vortex/tests/opencl/lbm/main.cc
2024-07-22 10:08:25 -07:00

339 lines
11 KiB
C++

/***************************************************************************
*cr
*cr (C) Copyright 2010 The Board of Trustees of the
*cr University of Illinois
*cr All Rights Reserved
*cr
***************************************************************************/
/*############################################################################*/
#include <CL/cl.h>
#include <parboil.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <math.h>
#include "layout_config.h"
#include "lbm.h"
#include "lbm_macros.h"
#include "main.h"
#include "ocl.h"
static char* replaceFilenameExtension(const char* filename, const char* ext) {
const char* dot = strrchr(filename, '.');
int baseLen = dot ? (dot - filename) : strlen(filename);
char* sz_out = (char*)malloc(baseLen + strlen(ext) + 1);
if (!sz_out)
return NULL;
strncpy(sz_out, filename, baseLen);
strcpy(sz_out + baseLen, ext);
return sz_out;
}
static float* read_output_file(const char* filename, int size) {
FILE* file = fopen(filename, "rb");
if (file == NULL) {
perror("Error opening file");
return NULL;
}
// Allocate memory for the floats
float* floats = (float*)malloc(size * sizeof(float));
if (floats == NULL) {
fclose(file);
perror("Memory allocation failed");
return NULL;
}
// Read the float data
if (fread(floats, sizeof(float), size, file) != (size_t)size) {
fclose(file);
free(floats);
perror("Error reading floats from file");
return NULL;
}
// Close the file
fclose(file);
return floats;
}
static int compare_floats(const float* src, const float* gold, int count) {
int num_errors = 0;
float abstol = 0.0f;
float max_value = 0.0f;
// Find the maximum magnitude in the gold array for absolute tolerance calculation
for (int i = 0; i < count; i++) {
if (fabs(gold[i]) > max_value)
max_value = fabs(gold[i]);
}
// Absolute tolerance is 0.01% of the maximum magnitude of gold array
abstol = 1e-4 * max_value;
// Compare each pair of floats
for (int i = 0; i < count; i++) {
float diff = fabs(gold[i] - src[i]);
if (!(diff <= abstol || diff < 0.002 * fabs(gold[i]))) {
if (num_errors < 10)
printf("Fail at row %d: (gold) %f != %f (computed)\n", i, gold[i], src[i]);
num_errors++;
}
}
return num_errors;
}
static int read_kernel_file(const char* filename, uint8_t** data, size_t* size) {
if (nullptr == filename || nullptr == data || 0 == size)
return CL_INVALID_VALUE;
FILE* fp = fopen(filename, "r");
if (NULL == fp) {
fprintf(stderr, "Failed to load kernel.");
return CL_INVALID_VALUE;
}
fseek(fp , 0 , SEEK_END);
long fsize = ftell(fp);
rewind(fp);
*data = (uint8_t*)malloc(fsize);
*size = fread(*data, 1, fsize, fp);
fclose(fp);
return CL_SUCCESS;
}
/*############################################################################*/
static cl_mem OpenCL_srcGrid, OpenCL_dstGrid;
/*############################################################################*/
struct pb_TimerSet timers;
int main(int nArgs, char *arg[]) {
MAIN_Param param;
int t;
OpenCL_Param prm;
pb_InitializeTimerSet(&timers);
struct pb_Parameters *params;
params = pb_ReadParameters(&nArgs, arg);
static LBM_GridPtr TEMP_srcGrid;
// Setup TEMP datastructures
LBM_allocateGrid((float **)&TEMP_srcGrid);
