mirror of
https://github.com/vortexgpgpu/vortex.git
synced 2025-06-28 01:28:42 -04:00
239 lines
No EOL
6.4 KiB
C++
239 lines
No EOL
6.4 KiB
C++
#include <iostream>
|
|
#include <unistd.h>
|
|
#include <string.h>
|
|
#include <vector>
|
|
#include <chrono>
|
|
#include <vortex.h>
|
|
#include <cmath>
|
|
#include "common.h"
|
|
|
|
#define FLOAT_ULP 6
|
|
|
|
#define RT_CHECK(_expr) \
|
|
do { \
|
|
int _ret = _expr; \
|
|
if (0 == _ret) \
|
|
break; \
|
|
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
|
|
cleanup(); \
|
|
exit(-1); \
|
|
} while (false)
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename Type>
|
|
class Comparator {};
|
|
|
|
template <>
|
|
class Comparator<int> {
|
|
public:
|
|
static const char* type_str() {
|
|
return "integer";
|
|
}
|
|
static int generate() {
|
|
return rand();
|
|
}
|
|
static bool compare(int a, int b, int index, int errors) {
|
|
if (a != b) {
|
|
if (errors < 100) {
|
|
printf("*** error: [%d] expected=%d, actual=%d\n", index, b, a);
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
class Comparator<float> {
|
|
public:
|
|
static const char* type_str() {
|
|
return "float";
|
|
}
|
|
static float generate() {
|
|
return static_cast<float>(rand()) / RAND_MAX;
|
|
}
|
|
static bool compare(float a, float b, int index, int errors) {
|
|
union fi_t { float f; int32_t i; };
|
|
fi_t fa, fb;
|
|
fa.f = a;
|
|
fb.f = b;
|
|
auto d = std::abs(fa.i - fb.i);
|
|
if (d > FLOAT_ULP) {
|
|
if (errors < 100) {
|
|
printf("*** error: [%d] expected=%f, actual=%f\n", index, b, a);
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
static void matmul_cpu(TYPE* out, const TYPE* A, const TYPE* B, uint32_t width, uint32_t height) {
|
|
for (uint32_t row = 0; row < height; ++row) {
|
|
for (uint32_t col = 0; col < width; ++col) {
|
|
TYPE sum(0);
|
|
for (uint32_t e = 0; e < width; ++e) {
|
|
sum += A[row * width + e] * B[e * width + col];
|
|
}
|
|
out[row * width + col] = sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
const char* kernel_file = "kernel.vxbin";
|
|
uint32_t size = 32;
|
|
|
|
vx_device_h device = nullptr;
|
|
vx_buffer_h A_buffer = nullptr;
|
|
vx_buffer_h B_buffer = nullptr;
|
|
vx_buffer_h C_buffer = nullptr;
|
|
vx_buffer_h krnl_buffer = nullptr;
|
|
vx_buffer_h args_buffer = nullptr;
|
|
kernel_arg_t kernel_arg = {};
|
|
|
|
static void show_usage() {
|
|
std::cout << "Vortex Test." << std::endl;
|
|
std::cout << "Usage: [-k: kernel] [-n size] [-h: help]" << std::endl;
|
|
}
|
|
|
|
static void parse_args(int argc, char **argv) {
|
|
int c;
|
|
while ((c = getopt(argc, argv, "n:k:h")) != -1) {
|
|
switch (c) {
|
|
case 'n':
|
|
size = atoi(optarg);
|
|
break;
|
|
case 'k':
|
|
kernel_file = optarg;
|
|
break;
|
|
case 'h':
|
|
show_usage();
|
|
exit(0);
|
|
break;
|
|
default:
|
|
show_usage();
|
|
exit(-1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void cleanup() {
|
|
if (device) {
|
|
vx_mem_free(A_buffer);
|
|
vx_mem_free(B_buffer);
|
|
vx_mem_free(C_buffer);
|
|
vx_mem_free(krnl_buffer);
|
|
vx_mem_free(args_buffer);
|
|
vx_dev_close(device);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
// parse command arguments
|
|
parse_args(argc, argv);
|
|
|
|
std::srand(50);
|
|
|
|
// open device connection
|
|
std::cout << "open device connection" << std::endl;
|
|
RT_CHECK(vx_dev_open(&device));
|
|
