vortex/sim/simx/execute.cpp
tinebp 15d2d25350
Some checks are pending
CI / setup (push) Waiting to run
CI / build (32) (push) Blocked by required conditions
CI / build (64) (push) Blocked by required conditions
CI / tests (cache, 32) (push) Blocked by required conditions
CI / tests (cache, 64) (push) Blocked by required conditions
CI / tests (config1, 32) (push) Blocked by required conditions
CI / tests (config1, 64) (push) Blocked by required conditions
CI / tests (config2, 32) (push) Blocked by required conditions
CI / tests (config2, 64) (push) Blocked by required conditions
CI / tests (debug, 32) (push) Blocked by required conditions
CI / tests (debug, 64) (push) Blocked by required conditions
CI / tests (opencl, 32) (push) Blocked by required conditions
CI / tests (opencl, 64) (push) Blocked by required conditions
CI / tests (regression, 32) (push) Blocked by required conditions
CI / tests (regression, 64) (push) Blocked by required conditions
CI / tests (scope, 32) (push) Blocked by required conditions
CI / tests (scope, 64) (push) Blocked by required conditions
CI / tests (stress, 32) (push) Blocked by required conditions
CI / tests (stress, 64) (push) Blocked by required conditions
CI / tests (synthesis, 32) (push) Blocked by required conditions
CI / tests (synthesis, 64) (push) Blocked by required conditions
CI / tests (vector, 32) (push) Blocked by required conditions
CI / tests (vector, 64) (push) Blocked by required conditions
CI / tests (vm, 32) (push) Blocked by required conditions
CI / tests (vm, 64) (push) Blocked by required conditions
CI / complete (push) Blocked by required conditions
vpu fixes
2025-02-05 23:08:03 -08:00

1580 lines
No EOL
48 KiB
C++

// Copyright © 2019-2023
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <stdlib.h>
#include <unistd.h>
#include <math.h>
#include <bitset>
#include <climits>
#include <sys/types.h>
#include <sys/stat.h>
#include <assert.h>
#include <util.h>
#include <rvfloats.h>
#include "emulator.h"
#include "instr.h"
#include "core.h"
#ifdef EXT_V_ENABLE
#include "processor_impl.h"
#endif
#include "VX_types.h"
using namespace vortex;
inline uint64_t nan_box(uint32_t value) {
return value | 0xffffffff00000000;
}
inline bool is_nan_boxed(uint64_t value) {
return (uint32_t(value >> 32) == 0xffffffff);
}
inline int64_t check_boxing(int64_t a) {
if (is_nan_boxed(a))
return a;
return nan_box(0x7fc00000); // NaN
}
inline void read_register(std::vector<reg_data_t>& out, uint32_t src_index, const Instr &instr, const warp_t& warp) {
auto type = instr.getRSType(src_index);
auto reg = instr.getRSrc(src_index);
switch (type) {
case RegType::None:
break;
case RegType::Integer: {
DPH(2, "Src" << src_index << " Reg: " << type << reg << "={");
auto& reg_data = warp.ireg_file.at(reg);
out.resize(reg_data.size());
for (uint32_t t = 0; t < reg_data.size(); ++t) {
if (t) DPN(2, ", ");
if (!warp.tmask.test(t)) {
DPN(2, "-");
continue;
}
out[t].u = reg_data.at(t);
DPN(2, "0x" << std::hex << out[t].i << std::dec);
}
DPN(2, "}" << std::endl);
} break;
case RegType::Float: {
DPH(2, "Src" << src_index << " Reg: " << type << reg << "={");
auto& reg_data = warp.freg_file.at(reg);
out.resize(reg_data.size());
for (uint32_t t = 0; t < reg_data.size(); ++t) {
if (t) DPN(2, ", ");
if (!warp.tmask.test(t)) {
DPN(2, "-");
continue;
}
out[t].u64 = reg_data.at(t);
if ((out[t].u64 >> 32) == 0xffffffff) {
DPN(2, "0x" << std::hex << out[t].u32 << std::dec);
} else {
DPN(2, "0x" << std::hex << out[t].u64 << std::dec);
}
}
DPN(2, "}" << std::endl);
} break;
#ifdef EXT_V_ENABLE
case RegType::Vector:
break;
#endif
default:
std::abort();
break;
}
}
void Emulator::execute(const Instr &instr, uint32_t wid, instr_trace_t *trace) {
auto& warp = warps_.at(wid);
assert(warp.tmask.any());
// initialize instruction trace
trace->cid = core_->id();
trace->wid = wid;
trace->PC = warp.PC;
trace->tmask = warp.tmask;
trace->dst_reg = {instr.getRDType(), instr.getRDest()};
auto next_pc = warp.PC + 4;
auto next_tmask = warp.tmask;
auto opcode = instr.getOpcode();
auto func2 = instr.getFunc2();
auto func3 = instr.getFunc3();
auto func7 = instr.getFunc7();
auto rdest = instr.getRDest();
auto rsrc0 = instr.getRSrc(0);
auto rsrc1 = instr.getRSrc(1);
auto rsrc2 = instr.getRSrc(2);
auto immsrc = sext((Word)instr.getImm(), 32);
auto num_threads = arch_.num_threads();
uint32_t thread_start = 0;
for (; thread_start < num_threads; ++thread_start) {
if (warp.tmask.test(thread_start))
break;
}
int32_t thread_last = num_threads - 1;
for (; thread_last >= 0; --thread_last) {
if (warp.tmask.test(thread_last))
break;
}
std::vector<reg_data_t> rd_data(num_threads);
std::vector<reg_data_t> rs1_data;
std::vector<reg_data_t> rs2_data;
