vortex/tests/regression/draw3d/main.cpp
2022-03-09 02:17:45 -05:00

388 lines
No EOL
13 KiB
C++

#include <iostream>
#include <vector>
#include <unistd.h>
#include <string.h>
#include <chrono>
#include <cmath>
#include <array>
#include <assert.h>
#include <vortex.h>
#include "common.h"
#include "utils.h"
#include "model_cube.h"
#include "model_triangle.h"
using namespace cocogfx;
#define RT_CHECK(_expr) \
do { \
int _ret = _expr; \
if (0 == _ret) \
break; \
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
cleanup(); \
exit(-1); \
} while (false)
///////////////////////////////////////////////////////////////////////////////
const char* kernel_file = "kernel.bin";
const char* input_file = "fire.png";
const char* output_file = "output.png";
const char* reference_file = nullptr;
uint32_t clear_color = 0x00000000;
uint32_t clear_depth = 0x00000000;
bool tex_enabled = false;
int tex_format = TEX_FORMAT_A8R8G8B8;
ePixelFormat tex_eformat = FORMAT_A8R8G8B8;
int tex_wrap = TEX_WRAP_CLAMP;
int tex_filter = TEX_FILTER_POINT;
uint32_t dst_width = 128;
uint32_t dst_height = 128;
const model_t& model = model_triangle;
vx_device_h device = nullptr;
vx_buffer_h staging_buf = nullptr;
uint64_t tilebuf_addr;
uint64_t primbuf_addr;
uint64_t tbuf_addr;
uint64_t zbuf_addr;
uint64_t cbuf_addr;
kernel_arg_t kernel_arg;
static void show_usage() {
std::cout << "Vortex 3D Rendering Test." << std::endl;
std::cout << "Usage: [-i texture] [-o output] [-r reference] [-w width] [-h height]" << std::endl;
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "i:o:r:w:h:t:f:g:?")) != -1) {
switch (c) {
case 'i':
input_file = optarg;
break;
case 'o':
output_file = optarg;
break;
case 'r':
reference_file = optarg;
break;
case 'w':
dst_width = std::atoi(optarg);
break;
case 'h':
dst_height = std::atoi(optarg);
break;
case 'f':
tex_format = std::atoi(optarg);
switch (tex_format) {
case TEX_FORMAT_A8R8G8B8: tex_eformat = FORMAT_A8R8G8B8; break;
case TEX_FORMAT_R5G6B5: tex_eformat = FORMAT_R5G6B5; break;
case TEX_FORMAT_A1R5G5B5: tex_eformat = FORMAT_A1R5G5B5; break;
case TEX_FORMAT_A4R4G4B4: tex_eformat = FORMAT_A4R4G4B4; break;
case TEX_FORMAT_A8L8: tex_eformat = FORMAT_A8L8; break;
case TEX_FORMAT_L8: tex_eformat = FORMAT_L8; break;
case TEX_FORMAT_A8: tex_eformat = FORMAT_A8; break;
default:
std::cout << "Error: invalid texture format: " << tex_format << std::endl;
exit(1);
}
break;
case 'g':
tex_filter = std::atoi(optarg);
break;
case '?': {
show_usage();
exit(0);
} break;
default:
show_usage();
exit(-1);
}
}
}
void cleanup() {
if (staging_buf) {
vx_buf_free(staging_buf);
}
if (device) {
vx_mem_free(device, tilebuf_addr);
vx_mem_free(device, primbuf_addr);
if (tex_enabled)
vx_mem_free(device, tbuf_addr);
vx_mem_free(device, zbuf_addr);
vx_mem_free(device, cbuf_addr);
vx_dev_close(device);
}
}
int render(uint32_t buf_addr, uint32_t buf_size, uint32_t width, uint32_t height) {