|
|
uint32_t size_sq = size * size;
|
|
uint32_t buf_size = size_sq * sizeof(TYPE);
|
|
|
|
std::cout << "data type: " << Comparator<TYPE>::type_str() << std::endl;
|
|
std::cout << "matrix size: " << size << "x" << size << std::endl;
|
|
|
|
kernel_arg.grid_dim[0] = size;
|
|
kernel_arg.grid_dim[1] = size;
|
|
kernel_arg.size = size;
|
|
|
|
// allocate device memory
|
|
std::cout << "allocate device memory" << std::endl;
|
|
RT_CHECK(vx_mem_alloc(device, buf_size, VX_MEM_READ, &A_buffer));
|
|
RT_CHECK(vx_mem_address(A_buffer, &kernel_arg.A_addr));
|
|
RT_CHECK(vx_mem_alloc(device, buf_size, VX_MEM_READ, &B_buffer));
|
|
RT_CHECK(vx_mem_address(B_buffer, &kernel_arg.B_addr));
|
|
RT_CHECK(vx_mem_alloc(device, buf_size, VX_MEM_WRITE, &C_buffer));
|
|
RT_CHECK(vx_mem_address(C_buffer, &kernel_arg.C_addr));
|
|
|
|
std::cout << "A_addr=0x" << std::hex << kernel_arg.A_addr << std::endl;
|
|
std::cout << "B_addr=0x" << std::hex << kernel_arg.B_addr << std::endl;
|
|
std::cout << "C_addr=0x" << std::hex << kernel_arg.C_addr << std::endl;
|
|
|
|
// generate source data
|
|
std::vector<TYPE> h_A(size_sq);
|
|
std::vector<TYPE> h_B(size_sq);
|
|
std::vector<TYPE> h_C(size_sq);
|
|
for (uint32_t i = 0; i < size_sq; ++i) {
|
|
h_A[i] = Comparator<TYPE>::generate();
|
|
h_B[i] = Comparator<TYPE>::generate();
|
|
}
|
|
|
|
// upload matrix A buffer
|
|
{
|
|
std::cout << "upload matrix A buffer" << std::endl;
|
|
RT_CHECK(vx_copy_to_dev(A_buffer, h_A.data(), 0, buf_size));
|
|
}
|
|
|
|
// upload matrix B buffer
|
|
{
|
|
std::cout << "upload matrix B buffer" << std::endl;
|
|
RT_CHECK(vx_copy_to_dev(B_buffer, h_B.data(), 0, buf_size));
|
|
}
|
|
|
|
// upload program
|
|
std::cout << "upload program" << std::endl;
|
|
RT_CHECK(vx_upload_kernel_file(device, kernel_file, &krnl_buffer));
|
|
|
|
// upload kernel argument
|
|
std::cout << "upload kernel argument" << std::endl;
|
|
RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &args_buffer));
|
|
|
|
auto time_start = std::chrono::high_resolution_clock::now();
|
|
|
|
// start device
|
|
std::cout << "start device" << std::endl;
|
|
RT_CHECK(vx_start(device, krnl_buffer, args_buffer));
|
|
|
|
// wait for completion
|
|
std::cout << "wait for completion" << std::endl;
|
|
RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT));
|
|
|
|
auto time_end = std::chrono::high_resolution_clock::now();
|
|
double elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start).count();
|
|
printf("Elapsed time: %lg ms\n", elapsed);
|
|
|
|
// download destination buffer
|
|
std::cout << "download destination buffer" << std::endl;
|
|
RT_CHECK(vx_copy_from_dev(h_C.data(), C_buffer, 0, buf_size));
|
|
|
|
// verify result
|
|
std::cout << "verify result" << std::endl;
|
|
int errors = 0;
|
|
{
|
|
std::vector<TYPE> h_ref(size_sq);
|
|
matmul_cpu(h_ref.data(), h_A.data(), h_B.data(), size, size);
|
|
|
|
for (uint32_t i = 0; i < h_ref.size(); ++i) {
|
|
if (!Comparator<TYPE>::compare(h_C[i], h_ref[i], i, errors)) {
|
|
++errors;
|
|
}
|
|
}
|
|
}
|
|
|
|
// cleanup
|
|
std::cout << "cleanup" << std::endl;
|
|
cleanup();
|
|
|
|
if (errors != 0) {
|
|
std::cout << "Found " << std::dec << errors << " errors!" << std::endl;
|
|
std::cout << "FAILED!" << std::endl;
|
|
return errors;
|
|
}
|
|
|
|
std::cout << "PASSED!" << std::endl;
|
|
|
|
return 0;
|
|
} |