std::vector<reg_data_t> rs3_data;
// reading source registers
if (instr.getRSType(0) != RegType::None) read_register(rs1_data, 0, instr, warp);
if (instr.getRSType(1) != RegType::None) read_register(rs2_data, 1, instr, warp);
if (instr.getRSType(2) != RegType::None) read_register(rs3_data, 2, instr, warp);
bool rd_write = false;
switch (opcode) {
case Opcode::LUI: {
// RV32I: LUI
trace->fu_type = FUType::ALU;
trace->alu_type = AluType::ARITH;
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
rd_data[t].i = immsrc;
}
rd_write = true;
break;
}
case Opcode::AUIPC: {
// RV32I: AUIPC
trace->fu_type = FUType::ALU;
trace->alu_type = AluType::ARITH;
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
rd_data[t].i = immsrc + warp.PC;
}
rd_write = true;
break;
}
case Opcode::R: {
trace->fu_type = FUType::ALU;
trace->alu_type = AluType::ARITH;
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->src_regs[1] = {RegType::Integer, rsrc1};
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
if (func7 == 0x7) {
auto value = rs1_data[t].i;
auto cond = rs2_data[t].i;
if (func3 == 0x5) {
// CZERO.EQZ
rd_data[t].i = (cond == 0) ? 0 : value;
trace->alu_type = AluType::ARITH;
} else
if (func3 == 0x7) {
// CZERO.NEZ
rd_data[t].i = (cond != 0) ? 0 : value;
trace->alu_type = AluType::ARITH;
} else {
std::abort();
}
} else
if (func7 & 0x1) {
switch (func3) {
case 0: {
// RV32M: MUL
rd_data[t].i = rs1_data[t].i * rs2_data[t].i;
trace->alu_type = AluType::IMUL;
break;
}
case 1: {
// RV32M: MULH
auto first = static_cast<DWordI>(rs1_data[t].i);
auto second = static_cast<DWordI>(rs2_data[t].i);
rd_data[t].i = (first * second) >> XLEN;
trace->alu_type = AluType::IMUL;
break;
}
case 2: {
// RV32M: MULHSU
auto first = static_cast<DWordI>(rs1_data[t].i);
auto second = static_cast<DWord>(rs2_data[t].u);
rd_data[t].i = (first * second) >> XLEN;
trace->alu_type = AluType::IMUL;
break;
}
case 3: {
// RV32M: MULHU
auto first = static_cast<DWord>(rs1_data[t].u);
auto second = static_cast<DWord>(rs2_data[t].u);
rd_data[t].i = (first * second) >> XLEN;
trace->alu_type = AluType::IMUL;
break;
}
case 4: {
// RV32M: DIV
auto dividen = rs1_data[t].i;
auto divisor = rs2_data[t].i;
auto largest_negative = WordI(1) << (XLEN-1);
if (divisor == 0) {
rd_data[t].i = -1;
} else if (dividen == largest_negative && divisor == -1) {
rd_data[t].i = dividen;
} else {
rd_data[t].i = dividen / divisor;
}
trace->alu_type = AluType::IDIV;
break;
}
case 5: {
// RV32M: DIVU
auto dividen = rs1_data[t].u;
auto divisor = rs2_data[t].u;
if (divisor == 0) {
rd_data[t].i = -1;
} else {
rd_data[t].i = dividen / divisor;
}
trace->alu_type = AluType::IDIV;
break;
}
case 6: {
// RV32M: REM
auto dividen = rs1_data[t].i;
auto divisor = rs2_data[t].i;
auto largest_negative = WordI(1) << (XLEN-1);
if (rs2_data[t].i == 0) {
rd_data[t].i = dividen;
} else if (dividen == largest_negative && divisor == -1) {
rd_data[t].i = 0;
} else {
rd_data[t].i = dividen % divisor;
}
trace->alu_type = AluType::IDIV;
break;
}
case 7: {
// RV32M: REMU
auto dividen = rs1_data[t].u;
auto divisor = rs2_data[t].u;
if (rs2_data[t].i == 0) {
rd_data[t].i = dividen;
} else {
rd_data[t].i = dividen % divisor;
}
trace->alu_type = AluType::IDIV;
break;
}
default:
std::abort();
}
} else {
switch (func3) {
case 0: {
if (func7 & 0x20) {
// RV32I: SUB
rd_data[t].i = rs1_data[t].i - rs2_data[t].i;
} else {
// RV32I: ADD
rd_data[t].i = rs1_data[t].i + rs2_data[t].i;
}
break;
}
case 1: {
// RV32I: SLL
Word shamt_mask = (Word(1) << log2up(XLEN)) - 1;
Word shamt = rs2_data[t].i & shamt_mask;
rd_data[t].i = rs1_data[t].i << shamt;
break;
}
case 2: {
// RV32I: SLT
rd_data[t].i = rs1_data[t].i < rs2_data[t].i;
break;
}
case 3: {
// RV32I: SLTU
rd_data[t].i = rs1_data[t].u < rs2_data[t].u;
break;
}
case 4: {
// RV32I: XOR
rd_data[t].i = rs1_data[t].i ^ rs2_data[t].i;
break;
}
case 5: {
Word shamt_mask = ((Word)1 << log2up(XLEN)) - 1;
Word shamt = rs2_data[t].i & shamt_mask;
if (func7 & 0x20) {
// RV32I: SRA
rd_data[t].i = rs1_data[t].i >> shamt;
} else {
// RV32I: SRL
rd_data[t].i = rs1_data[t].u >> shamt;
}
break;
}
case 6: {
// RV32I: OR
rd_data[t].i = rs1_data[t].i | rs2_data[t].i;
break;
}
case 7: {
// RV32I: AND
rd_data[t].i = rs1_data[t].i & rs2_data[t].i;
break;
}
default:
std::abort();
}
}
}
rd_write = true;
break;
}
case Opcode::I: {
trace->fu_type = FUType::ALU;
trace->alu_type = AluType::ARITH;
trace->src_regs[0] = {RegType::Integer, rsrc0};
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
switch (func3) {
case 0: {
// RV32I: ADDI
rd_data[t].i = rs1_data[t].i + immsrc;
break;
}
case 1: {
// RV32I: SLLI
rd_data[t].i = rs1_data[t].i << immsrc;
break;
}
case 2: {
// RV32I: SLTI
rd_data[t].i = rs1_data[t].i < WordI(immsrc);
break;
}
case 3: {