MAIN_parseCommandLine(nArgs, arg, &param, params);
MAIN_printInfo(&param);
OpenCL_initialize(params, &prm);
MAIN_initialize(&param, &prm);
for (t = 1; t <= param.nTimeSteps; t++) {
pb_SwitchToTimer(&timers, pb_TimerID_KERNEL);
OpenCL_LBM_performStreamCollide(&prm, OpenCL_srcGrid, OpenCL_dstGrid);
pb_SwitchToTimer(&timers, pb_TimerID_COMPUTE);
LBM_swapGrids(&OpenCL_srcGrid, &OpenCL_dstGrid);
if ((t & 63) == 0) {
printf("timestep: %i\n", t);
#if 0
CUDA_LBM_getDeviceGrid((float**)&CUDA_srcGrid, (float**)&TEMP_srcGrid);
LBM_showGridStatistics( *TEMP_srcGrid );
#endif
}
}
int errors = MAIN_finalize(&param, &prm);
LBM_freeGrid((float **)&TEMP_srcGrid);
pb_SwitchToTimer(&timers, pb_TimerID_NONE);
pb_PrintTimerSet(&timers);
pb_FreeParameters(params);
return errors;
}
/*############################################################################*/
void MAIN_parseCommandLine(int nArgs, char *arg[], MAIN_Param *param,
struct pb_Parameters *params) {
struct stat fileStat;
if (nArgs < 2) {
printf("syntax: lbm <time steps>\n");
exit(1);
}
param->nTimeSteps = atoi(arg[1]);
if (params->inpFiles[0] != NULL) {
param->obstacleFilename = params->inpFiles[0];
if (stat(param->obstacleFilename, &fileStat) != 0) {
printf("MAIN_parseCommandLine: cannot stat obstacle file '%s'\n",
param->obstacleFilename);
exit(1);
}
if (fileStat.st_size != SIZE_X * SIZE_Y * SIZE_Z + (SIZE_Y + 1) * SIZE_Z) {
printf("MAIN_parseCommandLine:\n"
"\tsize of file '%s' is %i bytes\n"
"\texpected size is %i bytes\n",
param->obstacleFilename, (int)fileStat.st_size,
SIZE_X * SIZE_Y * SIZE_Z + (SIZE_Y + 1) * SIZE_Z);
exit(1);
}
} else
param->obstacleFilename = NULL;
param->resultFilename = params->outFile;
}
/*############################################################################*/
void MAIN_printInfo(const MAIN_Param *param) {
printf("MAIN_printInfo:\n"
"\tgrid size : %i x %i x %i = %.2f * 10^6 Cells\n"
"\tnTimeSteps : %i\n"
"\tresult file : %s\n"
"\taction : %s\n"
"\tsimulation type: %s\n"
"\tobstacle file : %s\n\n",
SIZE_X, SIZE_Y, SIZE_Z, 1e-6 * SIZE_X * SIZE_Y * SIZE_Z,
param->nTimeSteps, ((param->resultFilename == NULL) ? "<none>" : param->resultFilename), "store", "lid-driven cavity",
((param->obstacleFilename == NULL) ? "<none>" : param->obstacleFilename)
);
}
/*############################################################################*/
void MAIN_initialize(const MAIN_Param *param, const OpenCL_Param *prm) {
static LBM_Grid TEMP_srcGrid, TEMP_dstGrid;
pb_SwitchToTimer(&timers, pb_TimerID_COMPUTE);
// Setup TEMP datastructures
LBM_allocateGrid((float **)&TEMP_srcGrid);
LBM_allocateGrid((float **)&TEMP_dstGrid);
LBM_initializeGrid(TEMP_srcGrid);
LBM_initializeGrid(TEMP_dstGrid);
pb_SwitchToTimer(&timers, pb_TimerID_IO);
if (param->obstacleFilename != NULL) {
LBM_loadObstacleFile(TEMP_srcGrid, param->obstacleFilename);
LBM_loadObstacleFile(TEMP_dstGrid, param->obstacleFilename);
}
pb_SwitchToTimer(&timers, pb_TimerID_COMPUTE);
LBM_initializeSpecialCellsForLDC(TEMP_srcGrid);
LBM_initializeSpecialCellsForLDC(TEMP_dstGrid);
pb_SwitchToTimer(&timers, pb_TimerID_COPY);
// Setup DEVICE datastructures
OpenCL_LBM_allocateGrid(prm, &OpenCL_srcGrid);
OpenCL_LBM_allocateGrid(prm, &OpenCL_dstGrid);
// Initialize DEVICE datastructures
