vortex/tests/opencl/psum/main.cc
2024-09-07 03:42:46 -07:00

229 lines
7 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <CL/opencl.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <chrono>
#include <vector>
#include <algorithm>
#include <numeric>
#define FLOAT_ULP 6
#define KERNEL_NAME "parallelSum"
#define CL_CHECK(_expr) \
do { \
cl_int _err = _expr; \
if (_err == CL_SUCCESS) \
break; \
printf("OpenCL Error: '%s' returned %d!\n", #_expr, (int)_err); \
cleanup(); \
exit(-1); \
} while (0)
#define CL_CHECK2(_expr) \
({ \
cl_int _err = CL_INVALID_VALUE; \
decltype(_expr) _ret = _expr; \
if (_err != CL_SUCCESS) { \
printf("OpenCL Error: '%s' returned %d!\n", #_expr, (int)_err); \
cleanup(); \
exit(-1); \
} \
_ret; \
})
static int read_kernel_file(const char* filename, uint8_t** data, size_t* size) {
if (nullptr == filename || nullptr == data || 0 == size)
return -1;
FILE* fp = fopen(filename, "r");
if (NULL == fp) {
fprintf(stderr, "Failed to load kernel.");
return -1;
}
fseek(fp , 0 , SEEK_END);
long fsize = ftell(fp);
rewind(fp);
*data = (uint8_t*)malloc(fsize);
*size = fread(*data, 1, fsize, fp);
fclose(fp);
return 0;
}
static bool compare_equal(float a, float b) {
union fi_t { float f; int32_t i; };
fi_t fa, fb;
fa.f = a;
fb.f = b;
auto d = std::abs(fa.i - fb.i);
return d <= FLOAT_ULP;
}
static float computeParallelSumCPU(float *A, int N) {
float sum = 0;
for (int i = 0; i < N; ++i) {
sum += A[i];
}
return sum;
}
cl_device_id device_id = NULL;
cl_context context = NULL;
cl_command_queue commandQueue = NULL;
cl_program program = NULL;
cl_kernel kernel = NULL;
cl_mem a_memobj = NULL;
cl_mem c_memobj = NULL;
uint8_t *kernel_bin = NULL;
static void cleanup() {
if (commandQueue) clReleaseCommandQueue(commandQueue);
if (kernel) clReleaseKernel(kernel);
if (program) clReleaseProgram(program);
if (a_memobj) clReleaseMemObject(a_memobj);
if (c_memobj) clReleaseMemObject(c_memobj);
if (context) clReleaseContext(context);
if (device_id) clReleaseDevice(device_id);
if (kernel_bin) free(kernel_bin);
}
size_t size = 16;
size_t local_size = 8;
static void show_usage() {
printf("Usage: [-n size] [-l local size] [-h: help]\n");
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "n:l:h")) != -1) {
switch (c) {
case 'n':
size = atoi(optarg);
break;
case 'l':
local_size = atoi(optarg);
break;
case 'h':
show_usage();
exit(0);
break;
default:
show_usage();
exit(-1);
}
}
}
int main (int argc, char **argv) {
// parse command arguments
parse_args(argc, argv);
printf("input size=%ld, local size=%ld\n", size, local_size);
if ((size / local_size) * local_size != size) {
printf("Error: input size must be a multiple of %ld\n", local_size);
return -1;
}
uint32_t num_inputs = size;
uint32_t num_outputs = size / local_size;
cl_platform_id platform_id;
size_t kernel_size;
// Getting platform and device information
CL_CHECK(clGetPlatformIDs(1, &platform_id, NULL));
CL_CHECK(clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_DEFAULT, 1, &device_id, NULL));
printf("Create context\n");
context = CL_CHECK2(clCreateContext(NULL, 1, &device_id, NULL, NULL, &_err));
char device_string[1024];
clGetDeviceInfo(device_id, CL_DEVICE_NAME, sizeof(device_string), &device_string, NULL);
printf("Using device: %s\n", device_string);
printf("Allocate device buffers\n");
size_t i_nbytes = num_inputs * sizeof(float);
size_t o_nbytes = num_outputs * sizeof(float);
a_memobj = CL_CHECK2(clCreateBuffer(context, CL_MEM_READ_ONLY, i_nbytes, NULL, &_err));
c_memobj = CL_CHECK2(clCreateBuffer(context, CL_MEM_WRITE_ONLY, o_nbytes, NULL, &_err));
printf("Create program from kernel source\n");
if (0 != read_kernel_file("kernel.cl", &kernel_bin, &kernel_size))
return -1;
program = CL_CHECK2(clCreateProgramWithSource(
context, 1, (const char**)&kernel_bin, &kernel_size, &_err));
if (program == NULL) {
cleanup();
return -1;
}
// Build program
CL_CHECK(clBuildProgram(program, 1, &device_id, NULL, NULL, NULL));
// Create kernel
kernel = CL_CHECK2(clCreateKernel(program, KERNEL_NAME, &_err));
// Set kernel arguments
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&a_memobj));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&c_memobj));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(uint32_t), &size));
CL_CHECK(clSetKernelArg(kernel, 3, local_size*sizeof(float), NULL));
// Allocate memories for input arrays and output arrays.
std::vector<float> h_a(num_inputs);
std::vector<float> h_c(num_outputs);
// Generate input values
for (uint32_t i = 0; i < num_inputs; ++i) {
h_a[i] = static_cast<float>(rand()) / RAND_MAX;
}
// Creating command queue
commandQueue = CL_CHECK2(clCreateCommandQueue(context, device_id, 0, &_err));
printf("Upload source buffers\n");
CL_CHECK(clEnqueueWriteBuffer(commandQueue, a_memobj, CL_TRUE, 0, i_nbytes, h_a.data(), 0, NULL, NULL));
printf("Execute the kernel\n");
auto time_start = std::chrono::high_resolution_clock::now();
CL_CHECK(clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, &size, &local_size, 0, NULL, NULL));
CL_CHECK(clFinish(commandQueue));
auto time_end = std::chrono::high_resolution_clock::now();
double elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start).count();
printf("Elapsed time: %lg ms\n", elapsed);
printf("Download destination buffer\n");
CL_CHECK(clEnqueueReadBuffer(commandQueue, c_memobj, CL_TRUE, 0, o_nbytes, h_c.data(), 0, NULL, NULL));
printf("Verify result\n");
int errors = 0;
auto result = computeParallelSumCPU(h_c.data(), num_outputs);
auto gold = computeParallelSumCPU(h_a.data(), num_inputs);
if (!compare_equal(result, gold)) {
printf("*** error: expected=%f, actual=%f", gold, result);
for (uint32_t i = 0; i < num_outputs; ++i) {
printf(", output[%d]=%f", i, h_c[i]);
}
printf("\n");
errors = 1;
}
if (errors != 0) {
printf("FAILED! - %d errors\n", errors);
} else {
printf("PASSED!\n");
}
// Clean up
cleanup();
return errors;
}