH) & ((pte.r == 0) | (pte.x == 0)) )
if ( (type == ACCESS_TYPE::FENCE) & ((pte.r == 0) | (pte.x == 0)) )
{
printf("Error: PTE FLAGS=0x%x\n",pte.flags);
throw Page_Fault_Exception("Page Fault : TYPE FETCH, Incorrect permissions.");
throw Page_Fault_Exception(" [MMU:PTW] Page Fault : TYPE FENCE, Incorrect permissions.");
}
else if ( (type == ACCESS_TYPE::LOAD) & (pte.r == 0) )
{
printf("Error: PTE FLAGS=0x%x\n",pte.flags);
throw Page_Fault_Exception("Page Fault : TYPE LOAD, Incorrect permissions.");
throw Page_Fault_Exception(" [MMU:PTW] Page Fault : TYPE LOAD, Incorrect permissions.");
}
else if ( (type == ACCESS_TYPE::STORE) & (pte.w == 0) )
{
printf("Error: PTE FLAGS=0x%x\n",pte.flags);
throw Page_Fault_Exception("Page Fault : TYPE STORE, Incorrect permissions.");
throw Page_Fault_Exception(" [MMU:PTW] Page Fault : TYPE STORE, Incorrect permissions.");
}
*size_bits = 12;
uint64_t pfn = pt_ba >> *size_bits;
return std::make_pair(pfn, pte_bytes & 0xff);
}
uint32_t MemoryUnit::get_satp()
uint64_t MemoryUnit::get_satp()
{
return satp;
}
void MemoryUnit::set_satp(uint32_t satp)
void MemoryUnit::set_satp(uint64_t satp)
{
this->satp = satp;
this->ptbr = satp & 0x003fffff; //22 bits
this->mode = satp & 0x80000000 ? VA_MODE::SV32 : VA_MODE::BARE;
this->ptbr = satp & ( (1<< SATP_PPN_WIDTH) - 1);
#ifdef XLEN_32
this->mode = satp & (1<< SATP_MODE_IDX) ? VA_MODE::SV32 : VA_MODE::BARE;
#else // 64 bit
this->mode = satp & (1<< SATP_MODE_IDX) ? VA_MODE::SV64 : VA_MODE::BARE;
#endif
}
#endif

View file

@ -34,13 +34,14 @@ namespace vortex {
#ifdef VM_ENABLE
enum VA_MODE {
BARE,
SV32
SV32,
SV64
};
enum ACCESS_TYPE {
LOAD,
STORE,
FETCH
FENCE
};
class Page_Fault_Exception : public std::runtime_error /* or logic_error */
@ -117,7 +118,7 @@ public:
};
#ifdef VM_ENABLE
MemoryUnit(uint64_t pageSize = PAGE_TABLE_SIZE);
MemoryUnit(uint64_t pageSize = MEM_PAGE_SIZE);
#else
MemoryUnit(uint64_t pageSize = 0);
#endif
@ -138,8 +139,8 @@ public:
#ifdef VM_ENABLE
void tlbAdd(uint64_t virt, uint64_t phys, uint32_t flags, uint64_t size_bits);
uint32_t get_satp();
void set_satp(uint32_t satp);
uint64_t get_satp();
void set_satp(uint64_t satp);
#else
void tlbAdd(uint64_t virt, uint64_t phys, uint32_t flags);
#endif
@ -238,14 +239,16 @@ private:
std::unordered_map<uint64_t, TLBEntry> tlb_;
uint64_t pageSize_;
ADecoder decoder_;
#ifndef VM_ENABLE
bool enableVM_;
#endif
amo_reservation_t amo_reservation_;
#ifdef VM_ENABLE
uint32_t satp;
uint64_t satp;
VA_MODE mode;
uint32_t ptbr;
uint64_t ptbr;
std::unordered_set<uint64_t> unique_translations;
uint64_t TLB_HIT, TLB_MISS, TLB_EVICT, PTW, PERF_UNIQUE_PTW;
@ -380,7 +383,7 @@ class vAddr_SV32_t
vpn[0] = bits(address,12,21);
vpn[1] = bits(address,22,31);
pgoff = bits(address,0,11);
// printf("vpn[0] = 0x%lx, vpn[1] = 0x%lx, pgoff = 0x%lx\n",vpn[0],vpn[1],pgoff);
// printf("vpn[1] = 0x%lx, vpn[0] = 0x%lx, pgoff = 0x%lx\n",vpn[1],vpn[0],pgoff);
}
};
#endif

View file

@ -107,7 +107,7 @@ void Cluster::attach_ram(RAM* ram) {
}
#ifdef VM_ENABLE
void Cluster::set_satp(uint32_t satp) {
void Cluster::set_satp(uint64_t satp) {
for (auto& socket : sockets_) {
socket->set_satp(satp);
}