OpenCL_LBM_initializeGrid(prm, OpenCL_srcGrid, TEMP_srcGrid);
OpenCL_LBM_initializeGrid(prm, OpenCL_dstGrid, TEMP_dstGrid);
pb_SwitchToTimer(&timers, pb_TimerID_COMPUTE);
LBM_showGridStatistics(TEMP_srcGrid);
LBM_freeGrid((float **)&TEMP_srcGrid);
LBM_freeGrid((float **)&TEMP_dstGrid);
}
/*############################################################################*/
int MAIN_finalize(const MAIN_Param *param, const OpenCL_Param *prm) {
LBM_Grid TEMP_srcGrid;
// Setup TEMP datastructures
LBM_allocateGrid((float **)&TEMP_srcGrid);
pb_SwitchToTimer(&timers, pb_TimerID_COPY);
OpenCL_LBM_getDeviceGrid(prm, OpenCL_srcGrid, TEMP_srcGrid);
pb_SwitchToTimer(&timers, pb_TimerID_COMPUTE);
LBM_showGridStatistics(TEMP_srcGrid);
float* result_data;
int dim = 3 * SIZE_X * SIZE_Y * SIZE_Z;
if (param->resultFilename) {
LBM_storeVelocityField(TEMP_srcGrid, param->resultFilename, TRUE);
result_data = read_output_file(param->resultFilename, dim);
} else {
LBM_storeVelocityField(TEMP_srcGrid, "result.dat", TRUE);
result_data = read_output_file("result.dat", dim);
}
// verify output
char* gold_file = replaceFilenameExtension(param->obstacleFilename, ".gold");
float* gold_data = read_output_file(gold_file, dim);
if (!gold_data)
return -1;
int errors = compare_floats(result_data, gold_data, dim);
if (errors > 0) {
printf("FAILED!\n");
} else {
printf("PASSED!\n");
}
free(result_data);
free(gold_data);
free(gold_file);
LBM_freeGrid((float **)&TEMP_srcGrid);
OpenCL_LBM_freeGrid(OpenCL_srcGrid);
OpenCL_LBM_freeGrid(OpenCL_dstGrid);
clReleaseProgram(prm->clProgram);
clReleaseKernel(prm->clKernel);
clReleaseCommandQueue(prm->clCommandQueue);
clReleaseContext(prm->clContext);
return errors;
}
void OpenCL_initialize(struct pb_Parameters *p, OpenCL_Param *prm) {
cl_int clStatus;
pb_Context *pb_context;
pb_context = pb_InitOpenCLContext(p);
if (pb_context == NULL) {
fprintf(stderr, "Error: No OpenCL platform/device can be found.");
return;
}
prm->clDevice = (cl_device_id)pb_context->clDeviceId;
prm->clPlatform = (cl_platform_id)pb_context->clPlatformId;
prm->clContext = (cl_context)pb_context->clContext;
prm->clCommandQueue = clCreateCommandQueue(
prm->clContext, prm->clDevice, CL_QUEUE_PROFILING_ENABLE, &clStatus);
CHECK_ERROR("clCreateCommandQueue")
pb_SetOpenCL(&(prm->clContext), &(prm->clCommandQueue));
//const char *clSource[] = {readFile("src/opencl_base/kernel.cl")};
//prm->clProgram = clCreateProgramWithSource(prm->clContext, 1, clSource, NULL, &clStatus);
// read kernel binary from file
uint8_t *kernel_bin = NULL;
size_t kernel_size;
//cl_int binary_status = 0;
clStatus = read_kernel_file("kernel.cl", &kernel_bin, &kernel_size);
CHECK_ERROR("read_kernel_file")
prm->clProgram = clCreateProgramWithSource(
prm->clContext, 1, (const char**)&kernel_bin, &kernel_size, &clStatus);
CHECK_ERROR("clCreateProgramWithSource")
//char clOptions[100];
//sprintf(clOptions, "-I src/opencl_base");
//clStatus = clBuildProgram(prm->clProgram, 1, &(prm->clDevice), clOptions, NULL, NULL);
clStatus = clBuildProgram(prm->clProgram, 1, &prm->clDevice, NULL, NULL, NULL);
CHECK_ERROR("clBuildProgram")
prm->clKernel =
clCreateKernel(prm->clProgram, "performStreamCollide_kernel", &clStatus);
CHECK_ERROR("clCreateKernel")
//free((void *)clSource[0]);
}