auto time_start = std::chrono::high_resolution_clock::now();
// start device
std::cout << "start device" << std::endl;
RT_CHECK(vx_start(device));
// wait for completion
std::cout << "wait for completion" << std::endl;
RT_CHECK(vx_ready_wait(device, MAX_TIMEOUT));
auto time_end = std::chrono::high_resolution_clock::now();
double elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start).count();
printf("Elapsed time: %lg ms\n", elapsed);
// download destination buffer
std::cout << "download destination buffer" << std::endl;
RT_CHECK(vx_copy_from_dev(staging_buf, buf_addr, buf_size, 0));
std::vector<uint8_t> dst_pixels(buf_size);
auto buf_ptr = (uint8_t*)vx_host_ptr(staging_buf);
memcpy(dst_pixels.data(), buf_ptr, buf_size);
// save output image
std::cout << "save output image" << std::endl;
//dump_image(dst_pixels, width, height, 4);
{
// the image is flipped
auto pitch = width * 4;
auto bits = dst_pixels.data() + (height-1) * pitch;
RT_CHECK(SaveImage(output_file, FORMAT_A8R8G8B8, bits, width, height, -pitch));
}
return 0;
}
int main(int argc, char *argv[]) {
std::vector<uint8_t> tilebuf;
std::vector<uint8_t> primbuf;
std::vector<uint8_t> texbuf;
std::vector<uint32_t> mip_offsets;
uint32_t tex_width;
uint32_t tex_height;
// parse command arguments
parse_args(argc, argv);
uint32_t tile_size = 1 << RASTER_TILE_LOGSIZE;
if (!ispow2(dst_width)) {
std::cout << "Error: only power of two dst_width supported: dst_width=" << dst_width << std::endl;
return -1;
}
if (!ispow2(dst_height)) {
std::cout << "Error: only power of two dst_height supported: dst_height=" << dst_height << std::endl;
return -1;
}
if (0 != (dst_width % tile_size)) {
std::cout << "Error: dst_with must be divisible by tile_size" << std::endl;
return -1;
}
if (0 != (dst_height % tile_size)) {
std::cout << "Error: dst_height must be divisible by tile_size" << std::endl;
return -1;
}
// open device connection
std::cout << "open device connection" << std::endl;
RT_CHECK(vx_dev_open(&device));
uint64_t isa_flags;
RT_CHECK(vx_dev_caps(device, VX_CAPS_ISA_FLAGS, &isa_flags));
if (0 == (isa_flags & (VX_ISA_EXT_RASTER | VX_ISA_EXT_ROP))) {
std::cout << "raster or rop extensions not supported!" << std::endl;
return -1;
}
if (!model.texture.empty()) {
tex_enabled = true;
std::vector<uint8_t> staging;
RT_CHECK(LoadImage(input_file, tex_eformat, staging, &tex_width, &tex_height));
// check power of two support
if (!ispow2(tex_width) || !ispow2(tex_height)) {
std::cout << "Error: only power of two textures supported: width=" << tex_width << ", heigth=" << tex_height << std::endl;
return -1;
}
uint32_t tex_bpp = Format::GetInfo(tex_eformat).BytePerPixel;
uint32_t tex_pitch = tex_width * tex_bpp;
RT_CHECK(GenerateMipmaps(texbuf, mip_offsets, staging.data(), tex_eformat, tex_width, tex_height, tex_pitch));
}
uint32_t primbuf_stride = sizeof(rast_prim_t);
uint32_t tex_logwidth = log2ceil(tex_width);
uint32_t tex_logheight = log2ceil(tex_height);
