vortex/tests/opencl/conv3/main.cc
2024-09-07 03:42:46 -07:00

251 lines
7.9 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <CL/opencl.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <chrono>
#include <vector>
#define FLOAT_ULP 6
#define KERNEL_NAME "conv3"
#define CL_CHECK(_expr) \
do { \
cl_int _err = _expr; \
if (_err == CL_SUCCESS) \
break; \
printf("OpenCL Error: '%s' returned %d!\n", #_expr, (int)_err); \
cleanup(); \
exit(-1); \
} while (0)
#define CL_CHECK2(_expr) \
({ \
cl_int _err = CL_INVALID_VALUE; \
decltype(_expr) _ret = _expr; \
if (_err != CL_SUCCESS) { \
printf("OpenCL Error: '%s' returned %d!\n", #_expr, (int)_err); \
cleanup(); \
exit(-1); \
} \
_ret; \
})
static int read_kernel_file(const char* filename, uint8_t** data, size_t* size) {
if (nullptr == filename || nullptr == data || 0 == size)
return -1;
FILE* fp = fopen(filename, "r");
if (NULL == fp) {
fprintf(stderr, "Failed to load kernel.");
return -1;
}
fseek(fp , 0 , SEEK_END);
long fsize = ftell(fp);
rewind(fp);
*data = (uint8_t*)malloc(fsize);
*size = fread(*data, 1, fsize, fp);
fclose(fp);
return 0;
}
static bool compare_equal(float a, float b) {
union fi_t { float f; int32_t i; };
fi_t fa, fb;
fa.f = a;
fb.f = b;
auto d = std::abs(fa.i - fb.i);
return d <= FLOAT_ULP;
}
static void convolution_cpu(float *O, float *I, float *W, int32_t width, int32_t height) {
int paddedWidth = width + 2;
for (int32_t y = 0; y < height; ++y) {
for (int32_t x = 0; x < width; ++x) {
int paddedY = y + 1;
int paddedX = x + 1;
float sum = 0.0f;
for (int32_t ky = -1; ky <= 1; ++ky) {
for (int32_t kx = -1; kx <= 1; ++kx) {
int32_t iy = paddedY + ky;
int32_t ix = paddedX + kx;
float value = I[iy * paddedWidth + ix];
float weight = W[(ky + 1) * 3 + (kx + 1)];
sum += value * weight;
}
}
O[y * width + x] = sum;
}
}
}
cl_device_id device_id = NULL;
cl_context context = NULL;
cl_command_queue commandQueue = NULL;
cl_program program = NULL;
cl_kernel kernel = NULL;
cl_mem i_memobj = NULL;
cl_mem w_memobj = NULL;
cl_mem o_memobj = NULL;
uint8_t* kernel_bin = NULL;
static void cleanup() {
if (commandQueue) clReleaseCommandQueue(commandQueue);
if (kernel) clReleaseKernel(kernel);
if (program) clReleaseProgram(program);
if (i_memobj) clReleaseMemObject(i_memobj);
if (w_memobj) clReleaseMemObject(w_memobj);
if (o_memobj) clReleaseMemObject(o_memobj);
if (context) clReleaseContext(context);
if (device_id) clReleaseDevice(device_id);
if (kernel_bin) free(kernel_bin);
}
int size = 32;
static void show_usage() {
printf("Usage: [-n size] [-h: help]\n");
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "n:h")) != -1) {
switch (c) {
case 'n':
size = atoi(optarg);
break;
case 'h':
show_usage();
exit(0);
break;
default:
show_usage();
exit(-1);
}
}
}
int main (int argc, char **argv) {
// parse command arguments
parse_args(argc, argv);
printf("Matrix size=%d\n", size);
uint32_t o_points = size * size;
uint32_t i_points = (size+2) * (size+2);
uint32_t w_points = 3 * 3;
cl_platform_id platform_id;
size_t kernel_size;
// Getting platform and device information
CL_CHECK(clGetPlatformIDs(1, &platform_id, NULL));
CL_CHECK(clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_DEFAULT, 1, &device_id, NULL));
printf("Create context\n");
context = CL_CHECK2(clCreateContext(NULL, 1, &device_id, NULL, NULL, &_err));
char device_string[1024];
