vortex/tests/regression/sgemmx/main.cpp
2025-06-06 14:10:12 -07:00

239 lines
No EOL
6.4 KiB
C++

#include <iostream>
#include <unistd.h>
#include <string.h>
#include <vector>
#include <chrono>
#include <vortex.h>
#include <cmath>
#include "common.h"
#define FLOAT_ULP 6
#define RT_CHECK(_expr) \
do { \
int _ret = _expr; \
if (0 == _ret) \
break; \
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
cleanup(); \
exit(-1); \
} while (false)
///////////////////////////////////////////////////////////////////////////////
template <typename Type>
class Comparator {};
template <>
class Comparator<int> {
public:
static const char* type_str() {
return "integer";
}
static int generate() {
return rand();
}
static bool compare(int a, int b, int index, int errors) {
if (a != b) {
if (errors < 100) {
printf("*** error: [%d] expected=%d, actual=%d\n", index, b, a);
}
return false;
}
return true;
}
};
template <>
class Comparator<float> {
public:
static const char* type_str() {
return "float";
}
static float generate() {
return static_cast<float>(rand()) / RAND_MAX;
}
static bool compare(float a, float b, int index, int errors) {
union fi_t { float f; int32_t i; };
fi_t fa, fb;
fa.f = a;
fb.f = b;
auto d = std::abs(fa.i - fb.i);
if (d > FLOAT_ULP) {
if (errors < 100) {
printf("*** error: [%d] expected=%f, actual=%f\n", index, b, a);
}
return false;
}
return true;
}
};
static void matmul_cpu(TYPE* out, const TYPE* A, const TYPE* B, uint32_t width, uint32_t height) {
for (uint32_t row = 0; row < height; ++row) {
for (uint32_t col = 0; col < width; ++col) {
TYPE sum(0);
for (uint32_t e = 0; e < width; ++e) {
sum += A[row * width + e] * B[e * width + col];
}
out[row * width + col] = sum;
}
}
}
const char* kernel_file = "kernel.vxbin";
uint32_t size = 32;
vx_device_h device = nullptr;
vx_buffer_h A_buffer = nullptr;
vx_buffer_h B_buffer = nullptr;
vx_buffer_h C_buffer = nullptr;
vx_buffer_h krnl_buffer = nullptr;
vx_buffer_h args_buffer = nullptr;
kernel_arg_t kernel_arg = {};
static void show_usage() {
std::cout << "Vortex Test." << std::endl;
std::cout << "Usage: [-k: kernel] [-n size] [-h: help]" << std::endl;
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "n:k:h")) != -1) {
switch (c) {
case 'n':
size = atoi(optarg);
break;
case 'k':
kernel_file = optarg;
break;
case 'h':
show_usage();
exit(0);
break;
default:
show_usage();
exit(-1);
}
}
}
void cleanup() {
if (device) {
vx_mem_free(A_buffer);
vx_mem_free(B_buffer);
vx_mem_free(C_buffer);
vx_mem_free(krnl_buffer);
vx_mem_free(args_buffer);
vx_dev_close(device);
}
}
int main(int argc, char *argv[]) {
// parse command arguments
parse_args(argc, argv);
std::srand(50);
// open device connection
std::cout << "open device connection" << std::endl;
RT_CHECK(vx_dev_open(&device));
uint32_t size_sq = size * size;
uint32_t buf_size = size_sq * sizeof(TYPE);
std::cout << "data type: " << Comparator<TYPE>::type_str() << std::endl;
std::cout << "matrix size: " << size << "x" << size << std::endl;
kernel_arg.grid_dim[0] = size;
kernel_arg.grid_dim[1] = size;
kernel_arg.size = size;
// allocate device memory
std::cout << "allocate device memory" << std::endl;
RT_CHECK(vx_mem_alloc(device, buf_size, VX_MEM_READ, &A_buffer));
RT_CHECK(vx_mem_address(A_buffer, &kernel_arg.A_addr));
RT_CHECK(vx_mem_alloc(device, buf_size, VX_MEM_READ, &B_buffer));
RT_CHECK(vx_mem_address(B_buffer, &kernel_arg.B_addr));
RT_CHECK(vx_mem_alloc(device, buf_size, VX_MEM_WRITE, &C_buffer));
RT_CHECK(vx_mem_address(C_buffer, &kernel_arg.C_addr));
std::cout << "A_addr=0x" << std::hex << kernel_arg.A_addr << std::endl;
std::cout << "B_addr=0x" << std::hex << kernel_arg.B_addr << std::endl;
std::cout << "C_addr=0x" << std::hex << kernel_arg.C_addr << std::endl;
// generate source data
std::vector<TYPE> h_A(size_sq);
std::vector<TYPE> h_B(size_sq);
std::vector<TYPE> h_C(size_sq);
for (uint32_t i = 0; i < size_sq; ++i) {
h_A[i] = Comparator<TYPE>::generate();
h_B[i] = Comparator<TYPE>::generate();
}
// upload matrix A buffer
{
std::cout << "upload matrix A buffer" << std::endl;
RT_CHECK(vx_copy_to_dev(A_buffer, h_A.data(), 0, buf_size));
}
// upload matrix B buffer
{
std::cout << "upload matrix B buffer" << std::endl;
RT_CHECK(vx_copy_to_dev(B_buffer, h_B.data(), 0, buf_size));
}
// upload program
std::cout << "upload program" << std::endl;
RT_CHECK(vx_upload_kernel_file(device, kernel_file, &krnl_buffer));
// upload kernel argument
std::cout << "upload kernel argument" << std::endl;
RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &args_buffer));
auto time_start = std::chrono::high_resolution_clock::now();
// start device
std::cout << "start device" << std::endl;
RT_CHECK(vx_start(device, krnl_buffer, args_buffer));
// wait for completion
std::cout << "wait for completion" << std::endl;
RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT));
auto time_end = std::chrono::high_resolution_clock::now();
double elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start).count();
printf("Elapsed time: %lg ms\n", elapsed);
// download destination buffer
std::cout << "download destination buffer" << std::endl;
RT_CHECK(vx_copy_from_dev(h_C.data(), C_buffer, 0, buf_size));
// verify result
std::cout << "verify result" << std::endl;
int errors = 0;
{
std::vector<TYPE> h_ref(size_sq);
matmul_cpu(h_ref.data(), h_A.data(), h_B.data(), size, size);
for (uint32_t i = 0; i < h_ref.size(); ++i) {
if (!Comparator<TYPE>::compare(h_C[i], h_ref[i], i, errors)) {
++errors;
}
}
}
// cleanup
std::cout << "cleanup" << std::endl;
cleanup();
if (errors != 0) {
std::cout << "Found " << std::dec << errors << " errors!" << std::endl;
std::cout << "FAILED!" << std::endl;
return errors;
}
std::cout << "PASSED!" << std::endl;
return 0;
}