// RV32I: SLTIU
rd_data[t].i = rs1_data[t].u < immsrc;
break;
}
case 4: {
// RV32I: XORI
rd_data[t].i = rs1_data[t].i ^ immsrc;
break;
}
case 5: {
if (func7 & 0x20) {
// RV32I: SRAI
Word result = rs1_data[t].i >> immsrc;
rd_data[t].i = result;
} else {
// RV32I: SRLI
Word result = rs1_data[t].u >> immsrc;
rd_data[t].i = result;
}
break;
}
case 6: {
// RV32I: ORI
rd_data[t].i = rs1_data[t].i | immsrc;
break;
}
case 7: {
// RV32I: ANDI
rd_data[t].i = rs1_data[t].i & immsrc;
break;
}
}
}
rd_write = true;
break;
}
case Opcode::R_W: {
trace->fu_type = FUType::ALU;
trace->alu_type = AluType::ARITH;
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->src_regs[1] = {RegType::Integer, rsrc1};
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
if (func7 & 0x1) {
switch (func3) {
case 0: {
// RV64M: MULW
int32_t product = (int32_t)rs1_data[t].i * (int32_t)rs2_data[t].i;
rd_data[t].i = sext((uint64_t)product, 32);
trace->alu_type = AluType::IMUL;
break;
}
case 4: {
// RV64M: DIVW
int32_t dividen = (int32_t)rs1_data[t].i;
int32_t divisor = (int32_t)rs2_data[t].i;
int32_t quotient;
int32_t largest_negative = 0x80000000;
if (divisor == 0){
quotient = -1;
} else if (dividen == largest_negative && divisor == -1) {
quotient = dividen;
} else {
quotient = dividen / divisor;
}
rd_data[t].i = sext((uint64_t)quotient, 32);
trace->alu_type = AluType::IDIV;
break;
}
case 5: {
// RV64M: DIVUW
uint32_t dividen = (uint32_t)rs1_data[t].i;
uint32_t divisor = (uint32_t)rs2_data[t].i;
uint32_t quotient;
if (divisor == 0){
quotient = -1;
} else {
quotient = dividen / divisor;
}
rd_data[t].i = sext((uint64_t)quotient, 32);
trace->alu_type = AluType::IDIV;
break;
}
case 6: {
// RV64M: REMW
int32_t dividen = (uint32_t)rs1_data[t].i;
int32_t divisor = (uint32_t)rs2_data[t].i;
int32_t remainder;
int32_t largest_negative = 0x80000000;
if (divisor == 0){
remainder = dividen;
} else if (dividen == largest_negative && divisor == -1) {
remainder = 0;
} else {
remainder = dividen % divisor;
}
rd_data[t].i = sext((uint64_t)remainder, 32);
trace->alu_type = AluType::IDIV;
break;
}
case 7: {
// RV64M: REMUW
uint32_t dividen = (uint32_t)rs1_data[t].i;
uint32_t divisor = (uint32_t)rs2_data[t].i;
uint32_t remainder;
if (divisor == 0){
remainder = dividen;
} else {
remainder = dividen % divisor;
}
rd_data[t].i = sext((uint64_t)remainder, 32);
trace->alu_type = AluType::IDIV;
break;
}
default:
std::abort();
}
} else {
switch (func3) {
case 0: {
if (func7 & 0x20){
// RV64I: SUBW
uint32_t result = (uint32_t)rs1_data[t].i - (uint32_t)rs2_data[t].i;
rd_data[t].i = sext((uint64_t)result, 32);
}
else{
// RV64I: ADDW
uint32_t result = (uint32_t)rs1_data[t].i + (uint32_t)rs2_data[t].i;
rd_data[t].i = sext((uint64_t)result, 32);
}
break;
}
case 1: {
// RV64I: SLLW
uint32_t shamt_mask = 0x1F;
uint32_t shamt = rs2_data[t].i & shamt_mask;
uint32_t result = (uint32_t)rs1_data[t].i << shamt;
rd_data[t].i = sext((uint64_t)result, 32);
break;
}
case 5: {
uint32_t shamt_mask = 0x1F;
uint32_t shamt = rs2_data[t].i & shamt_mask;
uint32_t result;
if (func7 & 0x20) {
// RV64I: SRAW
result = (int32_t)rs1_data[t].i >> shamt;
} else {
// RV64I: SRLW
result = (uint32_t)rs1_data[t].i >> shamt;
}
rd_data[t].i = sext((uint64_t)result, 32);
break;
}
default:
std::abort();
}
}
}
rd_write = true;
break;
}
case Opcode::I_W: {
trace->fu_type = FUType::ALU;
trace->alu_type = AluType::ARITH;
trace->src_regs[0] = {RegType::Integer, rsrc0};
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
switch (func3) {
case 0: {
// RV64I: ADDIW
uint32_t result = (uint32_t)rs1_data[t].i + (uint32_t)immsrc;
rd_data[t].i = sext((uint64_t)result, 32);
break;
}
case 1: {
// RV64I: SLLIW
uint32_t shamt_mask = 0x1F;
uint32_t shamt = immsrc & shamt_mask;
uint32_t result = rs1_data[t].i << shamt;
rd_data[t].i = sext((uint64_t)result, 32);
break;
}
case 5: {
uint32_t shamt_mask = 0x1F;
uint32_t shamt = immsrc & shamt_mask;
uint32_t result;
if (func7 & 0x20) {
// RV64I: SRAIW
result = (int32_t)rs1_data[t].i >> shamt;
} else {
// RV64I: SRLIW
result = (uint32_t)rs1_data[t].i >> shamt;
}
rd_data[t].i = sext((uint64_t)result, 32);
break;
}
default:
std::abort();
}
}
rd_write = true;
break;
}
case Opcode::B: {
trace->fu_type = FUType::ALU;
trace->alu_type = AluType::BRANCH;
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->src_regs[1] = {RegType::Integer, rsrc1};
bool all_taken = false;
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
bool curr_taken = false;
switch (func3) {
case 0: {
// RV32I: BEQ
if (rs1_data[t].i == rs2_data[t].i) {
next_pc = warp.PC + immsrc;
curr_taken = true;
}
break;
}
case 1: {
// RV32I: BNE
if (rs1_data[t].i != rs2_data[t].i) {
next_pc = warp.PC + immsrc;
curr_taken = true;
}
break;
}
case 4: {
