vortex/tests/regression/basic/main.cpp

281 lines
No EOL
8.8 KiB
C++
Executable file

#include <iostream>
#include <unistd.h>
#include <string.h>
#include <vortex.h>
#include <chrono>
#include <vector>
#include "common.h"
#define RT_CHECK(_expr) \
do { \
int _ret = _expr; \
if (0 == _ret) \
break; \
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
cleanup(); \
exit(-1); \
} while (false)
///////////////////////////////////////////////////////////////////////////////
const char* kernel_file = "kernel.bin";
int test = -1;
uint32_t count = 0;
vx_device_h device = nullptr;
std::vector<uint8_t> staging_buf;
uint64_t kernel_prog_addr;
uint64_t kernel_args_addr;
kernel_arg_t kernel_arg = {};
static void show_usage() {
std::cout << "Vortex Test." << std::endl;
std::cout << "Usage: [-t testno][-k: kernel][-n words][-h: help]" << std::endl;
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "n:t:k:h?")) != -1) {
switch (c) {
case 'n':
count = atoi(optarg);
break;
case 't':
test = atoi(optarg);
break;
case 'k':
kernel_file = optarg;
break;
case 'h':
case '?': {
show_usage();
exit(0);
} break;
default:
show_usage();
exit(-1);
}
}
}
void cleanup() {
if (device) {
vx_mem_free(device, kernel_arg.src_addr);
vx_mem_free(device, kernel_arg.dst_addr);
vx_mem_free(device, kernel_prog_addr);
vx_mem_free(device, kernel_args_addr);
vx_dev_close(device);
}
}
uint64_t shuffle(int i, uint64_t value) {
return (value << i) | (value & ((1 << i)-1));;
}
int run_memcopy_test(uint32_t dev_addr, uint64_t value, int num_blocks) {
int errors = 0;
auto time_start = std::chrono::high_resolution_clock::now();
int num_blocks_8 = (64 * num_blocks) / 8;
// update source buffer
for (int i = 0; i < num_blocks_8; ++i) {
((uint64_t*)staging_buf.data())[i] = shuffle(i, value);
}
/*for (int i = 0; i < num_blocks; ++i) {
std::cout << "data[" << i << "]=0x";
for (int j = 7; j >= 0; --j) {
std::cout << std::hex << ((uint64_t*)staging_buf.data())[i * 8 +j];
}
std::cout << std::endl;
}*/
// write source buffer to local memory
std::cout << "write source buffer to local memory" << std::endl;
auto t0 = std::chrono::high_resolution_clock::now();
RT_CHECK(vx_copy_to_dev(device, dev_addr, staging_buf.data(), 64 * num_blocks));
auto t1 = std::chrono::high_resolution_clock::now();
// clear destination buffer
for (int i = 0; i < num_blocks_8; ++i) {
((uint64_t*)staging_buf.data())[i] = 0;
}
// read destination buffer from local memory
std::cout << "read destination buffer from local memory" << std::endl;
auto t2 = std::chrono::high_resolution_clock::now();
RT_CHECK(vx_copy_from_dev(device, staging_buf.data(), dev_addr, 64 * num_blocks));
auto t3 = std::chrono::high_resolution_clock::now();
// verify result
std::cout << "verify result" << std::endl;
for (int i = 0; i < num_blocks_8; ++i) {
auto curr = ((uint64_t*)staging_buf.data())[i];
auto ref = shuffle(i, value);
if (curr != ref) {
std::cout << "error at 0x" << std::hex << (dev_addr + 8 * i)
<< ": actual 0x" << curr << ", expected 0x" << ref << std::endl;
++errors;
}
}
if (errors != 0) {
std::cout << "Found " << std::dec << errors << " errors!" << std::endl;
std::cout << "FAILED!" << std::endl;
return 1;
}
auto time_end = std::chrono::high_resolution_clock::now();
double elapsed;
elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(t1 - t0).count();
printf("upload time: %lg ms\n", elapsed);
elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(t3 - t2).count();
printf("download time: %lg ms\n", elapsed);
elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start).count();
printf("Total elapsed time: %lg ms\n", elapsed);
return 0;
}
int run_kernel_test(const kernel_arg_t& kernel_arg,
uint32_t buf_size,
uint32_t num_points) {
int errors = 0;
auto time_start = std::chrono::high_resolution_clock::now();
// update source buffer
{
std::cout << "upload source buffer" << std::endl;
auto buf_ptr = (int32_t*)staging_buf.data();
for (uint32_t i = 0; i < num_points; ++i) {
