mirror of
https://github.com/vortexgpgpu/vortex.git
synced 2025-06-28 17:43:24 -04:00
347 lines
No EOL
9.3 KiB
C++
347 lines
No EOL
9.3 KiB
C++
#include <iostream>
|
|
#include <unistd.h>
|
|
#include <string.h>
|
|
#include <vector>
|
|
#include <chrono>
|
|
#include <vortex.h>
|
|
#include <cmath>
|
|
#include "common.h"
|
|
#include <hfloats.h>
|
|
|
|
#define FLOAT_ULP 6
|
|
|
|
#define RT_CHECK(_expr) \
|
|
do { \
|
|
int _ret = _expr; \
|
|
if (0 == _ret) \
|
|
break; \
|
|
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
|
|
cleanup(); \
|
|
exit(-1); \
|
|
} while (false)
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename Type>
|
|
class Comparator {};
|
|
|
|
template <>
|
|
class Comparator<int8_t> {
|
|
public:
|
|
static const char* type_str() {
|
|
return "int8";
|
|
}
|
|
static int8_t generate() {
|
|
return (int8_t)rand();
|
|
}
|
|
static bool compare(int a, int b, int index, int errors) {
|
|
if (a != b) {
|
|
if (errors < 100) {
|
|
printf("*** error: [%d] expected=%d, actual=%d\n", index, b, a);
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
class Comparator<int> {
|
|
public:
|
|
static const char* type_str() {
|
|
return "int8";
|
|
}
|
|
static int generate() {
|
|
return (int)rand();
|
|
}
|
|
static bool compare(int a, int b, int index, int errors) {
|
|
if (a != b) {
|
|
if (errors < 100) {
|
|
printf("*** error: [%d] expected=%d, actual=%d\n", index, b, a);
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
class Comparator<vortex::half_t> {
|
|
public:
|
|
static const char* type_str() {
|
|
return "f16";
|
|
}
|
|
static vortex::half_t generate() {
|
|
return static_cast<vortex::half_t>(float(rand()) / RAND_MAX);
|
|
}
|
|
static bool compare(float a, float b, int index, int errors) {
|
|
union fi_t { float f; int32_t i; };
|
|
fi_t fa, fb;
|
|
fa.f = a;
|
|
fb.f = b;
|
|
auto d = std::abs(fa.i - fb.i);
|
|
if (d > FLOAT_ULP) {
|
|
if (errors < 100) {
|
|
printf("*** error: [%d] expected=%f, actual=%f\n", index, b, a);
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
class Comparator<float> {
|
|
public:
|
|
static const char* type_str() {
|
|
return "float";
|
|
}
|
|
static int generate() {
|
|
return static_cast<float>(rand()) / RAND_MAX;
|
|
}
|
|
static bool compare(float a, float b, int index, int errors) {
|
|
union fi_t { float f; int32_t i; };
|
|
fi_t fa, fb;
|
|
fa.f = a;
|
|
fb.f = b;
|
|
auto d = std::abs(fa.i - fb.i);
|
|
if (d > FLOAT_ULP) {
|
|
if (errors < 100) {
|
|
printf("*** error: [%d] expected=%f, actual=%f\n", index, b, a);
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
static void matmul_cpu(O_TYPE* C, const I_TYPE* A, const I_TYPE* B, uint32_t M, uint32_t N, uint32_t K) {
|
|
for (uint32_t m = 0; m < M; ++m) {
|
|
for (uint32_t n = 0; n < N; ++n) {
|
|
O_TYPE sum(0);
|
|
for (uint32_t k = 0; k < K; ++k) {
|
|
sum += O_TYPE(A[m*K + k] * B[k*N + n]);
|
|
}
|
|
C[m*N + n] = sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
const char* kernel_file = "kernel.vxbin";
|
|
uint32_t M = 32;
|
|
uint32_t N = 32;
|
|
uint32_t K = 32;
|
|
|
|
vx_device_h device = nullptr;
|
|
vx_buffer_h A_buffer = nullptr;
|
|
vx_buffer_h B_buffer = nullptr;
|
|
vx_buffer_h C_buffer = nullptr;
|
|
vx_buffer_h krnl_buffer = nullptr;
|
|