// RV32I: BLT
if (rs1_data[t].i < rs2_data[t].i) {
next_pc = warp.PC + immsrc;
curr_taken = true;
}
break;
}
case 5: {
// RV32I: BGE
if (rs1_data[t].i >= rs2_data[t].i) {
next_pc = warp.PC + immsrc;
curr_taken = true;
}
break;
}
case 6: {
// RV32I: BLTU
if (rs1_data[t].u < rs2_data[t].u) {
next_pc = warp.PC + immsrc;
curr_taken = true;
}
break;
}
case 7: {
// RV32I: BGEU
if (rs1_data[t].u >= rs2_data[t].u) {
next_pc = warp.PC + immsrc;
curr_taken = true;
}
break;
}
default:
std::abort();
}
if (t == thread_start) {
all_taken = curr_taken;
} else {
if (all_taken != curr_taken) {
std::cout << "divergent branch! PC=0x" << std::hex << warp.PC << std::dec << " (#" << trace->uuid << ")\n" << std::flush;
std::abort();
}
}
}
trace->fetch_stall = true;
break;
}
case Opcode::JAL: {
// RV32I: JAL
trace->fu_type = FUType::ALU;
trace->alu_type = AluType::BRANCH;
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
rd_data[t].i = next_pc;
}
next_pc = warp.PC + immsrc;
trace->fetch_stall = true;
rd_write = true;
break;
}
case Opcode::JALR: {
// RV32I: JALR
trace->fu_type = FUType::ALU;
trace->alu_type = AluType::BRANCH;
trace->src_regs[0] = {RegType::Integer, rsrc0};
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
rd_data[t].i = next_pc;
}
next_pc = rs1_data[thread_last].i + immsrc;
trace->fetch_stall = true;
rd_write = true;
break;
}
case Opcode::L:
case Opcode::FL: {
trace->fu_type = FUType::LSU;
trace->lsu_type = LsuType::LOAD;
trace->src_regs[0] = {RegType::Integer, rsrc0};
auto trace_data = std::make_shared<LsuTraceData>(num_threads);
trace->data = trace_data;
if ((opcode == Opcode::L )
|| (opcode == Opcode::FL && func3 == 2)
|| (opcode == Opcode::FL && func3 == 3)) {
uint32_t data_bytes = 1 << (func3 & 0x3);
uint32_t data_width = 8 * data_bytes;
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
uint64_t mem_addr = rs1_data[t].i + immsrc;
uint64_t read_data = 0;
this->dcache_read(&read_data, mem_addr, data_bytes);
trace_data->mem_addrs.at(t) = {mem_addr, data_bytes};
switch (func3) {
case 0: // RV32I: LB
case 1: // RV32I: LH
rd_data[t].i = sext((Word)read_data, data_width);
break;
case 2:
if (opcode == Opcode::L) {
// RV32I: LW
rd_data[t].i = sext((Word)read_data, data_width);
} else {
// RV32F: FLW
rd_data[t].u64 = nan_box((uint32_t)read_data);
}
break;
case 3: // RV64I: LD
// RV32D: FLD
case 4: // RV32I: LBU
case 5: // RV32I: LHU
case 6: // RV64I: LWU
rd_data[t].u64 = read_data;
break;
default:
std::abort();
}
}
rd_write = true;
}
#ifdef EXT_V_ENABLE
else {
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
this->loadVector(instr, wid, t, rs1_data, rs2_data);
}
}
#endif
break;
}
case Opcode::S:
case Opcode::FS: {
trace->fu_type = FUType::LSU;
trace->lsu_type = LsuType::STORE;
auto data_type = (opcode == Opcode::FS) ? RegType::Float : RegType::Integer;
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->src_regs[1] = {data_type, rsrc1};
auto trace_data = std::make_shared<LsuTraceData>(num_threads);
trace->data = trace_data;
if ((opcode == Opcode::S)
|| (opcode == Opcode::FS && func3 == 2)
|| (opcode == Opcode::FS && func3 == 3)) {
uint32_t data_bytes = 1 << (func3 & 0x3);
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
uint64_t mem_addr = rs1_data[t].i + immsrc;
uint64_t write_data = rs2_data[t].u64;
trace_data->mem_addrs.at(t) = {mem_addr, data_bytes};
switch (func3) {
case 0:
case 1:
case 2:
case 3:
this->dcache_write(&write_data, mem_addr, data_bytes);
break;
default:
std::abort();
}
}
}
#ifdef EXT_V_ENABLE
else {
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
this->storeVector(instr, wid, t, rs1_data, rs2_data);
}
}
#endif
break;
}
case Opcode::AMO: {
trace->fu_type = FUType::LSU;
trace->lsu_type = LsuType::LOAD;
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->src_regs[1] = {RegType::Integer, rsrc1};
auto trace_data = std::make_shared<LsuTraceData>(num_threads);
trace->data = trace_data;
auto amo_type = func7 >> 2;
uint32_t data_bytes = 1 << (func3 & 0x3);
uint32_t data_width = 8 * data_bytes;
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
uint64_t mem_addr = rs1_data[t].u;
trace_data->mem_addrs.at(t) = {mem_addr, data_bytes};
if (amo_type == 0x02) { // LR
uint64_t read_data = 0;
this->dcache_read(&read_data, mem_addr, data_bytes);
this->dcache_amo_reserve(mem_addr);
rd_data[t].i = sext((Word)read_data, data_width);
} else
if (amo_type == 0x03) { // SC
if (this->dcache_amo_check(mem_addr)) {
this->dcache_write(&rs2_data[t].u64, mem_addr, data_bytes);
rd_data[t].i = 0;
} else {
rd_data[t].i = 1;
}
} else {
uint64_t read_data = 0;
this->dcache_read(&read_data, mem_addr, data_bytes);
auto read_data_i = sext((WordI)read_data, data_width);
auto rs1_data_i = sext((WordI)rs2_data[t].u64, data_width);
