vortex/tests/regression/diverge/main.cpp
2025-05-03 21:38:28 -07:00

252 lines
No EOL
6.3 KiB
C++

#include <iostream>
#include <unistd.h>
#include <string.h>
#include <vortex.h>
#include <vector>
#include <assert.h>
#include "common.h"
#define RT_CHECK(_expr) \
do { \
int _ret = _expr; \
if (0 == _ret) \
break; \
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
cleanup(); \
exit(-1); \
} while (false)
///////////////////////////////////////////////////////////////////////////////
const char* kernel_file = "kernel.vxbin";
uint32_t count = 0;
vx_device_h device = nullptr;
vx_buffer_h src_buffer = nullptr;
vx_buffer_h dst_buffer = nullptr;
vx_buffer_h krnl_buffer = nullptr;
vx_buffer_h args_buffer = nullptr;
kernel_arg_t kernel_arg = {};
static void show_usage() {
std::cout << "Vortex Test." << std::endl;
std::cout << "Usage: [-k: kernel] [-n words] [-h: help]" << std::endl;
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "n:k:h")) != -1) {
switch (c) {
case 'n':
count = atoi(optarg);
break;
case 'k':
kernel_file = optarg;
break;
case 'h':
show_usage();
exit(0);
break;
default:
show_usage();
exit(-1);
}
}
}
void cleanup() {
if (device) {
vx_mem_free(src_buffer);
vx_mem_free(dst_buffer);
vx_mem_free(krnl_buffer);
vx_mem_free(args_buffer);
vx_dev_close(device);
}
}
void gen_src_data(std::vector<int>& src_data, uint32_t size) {
src_data.resize(size);
for (uint32_t i = 0; i < size; ++i) {
int value = std::rand();
src_data[i] = value;
//std::cout << std::dec << i << ": value=0x" << std::hex << value << std::endl;
}
}
void gen_ref_data(std::vector<int>& ref_data, const std::vector<int>& src_data, uint32_t size) {
ref_data.resize(size);
for (int i = 0; i < (int)size; ++i) {
int value = src_data.at(i);
key_t key;
uint32_t samples = size;
while (samples--) {
if ((i & 0x1) == 0) {
value += 1;
}
}
// none taken
if (i >= 0x7fffffff) {
value = 0;
} else {
value += 2;
}
// diverge
if (i > 1) {
if (i > 2) {
value += 6;
} else {
value += 5;
}
} else {
if (i > 0) {
value += 4;
} else {
value += 3;
}
}
// all taken
if (i >= 0) {
value += 7;
} else {
value = 0;
}
// loop
for (int j = 0, n = i; j < n; ++j) {
value += src_data.at(j);
}
// switch
switch (i) {
case 0:
value += 1;
break;
case 1:
value -= 1;
break;
case 2:
value *= 3;
break;
case 3:
value *= 5;
break;
default:
assert(i < (int)size);
break;
}
// select
value += (i >= 0) ? ((i > 5) ? src_data.at(0) : i) : ((i < 5) ? src_data.at(1) : -i);
// min/max
value += std::min(src_data.at(i), value);
value += std::max(src_data.at(i), value);
ref_data[i] = value;
}
}
int main(int argc, char *argv[]) {
// parse command arguments
parse_args(argc, argv);
if (count == 0) {
count = 1;
}
std::srand(50);
// open device connection
std::cout << "open device connection" << std::endl;
RT_CHECK(vx_dev_open(&device));
uint64_t num_cores, num_warps, num_threads;
RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_CORES, &num_cores));
RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_WARPS, &num_warps));
RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_THREADS, &num_threads));
uint32_t total_threads = num_cores * num_warps * num_threads;
uint32_t num_points = count * total_threads;
uint32_t buf_size = num_points * sizeof(int32_t);
std::cout << "number of points: " << num_points << std::endl;
std::cout << "buffer size: " << buf_size << " bytes" << std::endl;
kernel_arg.num_points = num_points;
// allocate device memory
std::cout << "allocate device memory" << std::endl;
RT_CHECK(vx_mem_alloc(device, buf_size, VX_MEM_READ, &src_buffer));
RT_CHECK(vx_mem_address(src_buffer, &kernel_arg.src_addr));
RT_CHECK(vx_mem_alloc(device, buf_size, VX_MEM_WRITE, &dst_buffer));
RT_CHECK(vx_mem_address(dst_buffer, &kernel_arg.dst_addr));
std::cout << "dev_src=0x" << std::hex << kernel_arg.src_addr << std::endl;
std::cout << "dev_dst=0x" << std::hex << kernel_arg.dst_addr << std::endl;
// allocate host buffers
std::cout << "allocate host buffers" << std::endl;
std::vector<int32_t> h_src;
std::vector<int32_t> h_dst(num_points);
gen_src_data(h_src, num_points);
// upload source buffer
std::cout << "upload source buffer" << std::endl;
RT_CHECK(vx_copy_to_dev(src_buffer, h_src.data(), 0, buf_size));
// upload program
std::cout << "upload program" << std::endl;
RT_CHECK(vx_upload_kernel_file(device, kernel_file, &krnl_buffer));
// upload kernel argument
std::cout << "upload kernel argument" << std::endl;
RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &args_buffer));
// start device
std::cout << "start device" << std::endl;
RT_CHECK(vx_start(device, krnl_buffer, args_buffer));
// wait for completion
std::cout << "wait for completion" << std::endl;
RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT));
// download destination buffer
std::cout << "download destination buffer" << std::endl;
RT_CHECK(vx_copy_from_dev(h_dst.data(), dst_buffer, 0, buf_size));
// verify result
std::cout << "verify result" << std::endl;
int errors = 0;
{
std::vector<int32_t> h_ref;
gen_ref_data(h_ref, h_src, num_points);
for (uint32_t i = 0; i < num_points; ++i) {
int ref = h_ref[i];
int cur = h_dst[i];
if (cur != ref) {
std::cout << "error at result #" << std::dec << i
<< std::hex << ": actual 0x" << cur << ", expected 0x" << ref << std::endl;
++errors;
}
}
}
// cleanup
std::cout << "cleanup" << std::endl;
cleanup();
if (errors != 0) {
std::cout << "Found " << std::dec << errors << " errors!" << std::endl;
std::cout << "FAILED!" << std::endl;
return errors;
}
std::cout << "PASSED!" << std::endl;
return 0;
}