uint32_t zbuf_stride = 4;
uint32_t zbuf_pitch = dst_width * zbuf_stride;
uint32_t zbuf_size = dst_height * zbuf_pitch;
uint32_t cbuf_stride = 4;
uint32_t cbuf_pitch = dst_width * cbuf_stride;
uint32_t cbuf_size = dst_width * cbuf_pitch;
// Perform tile binning
auto num_tiles = Binning(tilebuf, primbuf, model, dst_width, dst_height, tile_size);
std::cout << "Binning allocated " << num_tiles << " tiles." << std::endl;
// upload program
std::cout << "upload program" << std::endl;
RT_CHECK(vx_upload_kernel_file(device, kernel_file));
// allocate device memory
std::cout << "allocate device memory" << std::endl;
RT_CHECK(vx_mem_alloc(device, tilebuf.size(), &tilebuf_addr));
RT_CHECK(vx_mem_alloc(device, primbuf.size(), &primbuf_addr));
if (tex_enabled)
RT_CHECK(vx_mem_alloc(device, texbuf.size(), &tbuf_addr));
RT_CHECK(vx_mem_alloc(device, zbuf_size, &zbuf_addr));
RT_CHECK(vx_mem_alloc(device, cbuf_size, &cbuf_addr));
std::cout << "tilebuf_addr=0x" << std::hex << tilebuf_addr << std::endl;
std::cout << "primbuf_addr=0x" << std::hex << primbuf_addr << std::endl;
std::cout << "tbuf_addr=0x" << std::hex << tbuf_addr << std::endl;
std::cout << "zbuf_addr=0x" << std::hex << zbuf_addr << std::endl;
std::cout << "cbuf_addr=0x" << std::hex << cbuf_addr << std::endl;
// allocate staging buffer
std::cout << "allocate staging buffer" << std::endl;
uint32_t alloc_size = std::max<uint32_t>({
sizeof(kernel_arg_t),
(uint32_t)tilebuf.size(),
(uint32_t)primbuf.size(),
(uint32_t)texbuf.size(),
zbuf_size,
cbuf_size
});
RT_CHECK(vx_buf_alloc(device, alloc_size, &staging_buf));
// upload kernel argument
std::cout << "upload kernel argument" << std::endl;
{
kernel_arg.tex_enabled= tex_enabled;
kernel_arg.prim_addr = primbuf_addr;
kernel_arg.dst_width = dst_width;
kernel_arg.dst_height = dst_height;
kernel_arg.dst_stride = cbuf_stride;
kernel_arg.dst_pitch = cbuf_pitch;
kernel_arg.dst_addr = cbuf_addr;
auto buf_ptr = (uint8_t*)vx_host_ptr(staging_buf);
memcpy(buf_ptr, &kernel_arg, sizeof(kernel_arg_t));
RT_CHECK(vx_copy_to_dev(staging_buf, KERNEL_ARG_DEV_MEM_ADDR, sizeof(kernel_arg_t), 0));
}
// upload tiles buffer
std::cout << "upload tiles buffer" << std::endl;
{
auto buf_ptr = (uint8_t*)vx_host_ptr(staging_buf);
memcpy(buf_ptr, tilebuf.data(), tilebuf.size());
RT_CHECK(vx_copy_to_dev(staging_buf, tilebuf_addr, tilebuf.size(), 0));
}
// upload primitives buffer
std::cout << "upload primitives buffer" << std::endl;
{
auto buf_ptr = (uint8_t*)vx_host_ptr(staging_buf);
memcpy(buf_ptr, primbuf.data(), primbuf.size());
RT_CHECK(vx_copy_to_dev(staging_buf, primbuf_addr, primbuf.size(), 0));
}
// clear depth buffer
std::cout << "clear depth buffer" << std::endl;
{
auto buf_ptr = (uint32_t*)vx_host_ptr(staging_buf);
for (uint32_t i = 0; i < (cbuf_size/4); ++i) {
buf_ptr[i] = clear_depth;
}
RT_CHECK(vx_copy_to_dev(staging_buf, kernel_arg.dst_addr, cbuf_size, 0));
}
// clear destination buffer