auto read_data_u = zext((Word)read_data, data_width);
auto rs1_data_u = zext((Word)rs2_data[t].u64, data_width);
uint64_t result;
switch (amo_type) {
case 0x00: // AMOADD
result = read_data_i + rs1_data_i;
break;
case 0x01: // AMOSWAP
result = rs1_data_u;
break;
case 0x04: // AMOXOR
result = read_data_u ^ rs1_data_u;
break;
case 0x08: // AMOOR
result = read_data_u | rs1_data_u;
break;
case 0x0c: // AMOAND
result = read_data_u & rs1_data_u;
break;
case 0x10: // AMOMIN
result = std::min(read_data_i, rs1_data_i);
break;
case 0x14: // AMOMAX
result = std::max(read_data_i, rs1_data_i);
break;
case 0x18: // AMOMINU
result = std::min(read_data_u, rs1_data_u);
break;
case 0x1c: // AMOMAXU
result = std::max(read_data_u, rs1_data_u);
break;
default:
std::abort();
}
this->dcache_write(&result, mem_addr, data_bytes);
rd_data[t].i = read_data_i;
}
}
rd_write = true;
break;
}
case Opcode::SYS: {
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
uint32_t csr_addr = immsrc;
Word csr_value;
if (func3 == 0) {
trace->fu_type = FUType::ALU;
trace->alu_type = AluType::SYSCALL;
trace->fetch_stall = true;
switch (csr_addr) {
case 0x000: // RV32I: ECALL
this->trigger_ecall(); // Re-added for riscv-vector test functionality
break;
case 0x001: // RV32I: EBREAK
this->trigger_ebreak(); // Re-added for riscv-vector test functionality
break;
case 0x002: // RV32I: URET
case 0x102: // RV32I: SRET
case 0x302: // RV32I: MRET
break;
default:
std::abort();
}
} else {
trace->fu_type = FUType::SFU;
// stall the fetch stage for FPU CSRs
trace->fetch_stall = (csr_addr <= VX_CSR_FCSR);
csr_value = this->get_csr(csr_addr, t, wid);
switch (func3) {
case 1: {
// RV32I: CSRRW
rd_data[t].i = csr_value;
this->set_csr(csr_addr, rs1_data[t].i, t, wid);
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->sfu_type = SfuType::CSRRW;
rd_write = true;
break;
}
case 2: {
// RV32I: CSRRS
rd_data[t].i = csr_value;
if (rs1_data[t].i != 0) {
this->set_csr(csr_addr, csr_value | rs1_data[t].i, t, wid);
}
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->sfu_type = SfuType::CSRRS;
rd_write = true;
break;
}
case 3: {
// RV32I: CSRRC
rd_data[t].i = csr_value;
if (rs1_data[t].i != 0) {
this->set_csr(csr_addr, csr_value & ~rs1_data[t].i, t, wid);
}
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->sfu_type = SfuType::CSRRC;
rd_write = true;
break;
}
case 5: {
// RV32I: CSRRWI
rd_data[t].i = csr_value;
this->set_csr(csr_addr, rsrc0, t, wid);
trace->sfu_type = SfuType::CSRRW;
rd_write = true;
break;
}
case 6: {
// RV32I: CSRRSI;
rd_data[t].i = csr_value;
if (rsrc0 != 0) {
this->set_csr(csr_addr, csr_value | rsrc0, t, wid);
}
trace->sfu_type = SfuType::CSRRS;
rd_write = true;
break;
}
case 7: {
// RV32I: CSRRCI
rd_data[t].i = csr_value;
if (rsrc0 != 0) {
this->set_csr(csr_addr, csr_value & ~rsrc0, t, wid);
}
trace->sfu_type = SfuType::CSRRC;
rd_write = true;
break;
}
default:
break;
}
}
}
break;
}
case Opcode::FENCE: {
// RV32I: FENCE
trace->fu_type = FUType::LSU;
trace->lsu_type = LsuType::FENCE;
break;
}
case Opcode::FCI: {
trace->fu_type = FUType::FPU;
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
uint32_t frm = this->get_fpu_rm(func3, t, wid);
uint32_t fflags = 0;
switch (func7) {
case 0x00: { // RV32F: FADD.S
rd_data[t].u64 = nan_box(rv_fadd_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64), frm, &fflags));
trace->fpu_type = FpuType::FMA;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
break;
}
case 0x01: { // RV32D: FADD.D
rd_data[t].u64 = rv_fadd_d(rs1_data[t].u64, rs2_data[t].u64, frm, &fflags);
trace->fpu_type = FpuType::FMA;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
break;
}
case 0x04: { // RV32F: FSUB.S
rd_data[t].u64 = nan_box(rv_fsub_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64), frm, &fflags));
trace->fpu_type = FpuType::FMA;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
break;
}
case 0x05: { // RV32D: FSUB.D
rd_data[t].u64 = rv_fsub_d(rs1_data[t].u64, rs2_data[t].u64, frm, &fflags);
trace->fpu_type = FpuType::FMA;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
break;
}
case 0x08: { // RV32F: FMUL.S
rd_data[t].u64 = nan_box(rv_fmul_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64), frm, &fflags));
trace->fpu_type = FpuType::FMA;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
break;
}
case 0x09: { // RV32D: FMUL.D
rd_data[t].u64 = rv_fmul_d(rs1_data[t].u64, rs2_data[t].u64, frm, &fflags);
trace->fpu_type = FpuType::FMA;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
break;
}
case 0x0c: { // RV32F: FDIV.S
rd_data[t].u64 = nan_box(rv_fdiv_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64), frm, &fflags));
trace->fpu_type = FpuType::FDIV;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
