vortex/tests/regression/demo/main.cpp
2022-01-28 21:57:16 -05:00

205 lines
No EOL
5.9 KiB
C++

#include <iostream>
#include <unistd.h>
#include <string.h>
#include <vortex.h>
#include "common.h"
#define RT_CHECK(_expr) \
do { \
int _ret = _expr; \
if (0 == _ret) \
break; \
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
cleanup(); \
exit(-1); \
} while (false)
///////////////////////////////////////////////////////////////////////////////
const char* kernel_file = "kernel.bin";
uint32_t count = 0;
vx_device_h device = nullptr;
vx_buffer_h staging_buf = nullptr;
kernel_arg_t kernel_arg;
static void show_usage() {
std::cout << "Vortex Test." << std::endl;
std::cout << "Usage: [-k: kernel] [-n words] [-h: help]" << std::endl;
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "n:k:h?")) != -1) {
switch (c) {
case 'n':
count = atoi(optarg);
break;
case 'k':
kernel_file = optarg;
break;
case 'h':
case '?': {
show_usage();
exit(0);
} break;
default:
show_usage();
exit(-1);
}
}
}
void cleanup() {
if (staging_buf) {
vx_buf_free(staging_buf);
}
if (device) {
vx_mem_free(device, kernel_arg.src0_addr);
vx_mem_free(device, kernel_arg.src1_addr);
vx_mem_free(device, kernel_arg.dst_addr);
vx_dev_close(device);
}
}
int run_test(const kernel_arg_t& kernel_arg,
uint32_t buf_size,
uint32_t num_points) {
// start device
std::cout << "start device" << std::endl;
RT_CHECK(vx_start(device));
// wait for completion
std::cout << "wait for completion" << std::endl;
RT_CHECK(vx_ready_wait(device, MAX_TIMEOUT));
// download destination buffer
std::cout << "download destination buffer" << std::endl;
RT_CHECK(vx_copy_from_dev(staging_buf, kernel_arg.dst_addr, buf_size, 0));
// verify result
std::cout << "verify result" << std::endl;
{
int errors = 0;
auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf);
for (uint32_t i = 0; i < num_points; ++i) {
int ref = i + i;
int cur = buf_ptr[i];
if (cur != ref) {
std::cout << "error at result #" << std::dec << i
<< std::hex << ": actual 0x" << cur << ", expected 0x" << ref << std::endl;
++errors;
}
}
if (errors != 0) {
std::cout << "Found " << std::dec << errors << " errors!" << std::endl;
std::cout << "FAILED!" << std::endl;
return 1;
}
}
return 0;
}
int main(int argc, char *argv[]) {
size_t value;
// parse command arguments
parse_args(argc, argv);
if (count == 0) {
count = 1;
}
// open device connection
std::cout << "open device connection" << std::endl;
RT_CHECK(vx_dev_open(&device));
uint64_t max_cores, max_warps, max_threads;
RT_CHECK(vx_dev_caps(device, VX_CAPS_MAX_CORES, &max_cores));
RT_CHECK(vx_dev_caps(device, VX_CAPS_MAX_WARPS, &max_warps));
RT_CHECK(vx_dev_caps(device, VX_CAPS_MAX_THREADS, &max_threads));
uint32_t num_tasks = max_cores * max_warps * max_threads;
uint32_t num_points = count * num_tasks;
uint32_t buf_size = num_points * sizeof(int32_t);
std::cout << "number of points: " << num_points << std::endl;
std::cout << "buffer size: " << buf_size << " bytes" << std::endl;
// upload program
std::cout << "upload program" << std::endl;
RT_CHECK(vx_upload_kernel_file(device, kernel_file));
// allocate device memory
std::cout << "allocate device memory" << std::endl;
RT_CHECK(vx_mem_alloc(device, buf_size, &value));
kernel_arg.src0_addr = value;
RT_CHECK(vx_mem_alloc(device, buf_size, &value));
kernel_arg.src1_addr = value;
RT_CHECK(vx_mem_alloc(device, buf_size, &value));
kernel_arg.dst_addr = value;
kernel_arg.num_tasks = num_tasks;
kernel_arg.task_size = count;
std::cout << "dev_src0=" << std::hex << kernel_arg.src0_addr << std::endl;
std::cout << "dev_src1=" << std::hex << kernel_arg.src1_addr << std::endl;
std::cout << "dev_dst=" << std::hex << kernel_arg.dst_addr << std::endl;
// allocate shared memory
std::cout << "allocate shared memory" << std::endl;
uint32_t alloc_size = std::max<uint32_t>(buf_size, sizeof(kernel_arg_t));
RT_CHECK(vx_buf_alloc(device, alloc_size, &staging_buf));
// upload kernel argument
std::cout << "upload kernel argument" << std::endl;
{
auto buf_ptr = (int*)vx_host_ptr(staging_buf);
memcpy(buf_ptr, &kernel_arg, sizeof(kernel_arg_t));
RT_CHECK(vx_copy_to_dev(staging_buf, KERNEL_ARG_DEV_MEM_ADDR, sizeof(kernel_arg_t), 0));
}
// upload source buffer0
{
auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf);
for (uint32_t i = 0; i < num_points; ++i) {
buf_ptr[i] = i-1;
}
}
std::cout << "upload source buffer0" << std::endl;
RT_CHECK(vx_copy_to_dev(staging_buf, kernel_arg.src0_addr, buf_size, 0));
// upload source buffer1
{
auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf);
for (uint32_t i = 0; i < num_points; ++i) {
buf_ptr[i] = i+1;
}
}
std::cout << "upload source buffer1" << std::endl;
RT_CHECK(vx_copy_to_dev(staging_buf, kernel_arg.src1_addr, buf_size, 0));
// clear destination buffer
{
auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf);
for (uint32_t i = 0; i < num_points; ++i) {
buf_ptr[i] = 0xdeadbeef;
}
}
std::cout << "clear destination buffer" << std::endl;
RT_CHECK(vx_copy_to_dev(staging_buf, kernel_arg.dst_addr, buf_size, 0));
// run tests
std::cout << "run tests" << std::endl;
RT_CHECK(run_test(kernel_arg, buf_size, num_points));
// cleanup
std::cout << "cleanup" << std::endl;
cleanup();
std::cout << "PASSED!" << std::endl;
return 0;
}