vortex/tests/opencl/psort/main.cc
2024-09-07 03:42:46 -07:00

233 lines
7 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <CL/opencl.h>
#include <unistd.h>
#include <string.h>
#include <chrono>
#define KERNEL0_NAME "psorti"
#define KERNEL1_NAME "psortf"
#define CL_CHECK(_expr) \
do { \
cl_int _err = _expr; \
if (_err == CL_SUCCESS) \
break; \
printf("OpenCL Error: '%s' returned %d!\n", #_expr, (int)_err); \
cleanup(); \
exit(-1); \
} while (0)
#define CL_CHECK2(_expr) \
({ \
cl_int _err = CL_INVALID_VALUE; \
decltype(_expr) _ret = _expr; \
if (_err != CL_SUCCESS) { \
printf("OpenCL Error: '%s' returned %d!\n", #_expr, (int)_err); \
cleanup(); \
exit(-1); \
} \
_ret; \
})
static int read_kernel_file(const char* filename, uint8_t** data, size_t* size) {
if (nullptr == filename || nullptr == data || 0 == size)
return -1;
FILE* fp = fopen(filename, "r");
if (NULL == fp) {
fprintf(stderr, "Failed to load kernel.");
return -1;
}
fseek(fp , 0 , SEEK_END);
long fsize = ftell(fp);
rewind(fp);
*data = (uint8_t*)malloc(fsize);
*size = fread(*data, 1, fsize, fp);
fclose(fp);
return 0;
}
cl_device_id device_id = NULL;
cl_context context = NULL;
cl_command_queue commandQueue = NULL;
cl_program program = NULL;
cl_kernel kernel = NULL;
cl_mem a_memobj = NULL;
cl_mem c_memobj = NULL;
int *h_a = NULL;
int *h_c = NULL;
uint8_t *kernel_bin = NULL;
static void cleanup() {
if (commandQueue) clReleaseCommandQueue(commandQueue);
if (kernel) clReleaseKernel(kernel);
if (program) clReleaseProgram(program);
if (a_memobj) clReleaseMemObject(a_memobj);
if (c_memobj) clReleaseMemObject(c_memobj);
if (context) clReleaseContext(context);
if (device_id) clReleaseDevice(device_id);
if (kernel_bin) free(kernel_bin);
if (h_a) free(h_a);
if (h_c) free(h_c);
}
int size = 64;
bool float_enable = false;
static void show_usage() {
printf("Usage: [-f] [-n size] [-h: help]\n");
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "fn:h")) != -1) {
switch (c) {
case 'f':
float_enable = 1;
break;
case 'n':
size = atoi(optarg);
break;
case 'h':
show_usage();
exit(0);
break;
default:
show_usage();
exit(-1);
}
}
printf("Workload size=%d\n", size);
}
int main (int argc, char **argv) {
// parse command arguments
parse_args(argc, argv);
cl_platform_id platform_id;
size_t kernel_size;
// Getting platform and device information
CL_CHECK(clGetPlatformIDs(1, &platform_id, NULL));
CL_CHECK(clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_DEFAULT, 1, &device_id, NULL));
printf("Create context\n");
context = CL_CHECK2(clCreateContext(NULL, 1, &device_id, NULL, NULL, &_err));
printf("Allocate device buffers\n");
size_t nbytes = size * sizeof(int);
a_memobj = CL_CHECK2(clCreateBuffer(context, CL_MEM_READ_ONLY, nbytes, NULL, &_err));
c_memobj = CL_CHECK2(clCreateBuffer(context, CL_MEM_WRITE_ONLY, nbytes, NULL, &_err));
printf("Create program from kernel source\n");
if (0 != read_kernel_file("kernel.cl", &kernel_bin, &kernel_size))
return -1;
program = CL_CHECK2(clCreateProgramWithSource(
context, 1, (const char**)&kernel_bin, &kernel_size, &_err));
// Build program
CL_CHECK(clBuildProgram(program, 1, &device_id, NULL, NULL, NULL));
// Create kernel
kernel = CL_CHECK2(clCreateKernel(program, (float_enable ? KERNEL1_NAME : KERNEL0_NAME), &_err));
// Set kernel arguments
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&a_memobj));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&c_memobj));
// Allocate memories for input arrays and output arrays.
h_a = (int*)malloc(nbytes);
h_c = (int*)malloc(nbytes);
// Generate input values
for (int i = 0; i < size; ++i) {
if (float_enable) {
float value = sinf(i)*sinf(i);
((float*)h_a)[i] = value;
printf("*** [%d]: %f\n", i, value);
} else {
int value = size*sinf(i);
h_a[i] = value;
printf("*** [%d]: %d\n", i, value);
}
}
// Creating command queue
commandQueue = CL_CHECK2(clCreateCommandQueue(context, device_id, 0, &_err));
printf("Upload source buffers\n");
CL_CHECK(clEnqueueWriteBuffer(commandQueue, a_memobj, CL_TRUE, 0, nbytes, h_a, 0, NULL, NULL));
printf("Execute the kernel\n");
size_t global_work_size[1] = {size};
size_t local_work_size[1] = {1};
auto time_start = std::chrono::high_resolution_clock::now();
CL_CHECK(clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, global_work_size, local_work_size, 0, NULL, NULL));
CL_CHECK(clFinish(commandQueue));
auto time_end = std::chrono::high_resolution_clock::now();
double elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start).count();
printf("Elapsed time: %lg ms\n", elapsed);
printf("Download destination buffer\n");
CL_CHECK(clEnqueueReadBuffer(commandQueue, c_memobj, CL_TRUE, 0, nbytes, h_c, 0, NULL, NULL));
printf("Verify result\n");
for (int i = 0; i < size; ++i) {
if (float_enable) {
float value = ((float*)h_c)[i];
printf("*** [%d]: %f\n", i, value);
} else {
int value = h_c[i];
printf("*** [%d]: %d\n", i, value);
}
}
int errors = 0;
for (int i = 0; i < size; ++i) {
int pos = 0;
if (float_enable) {
float ref = ((float*)h_a)[i];
for (int j = 0; j < size; ++j) {
float cur = ((float*)h_a)[j];
pos += (cur < ref) || (cur == ref && j < i);
}
float value = ((float*)h_c)[pos];
if (value != ref) {
if (errors < 100) {
printf("*** error: [%d] expected=%f, actual=%f\n", pos, ref, value);
}
++errors;
}
} else {
int ref = h_a[i];
for (int j = 0; j < size; ++j) {
int cur = h_a[j];
pos += (cur < ref) || (cur == ref && j < i);
}
int value = h_c[pos];
if (value != ref) {
if (errors < 100) {
printf("*** error: [%d] expected=%d, actual=%d\n", pos, ref, value);
}
++errors;
}
}
}
if (0 == errors) {
printf("PASSED!\n");
} else {
printf("FAILED! - %d errors\n", errors);
}
// Clean up
cleanup();
return errors;
}