break;
}
case 0x0d: { // RV32D: FDIV.D
rd_data[t].u64 = rv_fdiv_d(rs1_data[t].u64, rs2_data[t].u64, frm, &fflags);
trace->fpu_type = FpuType::FDIV;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
break;
}
case 0x10: {
switch (func3) {
case 0: // RV32F: FSGNJ.S
rd_data[t].u64 = nan_box(rv_fsgnj_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64)));
break;
case 1: // RV32F: FSGNJN.S
rd_data[t].u64 = nan_box(rv_fsgnjn_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64)));
break;
case 2: // RV32F: FSGNJX.S
rd_data[t].u64 = nan_box(rv_fsgnjx_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64)));
break;
}
trace->fpu_type = FpuType::FNCP;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
break;
}
case 0x11: {
switch (func3) {
case 0: // RV32D: FSGNJ.D
rd_data[t].u64 = rv_fsgnj_d(rs1_data[t].u64, rs2_data[t].u64);
break;
case 1: // RV32D: FSGNJN.D
rd_data[t].u64 = rv_fsgnjn_d(rs1_data[t].u64, rs2_data[t].u64);
break;
case 2: // RV32D: FSGNJX.D
rd_data[t].u64 = rv_fsgnjx_d(rs1_data[t].u64, rs2_data[t].u64);
break;
}
trace->fpu_type = FpuType::FNCP;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
break;
}
case 0x14: {
if (func3) {
// RV32F: FMAX.S
rd_data[t].u64 = nan_box(rv_fmax_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64), &fflags));
} else {
// RV32F: FMIN.S
rd_data[t].u64 = nan_box(rv_fmin_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64), &fflags));
}
trace->fpu_type = FpuType::FNCP;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
break;
}
case 0x15: {
if (func3) {
// RV32D: FMAX.D
rd_data[t].u64 = rv_fmax_d(rs1_data[t].u64, rs2_data[t].u64, &fflags);
} else {
// RV32D: FMIN.D
rd_data[t].u64 = rv_fmin_d(rs1_data[t].u64, rs2_data[t].u64, &fflags);
}
trace->fpu_type = FpuType::FNCP;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
break;
}
case 0x20: {
// RV32D: FCVT.S.D
rd_data[t].u64 = nan_box(rv_dtof(rs1_data[t].u64));
trace->fpu_type = FpuType::FNCP;
trace->src_regs[0] = {RegType::Float, rsrc0};
break;
}
case 0x21: {
// RV32D: FCVT.D.S
rd_data[t].u64 = rv_ftod(check_boxing(rs1_data[t].u64));
trace->fpu_type = FpuType::FNCP;
trace->src_regs[0] = {RegType::Float, rsrc0};
break;
}
case 0x2c: { // RV32F: FSQRT.S
rd_data[t].u64 = nan_box(rv_fsqrt_s(check_boxing(rs1_data[t].u64), frm, &fflags));
trace->fpu_type = FpuType::FSQRT;
trace->src_regs[0] = {RegType::Float, rsrc0};
break;
}
case 0x2d: { // RV32D: FSQRT.D
rd_data[t].u64 = rv_fsqrt_d(rs1_data[t].u64, frm, &fflags);
trace->fpu_type = FpuType::FSQRT;
trace->src_regs[0] = {RegType::Float, rsrc0};
break;
}
case 0x50: {
switch (func3) {
case 0:
// RV32F: FLE.S
rd_data[t].i = rv_fle_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64), &fflags);
break;
case 1:
// RV32F: FLT.S
rd_data[t].i = rv_flt_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64), &fflags);
break;
case 2:
// RV32F: FEQ.S
rd_data[t].i = rv_feq_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64), &fflags);
break;
}
trace->fpu_type = FpuType::FNCP;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
break;
}
case 0x51: {
switch (func3) {
case 0:
// RV32D: FLE.D
rd_data[t].i = rv_fle_d(rs1_data[t].u64, rs2_data[t].u64, &fflags);
break;
case 1:
// RV32D: FLT.D
rd_data[t].i = rv_flt_d(rs1_data[t].u64, rs2_data[t].u64, &fflags);
break;
case 2:
// RV32D: FEQ.D
rd_data[t].i = rv_feq_d(rs1_data[t].u64, rs2_data[t].u64, &fflags);
break;
}
trace->fpu_type = FpuType::FNCP;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
break;
}
case 0x60: {
switch (rsrc1) {
case 0:
// RV32F: FCVT.W.S
rd_data[t].i = sext((uint64_t)rv_ftoi_s(check_boxing(rs1_data[t].u64), frm, &fflags), 32);
break;
case 1:
// RV32F: FCVT.WU.S
rd_data[t].i = sext((uint64_t)rv_ftou_s(check_boxing(rs1_data[t].u64), frm, &fflags), 32);
break;
case 2:
// RV64F: FCVT.L.S
rd_data[t].i = rv_ftol_s(check_boxing(rs1_data[t].u64), frm, &fflags);
break;
case 3:
// RV64F: FCVT.LU.S
rd_data[t].i = rv_ftolu_s(check_boxing(rs1_data[t].u64), frm, &fflags);
break;
}
trace->fpu_type = FpuType::FCVT;
trace->src_regs[0] = {RegType::Float, rsrc0};
break;
}
case 0x61: {
switch (rsrc1) {
case 0:
// RV32D: FCVT.W.D
rd_data[t].i = sext((uint64_t)rv_ftoi_d(rs1_data[t].u64, frm, &fflags), 32);
break;
case 1:
// RV32D: FCVT.WU.D
rd_data[t].i = sext((uint64_t)rv_ftou_d(rs1_data[t].u64, frm, &fflags), 32);
break;
case 2:
// RV64D: FCVT.L.D
rd_data[t].i = rv_ftol_d(rs1_data[t].u64, frm, &fflags);
break;
case 3:
// RV64D: FCVT.LU.D
rd_data[t].i = rv_ftolu_d(rs1_data[t].u64, frm, &fflags);
break;
}
trace->fpu_type = FpuType::FCVT;
trace->src_regs[0] = {RegType::Float, rsrc0};
break;
}
case 0x68: {
switch (rsrc1) {
case 0:
// RV32F: FCVT.S.W
rd_data[t].u64 = nan_box(rv_itof_s(rs1_data[t].i, frm, &fflags));
break;
case 1:
