vortex/hw/simulate/simulator.cpp
2020-07-27 16:01:56 -04:00

356 lines
No EOL
8.8 KiB
C++

#include "simulator.h"
#include <iostream>
#include <fstream>
#include <iomanip>
uint64_t timestamp = 0;
double sc_time_stamp() {
return timestamp;
}
Simulator::Simulator() {
// force random values for unitialized signals
Verilated::randReset(2);
// Turn off assertion before reset
Verilated::assertOn(false);
ram_ = nullptr;
vortex_ = new VVortex();
dram_rsp_active_ = false;
snp_req_active_ = false;
#ifdef VCD_OUTPUT
Verilated::traceEverOn(true);
trace_ = new VerilatedVcdC();
trace_->set_time_unit("1ns");
vortex_->trace(trace_, 99);
trace_->open("trace.vcd");
#endif
}
Simulator::~Simulator() {
#ifdef VCD_OUTPUT
trace_->close();
#endif
delete vortex_;
}
void Simulator::attach_ram(RAM* ram) {
ram_ = ram;
dram_rsp_vec_.clear();
}
void Simulator::reset() {
#ifndef NDEBUG
std::cout << timestamp << ": [sim] reset()" << std::endl;
#endif
vortex_->reset = 1;
this->step();
vortex_->reset = 0;
dram_rsp_vec_.clear();
// Turn on assertion after reset
Verilated::assertOn(true);
}
void Simulator::step() {
vortex_->clk = 0;
this->eval();
vortex_->clk = 1;
this->eval();
this->eval_dram_bus();
this->eval_io_bus();
this->eval_csr_bus();
this->eval_snp_bus();
}
void Simulator::eval() {
vortex_->eval();
#ifdef VCD_OUTPUT
trace_->dump(timestamp);
#endif
++timestamp;
}
void Simulator::eval_dram_bus() {
if (ram_ == nullptr) {
vortex_->dram_req_ready = 0;
return;
}
// schedule DRAM responses
int dequeue_index = -1;
for (int i = 0; i < dram_rsp_vec_.size(); i++) {
if (dram_rsp_vec_[i].cycles_left > 0) {
dram_rsp_vec_[i].cycles_left -= 1;
}
if ((dequeue_index == -1)
&& (dram_rsp_vec_[i].cycles_left == 0)) {
dequeue_index = i;
}
}
// send DRAM response
if (dram_rsp_active_
&& vortex_->dram_rsp_valid
&& vortex_->dram_rsp_ready) {
dram_rsp_active_ = false;
}
if (!dram_rsp_active_) {
if (dequeue_index != -1) {
vortex_->dram_rsp_valid = 1;
memcpy((uint8_t*)vortex_->dram_rsp_data, dram_rsp_vec_[dequeue_index].block.data(), GLOBAL_BLOCK_SIZE);
vortex_->dram_rsp_tag = dram_rsp_vec_[dequeue_index].tag;
dram_rsp_vec_.erase(dram_rsp_vec_.begin() + dequeue_index);
dram_rsp_active_ = true;
} else {
vortex_->dram_rsp_valid = 0;
}
}
// handle DRAM stalls
bool dram_stalled = false;
#ifdef ENABLE_DRAM_STALLS
if (0 == ((timestamp/2) % DRAM_STALLS_MODULO)) {
dram_stalled = true;
} else
if (dram_rsp_vec_.size() >= DRAM_RQ_SIZE) {
dram_stalled = true;
}
#endif
// process DRAM requests
if (!dram_stalled) {
if (vortex_->dram_req_valid) {
if (vortex_->dram_req_rw) {
uint64_t byteen = vortex_->dram_req_byteen;
unsigned base_addr = (vortex_->dram_req_addr * GLOBAL_BLOCK_SIZE);
uint8_t* data = (uint8_t*)(vortex_->dram_req_data);
for (int i = 0; i < GLOBAL_BLOCK_SIZE; i++) {
if ((byteen >> i) & 0x1) {
(*ram_)[base_addr + i] = data[i];
}
}
} else {
dram_req_t dram_req;
dram_req.cycles_left = DRAM_LATENCY;
dram_req.tag = vortex_->dram_req_tag;
ram_->read(vortex_->dram_req_addr * GLOBAL_BLOCK_SIZE, GLOBAL_BLOCK_SIZE, dram_req.block.data());
dram_rsp_vec_.push_back(dram_req);
}
}
}
vortex_->dram_req_ready = ~dram_stalled;
}
void Simulator::eval_io_bus() {
if (vortex_->io_req_valid
&& vortex_->io_req_rw
&& ((vortex_->io_req_addr << 2) == IO_BUS_ADDR_COUT)) {
uint32_t data_write = (uint32_t)vortex_->io_req_data;
char c = (char)data_write;
std::cout << c;
}
vortex_->io_req_ready = 1;
vortex_->io_rsp_valid = 0;
}
void Simulator::eval_csr_bus() {
vortex_->csr_io_req_valid = 0;
vortex_->csr_io_req_coreid = 0;
vortex_->csr_io_req_addr = 0;
vortex_->csr_io_req_rw = 0;
vortex_->csr_io_req_data = 0;
vortex_->csr_io_rsp_ready = 1;
}
void Simulator::eval_snp_bus() {
if (snp_req_active_) {
if (vortex_->snp_rsp_valid) {
assert(pending_snp_reqs_ > 0);
--pending_snp_reqs_;
#ifdef DBG_PRINT_CACHE_SNP
std::cout << timestamp << ": [sim] snp rsp: tag=" << vortex_->snp_rsp_tag << " pending=" << pending_snp_reqs_ << std::endl;
#endif
}
if (vortex_->snp_req_valid && vortex_->snp_req_ready) {