clGetDeviceInfo(device_id, CL_DEVICE_NAME, sizeof(device_string), &device_string, NULL);
printf("Using device: %s\n", device_string);
printf("Allocate device buffers\n");
size_t i_nbytes = i_points * sizeof(float);
size_t w_nbytes = w_points * sizeof(float);
size_t o_nbytes = o_points * sizeof(float);
i_memobj = CL_CHECK2(clCreateBuffer(context, CL_MEM_READ_ONLY, i_nbytes, NULL, &_err));
w_memobj = CL_CHECK2(clCreateBuffer(context, CL_MEM_READ_ONLY, w_nbytes, NULL, &_err));
o_memobj = CL_CHECK2(clCreateBuffer(context, CL_MEM_WRITE_ONLY, o_nbytes, NULL, &_err));
printf("Create program from kernel source\n");
if (0 != read_kernel_file("kernel.cl", &kernel_bin, &kernel_size))
return -1;
program = CL_CHECK2(clCreateProgramWithSource(
context, 1, (const char**)&kernel_bin, &kernel_size, &_err));
if (program == NULL) {
cleanup();
return -1;
}
// Build program
CL_CHECK(clBuildProgram(program, 1, &device_id, NULL, NULL, NULL));
// Create kernel
kernel = CL_CHECK2(clCreateKernel(program, KERNEL_NAME, &_err));
size_t global_size[2] = {size, size};
size_t local_size[2] = {1, 1};
// Set kernel arguments
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&o_memobj));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&i_memobj));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&w_memobj));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(uint32_t), &size));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(uint32_t), &size));
// Allocate memories for input arrays and output arrays.
std::vector<float> h_i(i_points);
std::vector<float> h_w(w_points);
std::vector<float> h_o(o_points, 0.0f);
// Generate input values
for (int32_t y = -1; y < size+1; ++y) {
for (int32_t x = -1; x < size+1; ++x) {
if (x >= 0 && x < size && y >= 0 && y < size) {
h_i[(y+1) * (size+2) + (x+1)] = static_cast<float>(rand()) / RAND_MAX;
} else {
h_i[(y+1) * (size+2) + (x+1)] = 0;
}
}
}
for (uint32_t i = 0; i < w_points; ++i) {
h_w[i] = static_cast<float>(rand()) / RAND_MAX;
}
// Creating command queue
commandQueue = CL_CHECK2(clCreateCommandQueue(context, device_id, 0, &_err));
printf("Upload source buffers\n");
CL_CHECK(clEnqueueWriteBuffer(commandQueue, i_memobj, CL_TRUE, 0, i_nbytes, h_i.data(), 0, NULL, NULL));
CL_CHECK(clEnqueueWriteBuffer(commandQueue, w_memobj, CL_TRUE, 0, w_nbytes, h_w.data(), 0, NULL, NULL));
printf("Execute the kernel\n");
auto time_start = std::chrono::high_resolution_clock::now();
CL_CHECK(clEnqueueNDRangeKernel(commandQueue, kernel, 2, NULL, global_size, local_size, 0, NULL, NULL));
CL_CHECK(clFinish(commandQueue));
auto time_end = std::chrono::high_resolution_clock::now();
double elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start).count();
printf("Elapsed time: %lg ms\n", elapsed);
printf("Download destination buffer\n");
CL_CHECK(clEnqueueReadBuffer(commandQueue, o_memobj, CL_TRUE, 0, o_nbytes, h_o.data(), 0, NULL, NULL));
printf("Verify result\n");
std::vector<float> ref_vec(o_points);
convolution_cpu(ref_vec.data(), h_i.data(), h_w.data(), size, size);
int errors = 0;
for (uint32_t i = 0; i < o_points; ++i) {
if (!compare_equal(h_o[i], ref_vec[i])) {
if (errors < 100)
printf("*** error: [%d] expected=%f, actual=%f\n", i, ref_vec[i], h_o[i]);
++errors;
}
}
if (errors != 0) {
printf("FAILED! - %d errors\n", errors);
} else {
printf("PASSED!\n");
}
// Clean up
cleanup();
return errors;
}