vortex/tests/regression/vecaddx/main.cpp

233 lines
No EOL
6.6 KiB
C++

#include <iostream>
#include <unistd.h>
#include <string.h>
#include <vector>
#include <vortex.h>
#include "common.h"
#define FLOAT_ULP 6
#define RT_CHECK(_expr) \
do { \
int _ret = _expr; \
if (0 == _ret) \
break; \
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
cleanup(); \
exit(-1); \
} while (false)
///////////////////////////////////////////////////////////////////////////////
template <typename Type>
class Comparator {};
template <>
class Comparator<int> {
public:
static const char* type_str() {
return "integer";
}
static int generate() {
return rand();
}
static bool compare(int a, int b, int index, int errors) {
if (a != b) {
if (errors < 100) {
printf("*** error: [%d] expected=%d, actual=%d\n", index, b, a);
}
return false;
}
return true;
}
};
template <>
class Comparator<float> {
private:
union Float_t { float f; int i; };
public:
static const char* type_str() {
return "float";
}
static int generate() {
return static_cast<float>(rand()) / RAND_MAX;
}
static bool compare(float a, float b, int index, int errors) {
union fi_t { float f; int32_t i; };
fi_t fa, fb;
fa.f = a;
fb.f = b;
auto d = std::abs(fa.i - fb.i);
if (d > FLOAT_ULP) {
if (errors < 100) {
printf("*** error: [%d] expected=%f, actual=%f\n", index, b, a);
}
return false;
}
return true;
}
};
const char* kernel_file = "kernel.bin";
uint32_t size = 16;
vx_device_h device = nullptr;
std::vector<TYPE> source_data;
std::vector<uint8_t> staging_buf;
uint64_t kernel_prog_addr;
uint64_t kernel_args_addr;
kernel_arg_t kernel_arg = {};
static void show_usage() {
std::cout << "Vortex Test." << std::endl;
std::cout << "Usage: [-k: kernel] [-n words] [-h: help]" << std::endl;
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "n:k:h?")) != -1) {
switch (c) {
case 'n':
size = atoi(optarg);
break;
case 'k':
kernel_file = optarg;
break;
case 'h':
case '?': {
show_usage();
exit(0);
} break;
default:
show_usage();
exit(-1);
}
}
}
void cleanup() {
if (device) {
vx_mem_free(device, kernel_arg.src0_addr);
vx_mem_free(device, kernel_arg.src1_addr);
vx_mem_free(device, kernel_arg.dst_addr);
vx_mem_free(device, kernel_prog_addr);
vx_mem_free(device, kernel_args_addr);
vx_dev_close(device);
}
}
int main(int argc, char *argv[]) {
// parse command arguments
parse_args(argc, argv);
std::srand(50);
// open device connection
std::cout << "open device connection" << std::endl;
RT_CHECK(vx_dev_open(&device));
uint64_t num_cores, num_warps, num_threads;
RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_CORES, &num_cores));
RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_WARPS, &num_warps));
RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_THREADS, &num_threads));
std::cout << "number of cores: " << num_cores << std::endl;
std::cout << "number of warps: " << num_warps << std::endl;
std::cout << "number of threads: " << num_threads << std::endl;
uint32_t num_points = size;
uint32_t buf_size = num_points * sizeof(TYPE);
std::cout << "number of points: " << num_points << std::endl;
std::cout << "data type: " << Comparator<TYPE>::type_str() << std::endl;
std::cout << "buffer size: " << buf_size << " bytes" << std::endl;
// allocate device memory
std::cout << "allocate device memory" << std::endl;
RT_CHECK(vx_mem_alloc(device, buf_size, &kernel_arg.src0_addr));
RT_CHECK(vx_mem_alloc(device, buf_size, &kernel_arg.src1_addr));
RT_CHECK(vx_mem_alloc(device, buf_size, &kernel_arg.dst_addr));
kernel_arg.num_points = num_points;
std::cout << "dev_src0=0x" << std::hex << kernel_arg.src0_addr << std::endl;
std::cout << "dev_src1=0x" << std::hex << kernel_arg.src1_addr << std::endl;
std::cout << "dev_dst=0x" << std::hex << kernel_arg.dst_addr << std::endl;
// allocate staging buffer
std::cout << "allocate staging buffer" << std::endl;
staging_buf.resize(buf_size);
// generate source data
source_data.resize(2 * num_points);
for (uint32_t i = 0; i < source_data.size(); ++i) {
source_data[i] = Comparator<TYPE>::generate();
}
// upload source buffer0
{
std::cout << "upload source buffer0" << std::endl;
auto buf_ptr = (TYPE*)staging_buf.data();
for (uint32_t i = 0; i < num_points; ++i) {
buf_ptr[i] = source_data[2 * i + 0];
}
RT_CHECK(vx_copy_to_dev(device, kernel_arg.src0_addr, staging_buf.data(), buf_size));
}
// upload source buffer1
{
std::cout << "upload source buffer1" << std::endl;
auto buf_ptr = (TYPE*)staging_buf.data();
for (uint32_t i = 0; i < num_points; ++i) {
buf_ptr[i] = source_data[2 * i + 1];
}
RT_CHECK(vx_copy_to_dev(device, kernel_arg.src1_addr, staging_buf.data(), buf_size));
}
// upload program
std::cout << "upload program" << std::endl;
RT_CHECK(vx_upload_kernel_file(device, kernel_file, &kernel_prog_addr));
// upload kernel argument
std::cout << "upload kernel argument" << std::endl;
RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &kernel_args_addr));
// start device
std::cout << "start device" << std::endl;
RT_CHECK(vx_start(device, kernel_prog_addr, kernel_args_addr));
// wait for completion
std::cout << "wait for completion" << std::endl;
RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT));
// download destination buffer
std::cout << "download destination buffer" << std::endl;
RT_CHECK(vx_copy_from_dev(device, staging_buf.data(), kernel_arg.dst_addr, buf_size));
// verify result
std::cout << "verify result" << std::endl;
{
int errors = 0;
auto buf_ptr = (TYPE*)staging_buf.data();
for (uint32_t i = 0; i < num_points; ++i) {
auto ref = source_data[2 * i + 0] + source_data[2 * i + 1];
auto cur = buf_ptr[i];
if (!Comparator<TYPE>::compare(cur, ref, i, errors)) {
++errors;
}
}
if (errors != 0) {
std::cout << "Found " << std::dec << errors << " errors!" << std::endl;
std::cout << "FAILED!" << std::endl;
return 1;
}
}
// cleanup
std::cout << "cleanup" << std::endl;
cleanup();
std::cout << "PASSED!" << std::endl;
return 0;
}