// RV32F: FCVT.S.WU
rd_data[t].u64 = nan_box(rv_utof_s(rs1_data[t].i, frm, &fflags));
break;
case 2:
// RV64F: FCVT.S.L
rd_data[t].u64 = nan_box(rv_ltof_s(rs1_data[t].i, frm, &fflags));
break;
case 3:
// RV64F: FCVT.S.LU
rd_data[t].u64 = nan_box(rv_lutof_s(rs1_data[t].i, frm, &fflags));
break;
}
trace->fpu_type = FpuType::FCVT;
trace->src_regs[0] = {RegType::Integer, rsrc0};
break;
}
case 0x69: {
switch (rsrc1) {
case 0:
// RV32D: FCVT.D.W
rd_data[t].u64 = rv_itof_d(rs1_data[t].i, frm, &fflags);
break;
case 1:
// RV32D: FCVT.D.WU
rd_data[t].u64 = rv_utof_d(rs1_data[t].i, frm, &fflags);
break;
case 2:
// RV64D: FCVT.D.L
rd_data[t].u64 = rv_ltof_d(rs1_data[t].i, frm, &fflags);
break;
case 3:
// RV64D: FCVT.D.LU
rd_data[t].u64 = rv_lutof_d(rs1_data[t].i, frm, &fflags);
break;
}
trace->fpu_type = FpuType::FCVT;
trace->src_regs[0] = {RegType::Integer, rsrc0};
break;
}
case 0x70: {
if (func3) {
// RV32F: FCLASS.S
rd_data[t].i = rv_fclss_s(check_boxing(rs1_data[t].u64));
} else {
// RV32F: FMV.X.S
uint32_t result = (uint32_t)rs1_data[t].u64;
rd_data[t].i = sext((uint64_t)result, 32);
}
trace->fpu_type = FpuType::FNCP;
trace->src_regs[0] = {RegType::Float, rsrc0};
break;
}
case 0x71: {
if (func3) {
// RV32D: FCLASS.D
rd_data[t].i = rv_fclss_d(rs1_data[t].u64);
} else {
// RV64D: FMV.X.D
rd_data[t].i = rs1_data[t].u64;
}
trace->fpu_type = FpuType::FNCP;
trace->src_regs[0] = {RegType::Float, rsrc0};
break;
}
case 0x78: { // RV32F: FMV.S.X
rd_data[t].u64 = nan_box((uint32_t)rs1_data[t].i);
trace->fpu_type = FpuType::FNCP;
trace->src_regs[0] = {RegType::Integer, rsrc0};
break;
}
case 0x79: { // RV64D: FMV.D.X
rd_data[t].u64 = rs1_data[t].i;
trace->fpu_type = FpuType::FNCP;
trace->src_regs[0] = {RegType::Integer, rsrc0};
break;
}
}
this->update_fcrs(fflags, t, wid);
}
rd_write = true;
break;
}
case Opcode::FMADD:
case Opcode::FMSUB:
case Opcode::FMNMADD:
case Opcode::FMNMSUB: {
trace->fpu_type = FpuType::FMA;
trace->src_regs[0] = {RegType::Float, rsrc0};
trace->src_regs[1] = {RegType::Float, rsrc1};
trace->src_regs[2] = {RegType::Float, rsrc2};
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
uint32_t frm = this->get_fpu_rm(func3, t, wid);
uint32_t fflags = 0;
switch (opcode) {
case Opcode::FMADD:
if (func2)
// RV32D: FMADD.D
rd_data[t].u64 = rv_fmadd_d(rs1_data[t].u64, rs2_data[t].u64, rs3_data[t].u64, frm, &fflags);
else
// RV32F: FMADD.S
rd_data[t].u64 = nan_box(rv_fmadd_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64), check_boxing(rs3_data[t].u64), frm, &fflags));
break;
case Opcode::FMSUB:
if (func2)
// RV32D: FMSUB.D
rd_data[t].u64 = rv_fmsub_d(rs1_data[t].u64, rs2_data[t].u64, rs3_data[t].u64, frm, &fflags);
else
// RV32F: FMSUB.S
rd_data[t].u64 = nan_box(rv_fmsub_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64), check_boxing(rs3_data[t].u64), frm, &fflags));
break;
case Opcode::FMNMADD:
if (func2)
// RV32D: FNMADD.D
rd_data[t].u64 = rv_fnmadd_d(rs1_data[t].u64, rs2_data[t].u64, rs3_data[t].u64, frm, &fflags);
else
// RV32F: FNMADD.S
rd_data[t].u64 = nan_box(rv_fnmadd_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64), check_boxing(rs3_data[t].u64), frm, &fflags));
break;
case Opcode::FMNMSUB:
if (func2)
// RV32D: FNMSUB.D
rd_data[t].u64 = rv_fnmsub_d(rs1_data[t].u64, rs2_data[t].u64, rs3_data[t].u64, frm, &fflags);
else
// RV32F: FNMSUB.S
rd_data[t].u64 = nan_box(rv_fnmsub_s(check_boxing(rs1_data[t].u64), check_boxing(rs2_data[t].u64), check_boxing(rs3_data[t].u64), frm, &fflags));
break;
default:
break;
}
this->update_fcrs(fflags, t, wid);
}
rd_write = true;
break;
}
#ifdef EXT_V_ENABLE
case Opcode::VSET:
for (uint32_t t = thread_start; t < num_threads; ++t) {
if (!warp.tmask.test(t))
continue;
rd_write |= executeVector(instr, wid, t, rs1_data, rs2_data, rd_data);
}
break;
#endif
case Opcode::EXT1: {
switch (func7) {
case 0: {
switch (func3) {
case 0: {
// TMC
trace->fu_type = FUType::SFU;
trace->sfu_type = SfuType::TMC;
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->fetch_stall = true;
next_tmask.reset();
for (uint32_t t = 0; t < num_threads; ++t) {
next_tmask.set(t, rs1_data.at(thread_last).u & (1 << t));
}
} break;
case 1: {
// WSPAWN
trace->fu_type = FUType::SFU;
trace->sfu_type = SfuType::WSPAWN;
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->src_regs[1] = {RegType::Integer, rsrc1};
trace->fetch_stall = true;
trace->data = std::make_shared<SFUTraceData>(rs1_data.at(thread_last).u, rs2_data.at(thread_last).u);
} break;
case 2: {
// SPLIT
trace->fu_type = FUType::SFU;
trace->sfu_type = SfuType::SPLIT;
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->fetch_stall = true;
auto stack_size = warp.ipdom_stack.size();
ThreadMask then_tmask, else_tmask;
auto not_pred = (rsrc1 != 0);