buf_ptr[i] = i;
}
}
auto t0 = std::chrono::high_resolution_clock::now();
RT_CHECK(vx_copy_to_dev(device, kernel_arg.src_addr, staging_buf.data(), buf_size));
auto t1 = std::chrono::high_resolution_clock::now();
// clear destination buffer
{
std::cout << "clear destination buffer" << std::endl;
auto buf_ptr = (int32_t*)staging_buf.data();
for (uint32_t i = 0; i < num_points; ++i) {
buf_ptr[i] = 0xdeadbeef;
}
RT_CHECK(vx_copy_to_dev(device, kernel_arg.dst_addr, staging_buf.data(), buf_size));
}
// start device
std::cout << "start execution" << std::endl;
auto t2 = std::chrono::high_resolution_clock::now();
RT_CHECK(vx_start(device, kernel_prog_addr, kernel_args_addr));
RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT));
auto t3 = std::chrono::high_resolution_clock::now();
// read destination buffer from local memory
std::cout << "read destination buffer from local memory" << std::endl;
auto t4 = std::chrono::high_resolution_clock::now();
RT_CHECK(vx_copy_from_dev(device, staging_buf.data(), kernel_arg.dst_addr, buf_size));
auto t5 = std::chrono::high_resolution_clock::now();
// verify result
std::cout << "verify result" << std::endl;
for (uint32_t i = 0; i < num_points; ++i) {
int32_t curr = ((int32_t*)staging_buf.data())[i];
int32_t ref = i;
if (curr != ref) {
std::cout << "error at result #" << std::dec << i
<< std::hex << ": actual 0x" << curr << ", expected 0x" << ref << std::endl;
++errors;
}
}
if (errors != 0) {
std::cout << "Found " << std::dec << errors << " errors!" << std::endl;
std::cout << "FAILED!" << std::endl;
return 1;
}
auto time_end = std::chrono::high_resolution_clock::now();
double elapsed;
elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(t1 - t0).count();
printf("upload time: %lg ms\n", elapsed);
elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(t3 - t2).count();
printf("execute time: %lg ms\n", elapsed);
elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(t5 - t4).count();
printf("download time: %lg ms\n", elapsed);
elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start).count();
printf("Total elapsed time: %lg ms\n", elapsed);
return 0;
}
int main(int argc, char *argv[]) {
// parse command arguments
parse_args(argc, argv);
if (count == 0) {
count = 1;
}
// open device connection
std::cout << "open device connection" << std::endl;
RT_CHECK(vx_dev_open(&device));
uint64_t num_cores;
RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_CORES, &num_cores));
uint32_t num_points = count * num_cores;
uint32_t num_blocks = (num_points * sizeof(int32_t) + 63) / 64;
uint32_t buf_size = num_blocks * 64;
std::cout << "number of points: " << num_points << std::endl;
std::cout << "buffer size: " << buf_size << " bytes" << std::endl;
// allocate device memory
std::cout << "allocate device memory" << std::endl;
RT_CHECK(vx_mem_alloc(device, buf_size, &kernel_arg.src_addr));
RT_CHECK(vx_mem_alloc(device, buf_size, &kernel_arg.dst_addr));
kernel_arg.count = num_points;
std::cout << "dev_src=0x" << std::hex << kernel_arg.src_addr << std::endl;
std::cout << "dev_dst=0x" << std::hex << kernel_arg.dst_addr << std::endl;
// allocate staging buffer
std::cout << "allocate staging buffer" << std::endl;
staging_buf.resize(buf_size);
// run tests
if (0 == test || -1 == test) {
std::cout << "run memcopy test" << std::endl;
RT_CHECK(run_memcopy_test(kernel_arg.src_addr, 0x0badf00d40ff40ff, num_blocks));
}
if (1 == test || -1 == test) {
// upload program
std::cout << "upload program" << std::endl;
RT_CHECK(vx_upload_kernel_file(device, kernel_file, &kernel_prog_addr));
// upload kernel argument
std::cout << "upload kernel argument" << std::endl;
RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &kernel_args_addr));
std::cout << "run kernel test" << std::endl;
RT_CHECK(run_kernel_test(kernel_arg, buf_size, num_points));
}
// cleanup
std::cout << "cleanup" << std::endl;
cleanup();
std::cout << "Test PASSED" << std::endl;
return 0;
}