std::cout << "clear destination buffer" << std::endl;
{
auto buf_ptr = (uint32_t*)vx_host_ptr(staging_buf);
for (uint32_t i = 0; i < (cbuf_size/4); ++i) {
buf_ptr[i] = clear_color;
}
RT_CHECK(vx_copy_to_dev(staging_buf, kernel_arg.dst_addr, cbuf_size, 0));
}
// configure texture units
if (tex_enabled) {
vx_dcr_write(device, DCR_TEX_STAGE, 0);
vx_dcr_write(device, DCR_TEX_LOGDIM, (tex_logheight << 16) | tex_logwidth);
vx_dcr_write(device, DCR_TEX_FORMAT, tex_format);
vx_dcr_write(device, DCR_TEX_WRAP, (tex_wrap << 16) | tex_wrap);
vx_dcr_write(device, DCR_TEX_FILTER, tex_filter);
vx_dcr_write(device, DCR_TEX_ADDR, tbuf_addr);
for (uint32_t i = 0; i < mip_offsets.size(); ++i) {
assert(i < TEX_LOD_MAX);
vx_dcr_write(device, DCR_TEX_MIPOFF(i), mip_offsets.at(i));
};
}
// configure raster units
vx_dcr_write(device, DCR_RASTER_TBUF_ADDR, tilebuf_addr);
vx_dcr_write(device, DCR_RASTER_TILE_COUNT, num_tiles);
vx_dcr_write(device, DCR_RASTER_PBUF_ADDR, primbuf_addr);
vx_dcr_write(device, DCR_RASTER_PBUF_STRIDE, primbuf_stride);
// configure rop buffers
vx_dcr_write(device, DCR_ROP_ZBUF_ADDR, zbuf_addr);
vx_dcr_write(device, DCR_ROP_ZBUF_PITCH, zbuf_pitch);
vx_dcr_write(device, DCR_ROP_CBUF_ADDR, cbuf_addr);
vx_dcr_write(device, DCR_ROP_CBUF_PITCH, cbuf_pitch);
vx_dcr_write(device, DCR_ROP_CBUF_MASK, 0xffffffff);
// configure rop depth states
vx_dcr_write(device, DCR_ROP_DEPTH_FUNC, ROP_DEPTH_FUNC_LESS);
vx_dcr_write(device, DCR_ROP_DEPTH_MASK, 1);
vx_dcr_write(device, DCR_ROP_STENCIL_FUNC, (ROP_DEPTH_FUNC_ALWAYS << 16) // back
| (ROP_DEPTH_FUNC_ALWAYS << 0)); // front
vx_dcr_write(device, DCR_ROP_STENCIL_ZPASS, (ROP_STENCIL_OP_KEEP << 16) // back
| (ROP_STENCIL_OP_KEEP << 0)); // front
vx_dcr_write(device, DCR_ROP_STENCIL_ZPASS, (ROP_STENCIL_OP_KEEP << 16) // back
| (ROP_STENCIL_OP_KEEP << 0)); // front
vx_dcr_write(device, DCR_ROP_STENCIL_FAIL, (ROP_STENCIL_OP_KEEP << 16) // back
| (ROP_STENCIL_OP_KEEP << 0)); // front
vx_dcr_write(device, DCR_ROP_STENCIL_MASK, (0xff << 16) // back
| (0xff << 0)); // front
vx_dcr_write(device, DCR_ROP_STENCIL_REF, (0 << 16) // back
| (0 << 0)); // front
// configure rop blend stats
vx_dcr_write(device, DCR_ROP_BLEND_MODE, (ROP_BLEND_MODE_ADD << 16) // DST
| (ROP_BLEND_MODE_ADD << 0)); // SRC
vx_dcr_write(device, DCR_ROP_BLEND_FUNC, (ROP_BLEND_FUNC_ZERO << 24) // DST_A
| (ROP_BLEND_FUNC_ONE_MINUS_SRC_A << 16) // DST_RGB
| (ROP_BLEND_FUNC_ONE << 8) // SRC_A
| (ROP_BLEND_FUNC_SRC_A << 0)); // SRC_RGB
vx_dcr_write(device, DCR_ROP_LOGIC_OP, ROP_LOGIC_OP_COPY);
// run tests
std::cout << "render" << std::endl;
RT_CHECK(render(cbuf_addr, cbuf_size, dst_width, dst_height));
// cleanup
std::cout << "cleanup" << std::endl;
cleanup();
if (reference_file) {
auto errors = CompareImages(output_file, reference_file, FORMAT_A8R8G8B8);
if (0 == errors) {
std::cout << "PASSED!" << std::endl;
} else {
std::cout << "FAILED!" << std::endl;
return errors;
}
}
return 0;
}