vx_buffer_h args_buffer = nullptr;
|
|
kernel_arg_t kernel_arg = {};
|
|
|
|
static void show_usage() {
|
|
std::cout << "Vortex Test." << std::endl;
|
|
std::cout << "Usage: [-m: m] [-n N] [-k: K] [-h: help]" << std::endl;
|
|
}
|
|
|
|
static void parse_args(int argc, char **argv) {
|
|
int c;
|
|
while ((c = getopt(argc, argv, "m:n:k:h")) != -1) {
|
|
switch (c) {
|
|
case 'm':
|
|
M = atoi(optarg);
|
|
break;
|
|
case 'n':
|
|
N = atoi(optarg);
|
|
break;
|
|
case 'k':
|
|
K = atoi(optarg);
|
|
break;
|
|
case 'h':
|
|
show_usage();
|
|
exit(0);
|
|
break;
|
|
default:
|
|
show_usage();
|
|
exit(-1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void cleanup() {
|
|
if (device) {
|
|
vx_mem_free(A_buffer);
|
|
vx_mem_free(B_buffer);
|
|
vx_mem_free(C_buffer);
|
|
vx_mem_free(krnl_buffer);
|
|
vx_mem_free(args_buffer);
|
|
vx_dev_close(device);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
// parse command arguments
|
|
parse_args(argc, argv);
|
|
|
|
std::srand(50);
|
|
|
|
// open device connection
|
|
std::cout << "open device connection" << std::endl;
|
|
RT_CHECK(vx_dev_open(&device));
|
|
|
|
uint64_t NT;
|
|
RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_THREADS, &NT));
|
|
if (NT < 4) {
|
|
std::cout << "Error: warp size must be at least 4 threads!" << std::endl;
|
|
return -1;
|
|
}
|
|
std::cout << "GPU warp size: " << NT << " threads" << std::endl;
|
|
|
|
uint64_t isa_flags;
|
|
RT_CHECK(vx_dev_caps(device, VX_CAPS_ISA_FLAGS, &isa_flags));
|
|
uint32_t XlenB = VX_ISA_ARCH(isa_flags) / 8;
|
|
std::cout << "GPU XLEN: " << 8 * XlenB << std::endl;
|
|
|
|
// tile format ratio
|
|
uint32_t o_ratio = XlenB / sizeof(O_TYPE);
|
|
uint32_t i_ratio = XlenB / sizeof(I_TYPE);
|
|
|
|
// determine tensor tile size
|
|
uint32_t logNT = log2(NT);
|
|
uint32_t tileM = 4 * (1 << (logNT / 2)) * o_ratio;
|
|
uint32_t tileN = (logNT % 2 == 0) ? (tileM / 2) : tileM;
|
|
uint32_t tileK = std::min(tileM, tileN) * i_ratio;
|
|
|
|
std::cout << "GPU tensor tileM=" << tileM << ", tileN=" << tileM << ", tileK=" << tileK << std::endl;
|
|
|
|
if ((M % tileM) != 0) {
|
|
std::cout << "Error: M must be a multiple of tensor tileM!" << std::endl;
|
|
return -1;
|
|
}
|
|
|
|
if ((N % tileN) != 0) {
|
|
std::cout << "Error: M must be a multiple of tensor tileN!" << std::endl;
|
|
return -1;
|
|
}
|
|
|
|
if ((K % tileK) != 0) {
|
|
std::cout << "Error: M must be a multiple of tensor tileK!" << std::endl;
|
|
return -1;
|
|
}
|
|
|
|
kernel_arg.tileM = tileM;
|
|
kernel_arg.tileN = tileN;
|
|
kernel_arg.tileK = tileK;
|
|
|
|
size_t sizeA = M * K;
|
|
size_t sizeB = K * N;
|
|
size_t sizeC = M * N;
|
|
|
|
std::cout << "input data type: " << Comparator<I_TYPE>::type_str() << " (" << sizeof(I_TYPE) << " bytes)" << std::endl;
|
|
std::cout << "output data type: " << Comparator<O_TYPE>::type_str() << " (" << sizeof(O_TYPE) << " bytes)" << std::endl;
|
|
std::cout << "matrix A: " << M << "x" << K << std::endl;
|
|
std::cout << "matrix B: " << K << "x" << N << std::endl;
|
|
std::cout << "matrix C: " << M << "x" << N << std::endl;
|
|
|
|
// set block size to warp size
|
|
kernel_arg.grid_dim[0] = N / tileN;
|
|
kernel_arg.grid_dim[1] = M / tileM;
|
|
kernel_arg.block_dim[0] = NT; // warp size
|
|