View file

@ -58,7 +58,7 @@ public:
void attach_ram(RAM* ram);
#ifdef VM_ENABLE
void set_satp(uint32_t satp);
void set_satp(uint64_t satp);
#endif
bool running() const;

View file

@ -430,7 +430,7 @@ void Core::attach_ram(RAM* ram) {
}
#ifdef VM_ENABLE
void Core::set_satp(uint32_t satp) {
void Core::set_satp(uint64_t satp) {
emulator_.set_satp(satp); //JAEWON wit, tid???
// emulator_.set_csr(VX_CSR_SATP,satp,0,0); //JAEWON wit, tid???
}

View file

@ -100,7 +100,7 @@ public:
void attach_ram(RAM* ram);
#ifdef VM_ENABLE
void set_satp(uint32_t satp);
void set_satp(uint64_t satp);
#endif
bool running() const;

View file

@ -271,7 +271,7 @@ bool Emulator::barrier(uint32_t bar_id, uint32_t count, uint32_t wid) {
#ifdef VM_ENABLE
void Emulator::icache_read(void *data, uint64_t addr, uint32_t size) {
DPH(3, "*** icache_read 0x" << std::hex << addr << ", size = 0x " << size);
// DP(1, "*** icache_read 0x" << std::hex << addr << ", size = 0x " << size);
try
{
@ -290,7 +290,7 @@ void Emulator::icache_read(void *data, uint64_t addr, uint32_t size) {
#endif
#ifdef VM_ENABLE
void Emulator::set_satp(uint32_t satp) {
void Emulator::set_satp(uint64_t satp) {
DPH(3, "set satp 0x" << std::hex << satp << " in emulator module\n");
set_csr(VX_CSR_SATP,satp,0,0);
}
@ -299,6 +299,7 @@ void Emulator::set_satp(uint32_t satp) {
#ifdef VM_ENABLE
void Emulator::dcache_read(void *data, uint64_t addr, uint32_t size) {
DP(1, "*** dcache_read 0x" << std::hex << addr << ", size = 0x " << size);
auto type = get_addr_type(addr);
if (type == AddrType::Shared) {
core_->local_mem()->read(data, addr, size);

View file

@ -40,7 +40,7 @@ public:
void attach_ram(RAM* ram);
#ifdef VM_ENABLE
void set_satp(uint32_t satp) ;
void set_satp(uint64_t satp) ;
#endif
instr_trace_t* step();

View file

@ -96,7 +96,7 @@ void ProcessorImpl::attach_ram(RAM* ram) {
}
}
#ifdef VM_ENABLE
void ProcessorImpl::set_satp(uint32_t satp) {
void ProcessorImpl::set_satp(uint64_t satp) {
for (auto cluster : clusters_) {
cluster->set_satp(satp);
}
@ -164,12 +164,12 @@ void Processor::dcr_write(uint32_t addr, uint32_t value) {
}
#ifdef VM_ENABLE
uint32_t Processor::get_satp() {
uint64_t Processor::get_satp() {
// std::cout << "get SATP: 0x" << std::hex << this->satp << std::endl;
return this->satp;
}
void Processor::set_satp(uint32_t satp) {
void Processor::set_satp(uint64_t satp) {
impl_->set_satp(satp);
this->satp = satp;
}

View file

@ -34,14 +34,14 @@ public:
void dcr_write(uint32_t addr, uint32_t value);
#ifdef VM_ENABLE
uint32_t get_satp();
void set_satp(uint32_t satp);
uint64_t get_satp();
void set_satp(uint64_t satp);
#endif
private:
ProcessorImpl* impl_;
#ifdef VM_ENABLE
uint32_t satp;
uint64_t satp;
#endif
};

View file

@ -40,8 +40,7 @@ public:
void dcr_write(uint32_t addr, uint32_t value);
#ifdef VM_ENABLE
// 32bit satp
void set_satp(uint32_t satp);
void set_satp(uint64_t satp);
#endif
PerfStats perf_stats() const;

View file

@ -108,7 +108,7 @@ void Socket::attach_ram(RAM* ram) {
}
#ifdef VM_ENABLE
void Socket::set_satp(uint32_t satp) {
void Socket::set_satp(uint64_t satp) {
for (auto core : cores_) {
core->set_satp(satp);
}

View file

@ -61,7 +61,7 @@ public:
void attach_ram(RAM* ram);
#ifdef VM_ENABLE
void set_satp(uint32_t satp);
void set_satp(uint64_t satp);
#endif
bool running() const;