for (uint32_t t = 0; t < num_threads; ++t) {
auto cond = (rs1_data.at(t).i & 0x1) ^ not_pred;
then_tmask[t] = warp.tmask.test(t) && cond;
else_tmask[t] = warp.tmask.test(t) && !cond;
}
bool is_divergent = then_tmask.any() && else_tmask.any();
if (is_divergent) {
if (stack_size == ipdom_size_) {
std::cout << "IPDOM stack is full! size=" << stack_size << ", PC=0x" << std::hex << warp.PC << std::dec << " (#" << trace->uuid << ")\n" << std::flush;
std::abort();
}
// set new thread mask to the larger set
if (then_tmask.count() >= else_tmask.count()) {
next_tmask = then_tmask;
} else {
next_tmask = else_tmask;
}
// push reconvergence and not-taken thread mask onto the stack
auto ntaken_tmask = ~next_tmask & warp.tmask;
warp.ipdom_stack.emplace(warp.tmask, ntaken_tmask, next_pc);
}
// return divergent state
for (uint32_t t = thread_start; t < num_threads; ++t) {
rd_data[t].i = stack_size;
}
rd_write = true;
} break;
case 3: {
// JOIN
trace->fu_type = FUType::SFU;
trace->sfu_type = SfuType::JOIN;
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->fetch_stall = true;
auto stack_ptr = rs1_data.at(thread_last).u;
if (stack_ptr != warp.ipdom_stack.size()) {
if (warp.ipdom_stack.empty()) {
std::cout << "IPDOM stack is empty!\n" << std::flush;
std::abort();
}
if (warp.ipdom_stack.top().fallthrough) {
next_tmask = warp.ipdom_stack.top().orig_tmask;
warp.ipdom_stack.pop();
} else {
next_tmask = warp.ipdom_stack.top().else_tmask;
next_pc = warp.ipdom_stack.top().PC;
warp.ipdom_stack.top().fallthrough = true;
}
}
} break;
case 4: {
// BAR
trace->fu_type = FUType::SFU;
trace->sfu_type = SfuType::BAR;
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->src_regs[1] = {RegType::Integer, rsrc1};
trace->fetch_stall = true;
trace->data = std::make_shared<SFUTraceData>(rs1_data[thread_last].i, rs2_data[thread_last].i);
} break;
case 5: {
// PRED
trace->fu_type = FUType::SFU;
trace->sfu_type = SfuType::PRED;
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->src_regs[1] = {RegType::Integer, rsrc1};
trace->fetch_stall = true;
ThreadMask pred;
auto not_pred = rdest & 0x1;
for (uint32_t t = 0; t < num_threads; ++t) {
auto cond = (rs1_data.at(t).i & 0x1) ^ not_pred;
pred[t] = warp.tmask.test(t) && cond;
}
if (pred.any()) {
next_tmask &= pred;
} else {
next_tmask = rs2_data.at(thread_last).u;
}
} break;
default:
std::abort();
}
} break;
default:
std::abort();
}
} break;
case Opcode::EXT2: {
switch(func3) {
#ifdef EXT_TPU_ENABLE
case 2: {
trace->fu_type = FUType::SFU;
trace->sfu_type = SfuType::MMADD;
trace->src_regs[0] = {RegType::Integer, rsrc0};
trace->src_regs[1] = {RegType::Integer, rsrc1};
trace->src_regs[2] = {RegType::Integer, rsrc2};
auto trace_data = std::make_shared<TensorUnit::TraceData>();
trace->data = trace_data;
TensorFormat from, to;
switch (func2) {
case 0: // INT8
from = TensorFormat::Int4;
to = TensorFormat::Int32;
break;
case 1: // INT16
from = TensorFormat::Int8;
to = TensorFormat::Int32;
break;
case 2: // FP16
from = TensorFormat::FP16;
to = TensorFormat::FP32;
break;
case 3: // BF16
from = TensorFormat::BF16;
to = TensorFormat::FP32;
break;
default:
std::abort();
}
tensor_unit_->mmadd(from, to, rs1_data, rs2_data, rs3_data, rd_data, trace_data);
rd_write = true;
} break;
#endif
default:
std::abort();
}
} break;
default:
std::abort();
}
if (rd_write) {
trace->wb = true;
auto type = instr.getRDType();
switch (type) {
case RegType::None:
break;
case RegType::Integer:
if (rdest) {
DPH(2, "Dest Reg: " << type << rdest << "={");
for (uint32_t t = 0; t < num_threads; ++t) {
if (t) DPN(2, ", ");
if (!warp.tmask.test(t)) {
DPN(2, "-");
continue;
}
warp.ireg_file.at(rdest).at(t) = rd_data[t].i;
DPN(2, "0x" << std::hex << rd_data[t].u << std::dec);
}
DPN(2, "}" << std::endl);
trace->dst_reg = {type, rdest};
assert(rdest != 0);
} else {
// disable writes to x0
trace->wb = false;
}
break;
case RegType::Float:
DPH(2, "Dest Reg: " << type << rdest << "={");
for (uint32_t t = 0; t < num_threads; ++t) {
if (t) DPN(2, ", ");
if (!warp.tmask.test(t)) {
DPN(2, "-");
continue;
}
warp.freg_file.at(rdest).at(t) = rd_data[t].u64;
if ((rd_data[t].u64 >> 32) == 0xffffffff) {
DPN(2, "0x" << std::hex << rd_data[t].u32 << std::dec);
} else {
DPN(2, "0x" << std::hex << rd_data[t].u64 << std::dec);
}
}
DPN(2, "}" << std::endl);
trace->dst_reg = {type, rdest};
break;
default:
std::cout << "Unrecognized register write back type: " << type << std::endl;
std::abort();
break;
}
}
warp.PC += 4;
if (warp.PC != next_pc) {
DP(3, "*** Next PC=0x" << std::hex << next_pc << std::dec);
warp.PC = next_pc;
}
if (warp.tmask != next_tmask) {
DP(3, "*** New Tmask=" << ThreadMaskOS(next_tmask, num_threads));
warp.tmask = next_tmask;
if (!next_tmask.any()) {
active_warps_.reset(wid);
}
}
}