if (snp_req_size_) {
vortex_->snp_req_addr += 1;
vortex_->snp_req_tag += 1;
--snp_req_size_;
++pending_snp_reqs_;
#ifdef DBG_PRINT_CACHE_SNP
std::cout << timestamp << ": [sim] snp req: addr=" << std::hex << vortex_->snp_req_addr << std::dec << " tag=" << vortex_->snp_req_tag << " remain=" << snp_req_size_ << std::endl;
#endif
} else {
vortex_->snp_req_valid = 0;
}
}
if (!vortex_->snp_req_valid
&& 0 == pending_snp_reqs_) {
snp_req_active_ = false;
}
} else {
vortex_->snp_req_valid = 0;
vortex_->snp_rsp_ready = 0;
}
}
void Simulator::wait(uint32_t cycles) {
for (int i = 0; i < cycles; ++i) {
this->step();
}
}
bool Simulator::is_busy() {
return vortex_->busy || snp_req_active_;
}
void Simulator::flush_caches(uint32_t mem_addr, uint32_t size) {
#ifndef NDEBUG
std::cout << timestamp << ": [sim] flush_caches()" << std::endl;
#endif
if (0 == size)
return;
snp_req_active_ = true;
snp_req_size_ = (size + GLOBAL_BLOCK_SIZE - 1) / GLOBAL_BLOCK_SIZE;
vortex_->snp_req_addr = mem_addr / GLOBAL_BLOCK_SIZE;
vortex_->snp_req_tag = 0;
vortex_->snp_req_valid = 1;
vortex_->snp_rsp_ready = 1;
--snp_req_size_;
pending_snp_reqs_ = 1;
#ifdef DBG_PRINT_CACHE_SNP
std::cout << timestamp << ": [sim] snp req: addr=" << std::hex << vortex_->snp_req_addr << std::dec << " tag=" << vortex_->snp_req_tag << " remain=" << snp_req_size_ << std::endl;
#endif
}
void Simulator::run() {
#ifndef NDEBUG
std::cout << timestamp << ": [sim] run()" << std::endl;
#endif
// reset the device
this->reset();
// execute program
while (vortex_->busy
&& !vortex_->ebreak) {
this->step();
}
// wait 5 cycles to flush the pipeline
this->wait(5);
}
int Simulator::get_status(int reg) {
// check riscv-tests PASSED/FAILED status
#if (NUM_CLUSTERS == 1 && NUM_CORES == 1)
return (int)vortex_->Vortex->genblk1__DOT__cluster->genblk1__BRA__0__KET____DOT__core->pipeline->commit->writeback->last_data_wb[reg];
#elif (NUM_CLUSTERS == 1)
return (int)vortex_->Vortex->genblk1__DOT__cluster->genblk1__BRA__0__KET____DOT__core->pipeline->commit->writeback->last_data_wb[reg];
#else
return (int)vortex_->Vortex->genblk2__DOT__genblk1__BRA__0__KET____DOT__cluster->genblk1__BRA__0__KET____DOT__core->pipeline->commit->writeback->last_data_wb[reg];
#endif
}
void Simulator::load_bin(const char* program_file) {
if (ram_ == nullptr)
return;
std::ifstream ifs(program_file);
if (!ifs) {
std::cout << "error: " << program_file << " not found" << std::endl;
}
ifs.seekg(0, ifs.end);
auto size = ifs.tellg();
std::vector<uint8_t> content(size);
ifs.seekg(0, ifs.beg);
ifs.read((char*)content.data(), size);
ram_->write(STARTUP_ADDR, size, content.data());
}
void Simulator::load_ihex(const char* program_file) {
if (ram_ == nullptr)
return;
auto hti = [&](char c)->uint32_t {
if (c >= 'A' && c <= 'F')
return c - 'A' + 10;
if (c >= 'a' && c <= 'f')
return c - 'a' + 10;
return c - '0';
};
auto hToI = [&](const char *c, uint32_t size)->uint32_t {
uint32_t value = 0;
for (uint32_t i = 0; i < size; i++) {
value += hti(c[i]) << ((size - i - 1) * 4);
}
return value;
};
std::ifstream ifs(program_file);
if (!ifs) {
std::cout << "error: " << program_file << " not found" << std::endl;
}
ifs.seekg(0, ifs.end);
uint32_t size = ifs.tellg();
std::vector<char> content(size);
ifs.seekg(0, ifs.beg);
ifs.read(content.data(), size);
int offset = 0;
char *line = content.data();
while (true) {
if (line[0] == ':') {
uint32_t byteCount = hToI(line + 1, 2);
uint32_t nextAddr = hToI(line + 3, 4) + offset;
uint32_t key = hToI(line + 7, 2);
switch (key) {
case 0:
for (uint32_t i = 0; i < byteCount; i++) {
(*ram_)[nextAddr + i] = hToI(line + 9 + i * 2, 2);
}
break;
case 2:
offset = hToI(line + 9, 4) << 4;
break;
case 4:
offset = hToI(line + 9, 4) << 16;
break;
default:
break;
}
}
while (*line != '\n' && size != 0) {
++line;
--size;
}
if (size <= 1)
break;
++line;
--size;
}
}
void Simulator::print_stats(std::ostream& out) {
out << std::left;
out << std::setw(24) << "# of total cycles:" << std::dec << timestamp/2 << std::endl;
}