vortex/tests/regression/io_addr/main.cpp

228 lines
No EOL
6.5 KiB
C++

#include <iostream>
#include <unistd.h>
#include <string.h>
#include <vortex.h>
#include <vector>
#include <VX_config.h>
#include "common.h"
#define NUM_ADDRS 16
#define RT_CHECK(_expr) \
do { \
int _ret = _expr; \
if (0 == _ret) \
break; \
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
cleanup(); \
exit(-1); \
} while (false)
///////////////////////////////////////////////////////////////////////////////
const char* kernel_file = "kernel.bin";
uint32_t count = 0;
static uint64_t io_base_addr = IO_CSR_ADDR + IO_CSR_SIZE;
uint64_t usr_test_mem;
std::vector<uint64_t> src_addrs;
std::vector<int32_t> ref_data;
vx_device_h device = nullptr;
std::vector<uint8_t> staging_buf;
uint64_t kernel_prog_addr;
uint64_t kernel_args_addr;
kernel_arg_t kernel_arg = {};
static void show_usage() {
std::cout << "Vortex Test." << std::endl;
std::cout << "Usage: [-k: kernel] [-n words] [-h: help]" << std::endl;
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "n:k:h?")) != -1) {
switch (c) {
case 'n':
count = atoi(optarg);
break;
case 'k':
kernel_file = optarg;
break;
case 'h':
case '?': {
show_usage();
exit(0);
} break;
default:
show_usage();
exit(-1);
}
}
}
void cleanup() {
if (device) {
vx_mem_free(device, kernel_arg.src_addr);
vx_mem_free(device, kernel_arg.dst_addr);
vx_mem_free(device, kernel_prog_addr);
vx_mem_free(device, kernel_args_addr);
vx_mem_free(device, usr_test_mem);
vx_dev_close(device);
}
}
void gen_src_addrs(uint32_t num_points) {
src_addrs.resize(num_points);
uint32_t u = 0, k = 0;
for (uint32_t i = 0; i < num_points; ++i) {
if (0 ==(i % 4)) {
k = (i + u) % NUM_ADDRS;
++u;
}
uint32_t j = i % NUM_ADDRS;
uint64_t a = ((j == k) ? usr_test_mem : io_base_addr) + j * sizeof(uint32_t);
std::cout << std::dec << i << "," << k << ": value=0x" << std::hex << a << std::endl;
src_addrs[i] = a;
}
}
void gen_ref_data(uint32_t num_points) {
ref_data.resize(num_points);
for (uint32_t i = 0; i < num_points; ++i) {
int32_t j = i % NUM_ADDRS;
ref_data[i] = j * j;
}
}
int main(int argc, char *argv[]) {
uint64_t value;
// parse command arguments
parse_args(argc, argv);
if (count == 0) {
count = 1;
}
std::srand(50);
// open device connection
std::cout << "open device connection" << std::endl;
RT_CHECK(vx_dev_open(&device));
uint32_t num_points = count;
RT_CHECK(vx_mem_alloc(device, NUM_ADDRS * sizeof(int32_t), &usr_test_mem));
// generate input data
gen_src_addrs(num_points);
// generate reference data
gen_ref_data(num_points);
uint32_t src_buf_size = num_points * sizeof(uint64_t);
uint32_t dst_buf_size = num_points * sizeof(int32_t);
std::cout << "number of points: " << std::dec << num_points << std::endl;
// allocate device memory
std::cout << "allocate device memory" << std::endl;
RT_CHECK(vx_mem_alloc(device, src_buf_size, &value));
kernel_arg.src_addr = value;
RT_CHECK(vx_mem_alloc(device, dst_buf_size, &value));
kernel_arg.dst_addr = value;
kernel_arg.num_points = num_points;
std::cout << "dev_src=0x" << std::hex << kernel_arg.src_addr << std::endl;
std::cout << "dev_dst=0x" << std::hex << kernel_arg.dst_addr << std::endl;
// allocate staging buffer
std::cout << "allocate staging buffer" << std::endl;
uint32_t staging_buf_size = std::max<uint32_t>(NUM_ADDRS * sizeof(uint64_t),
std::max<uint32_t>(src_buf_size, dst_buf_size));
staging_buf.resize(staging_buf_size);
// upload test address data
{
std::cout << "upload test address data" << std::endl;
auto buf_ptr = (int32_t*)staging_buf.data();
for (uint32_t i = 0; i < NUM_ADDRS; ++i) {
buf_ptr[i] = i * i;
}
RT_CHECK(vx_copy_to_dev(device, io_base_addr, staging_buf.data(), NUM_ADDRS * sizeof(int32_t)));
RT_CHECK(vx_copy_to_dev(device, usr_test_mem, staging_buf.data(), NUM_ADDRS * sizeof(int32_t)));
}
// upload source buffer
{
std::cout << "upload source buffer" << std::endl;
auto buf_ptr = (uint64_t*)staging_buf.data();
memcpy(buf_ptr, src_addrs.data(), src_buf_size);
RT_CHECK(vx_copy_to_dev(device, kernel_arg.src_addr, staging_buf.data(), src_buf_size));
}
// clear destination buffer
{
std::cout << "clear destination buffer" << std::endl;
auto buf_ptr = (int32_t*)staging_buf.data();
for (uint32_t i = 0; i < num_points; ++i) {
buf_ptr[i] = 0xdeadbeef;
}
RT_CHECK(vx_copy_to_dev(device, kernel_arg.dst_addr, staging_buf.data(), dst_buf_size));
}
// upload program
std::cout << "upload program" << std::endl;
RT_CHECK(vx_upload_kernel_file(device, kernel_file, &kernel_prog_addr));
// upload kernel argument
std::cout << "upload kernel argument" << std::endl;
RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &kernel_args_addr));
// start device
std::cout << "start device" << std::endl;
RT_CHECK(vx_start(device, kernel_prog_addr, kernel_args_addr));
// wait for completion
std::cout << "wait for completion" << std::endl;
RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT));
// download destination buffer
std::cout << "download destination buffer" << std::endl;
RT_CHECK(vx_copy_from_dev(device, staging_buf.data(), kernel_arg.dst_addr, dst_buf_size));
// verify result
std::cout << "verify result" << std::endl;
{
int errors = 0;
auto buf_ptr = (int32_t*)staging_buf.data();
for (uint32_t i = 0; i < num_points; ++i) {
int ref = ref_data.at(i);
int cur = buf_ptr[i];
if (cur != ref) {
std::cout << "error at result #" << std::dec << i
<< std::hex << ": actual 0x" << cur << ", expected 0x" << ref << std::endl;
++errors;
}
}
if (errors != 0) {
std::cout << "Found " << std::dec << errors << " errors!" << std::endl;
std::cout << "FAILED!" << std::endl;
return 1;
}
}
// cleanup
std::cout << "cleanup" << std::endl;
cleanup();
std::cout << "PASSED!" << std::endl;
return 0;
}