kernel_arg.block_dim[1] = 1;
|
|
|
|
// set matrix dimensions
|
|
kernel_arg.M = M;
|
|
kernel_arg.N = N;
|
|
kernel_arg.K = K;
|
|
|
|
// allocate device memory
|
|
std::cout << "allocate device memory" << std::endl;
|
|
RT_CHECK(vx_mem_alloc(device, sizeA * sizeof(I_TYPE), VX_MEM_READ, &A_buffer));
|
|
RT_CHECK(vx_mem_address(A_buffer, &kernel_arg.A_addr));
|
|
RT_CHECK(vx_mem_alloc(device, sizeB * sizeof(I_TYPE), VX_MEM_READ, &B_buffer));
|
|
RT_CHECK(vx_mem_address(B_buffer, &kernel_arg.B_addr));
|
|
RT_CHECK(vx_mem_alloc(device, sizeC * sizeof(O_TYPE), VX_MEM_WRITE, &C_buffer));
|
|
RT_CHECK(vx_mem_address(C_buffer, &kernel_arg.C_addr));
|
|
|
|
std::cout << "A_addr=0x" << std::hex << kernel_arg.A_addr << std::endl;
|
|
std::cout << "B_addr=0x" << std::hex << kernel_arg.B_addr << std::endl;
|
|
std::cout << "C_addr=0x" << std::hex << kernel_arg.C_addr << std::endl;
|
|
|
|
// generate source data
|
|
std::vector<I_TYPE> h_A(sizeA);
|
|
std::vector<I_TYPE> h_B(sizeB);
|
|
for (uint32_t i = 0; i < sizeA; ++i) {
|
|
h_A[i] = Comparator<I_TYPE>::generate();
|
|
}
|
|
for (uint32_t i = 0; i < sizeB; ++i) {
|
|
h_B[i] = Comparator<I_TYPE>::generate();
|
|
}
|
|
|
|
// upload matrix A buffer
|
|
{
|
|
std::cout << "upload matrix A buffer" << std::endl;
|
|
RT_CHECK(vx_copy_to_dev(A_buffer, h_A.data(), 0, sizeA * sizeof(I_TYPE)));
|
|
}
|
|
|
|
// upload matrix B buffer
|
|
{
|
|
std::cout << "upload matrix B buffer" << std::endl;
|
|
RT_CHECK(vx_copy_to_dev(B_buffer, h_B.data(), 0, sizeB * sizeof(I_TYPE)));
|
|
}
|
|
|
|
// upload program
|
|
std::cout << "upload program" << std::endl;
|
|
RT_CHECK(vx_upload_kernel_file(device, kernel_file, &krnl_buffer));
|
|
|
|
// upload kernel argument
|
|
std::cout << "upload kernel argument" << std::endl;
|
|
RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &args_buffer));
|
|
|
|
auto time_start = std::chrono::high_resolution_clock::now();
|
|
|
|
// start device
|
|
std::cout << "start device" << std::endl;
|
|
RT_CHECK(vx_start(device, krnl_buffer, args_buffer));
|
|
|
|
// wait for completion
|
|
std::cout << "wait for completion" << std::endl;
|
|
RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT));
|
|
|
|
auto time_end = std::chrono::high_resolution_clock::now();
|
|
double elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start).count();
|
|
printf("Elapsed time: %lg ms\n", elapsed);
|
|
|
|
// download destination buffer
|
|
std::vector<O_TYPE> h_C(sizeC);
|
|
std::cout << "download destination buffer" << std::endl;
|
|
RT_CHECK(vx_copy_from_dev(h_C.data(), C_buffer, 0, sizeC * sizeof(O_TYPE)));
|
|
|
|
// verify result
|
|
std::cout << "verify result" << std::endl;
|
|
int errors = 0;
|
|
{
|
|
std::vector<O_TYPE> h_ref(sizeC);
|
|
matmul_cpu(h_ref.data(), h_A.data(), h_B.data(), M, N, K);
|
|
|
|
for (uint32_t i = 0; i < h_ref.size(); ++i) {
|
|
if (!Comparator<O_TYPE>::compare(h_C[i], h_ref[i], i, errors)) {
|
|
++errors;
|
|
}
|
|
}
|
|
}
|
|
|
|
// cleanup
|
|
std::cout << "cleanup" << std::endl;
|
|
cleanup();
|
|
|
|
if (errors != 0) {
|
|
std::cout << "Found " << std::dec << errors << " errors!" << std::endl;
|
|
std::cout << "FAILED!" << std::endl;
|
|
return errors;
|
|
}
|
|
|
|
std::cout << "PASSED!" << std::endl;
|
|
|
|
return 0;
|
|
} |