vortex/tests/regression/io_addr/main.cpp
2021-06-17 21:37:41 -07:00

241 lines
No EOL
6.6 KiB
C++

#include <iostream>
#include <unistd.h>
#include <string.h>
#include <vortex.h>
#include <vector>
#include <VX_config.h>
#include "common.h"
#define NUM_ADDRS 16
#define RT_CHECK(_expr) \
do { \
int _ret = _expr; \
if (0 == _ret) \
break; \
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
cleanup(); \
exit(-1); \
} while (false)
///////////////////////////////////////////////////////////////////////////////
const char* kernel_file = "kernel.bin";
uint32_t count = 0;
size_t usr_test_mem;
std::vector<uint32_t> src_data;
std::vector<int32_t> ref_data;
vx_device_h device = nullptr;
vx_buffer_h staging_buf = nullptr;
static void show_usage() {
std::cout << "Vortex Test." << std::endl;
std::cout << "Usage: [-k: kernel] [-n words] [-h: help]" << std::endl;
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "n:k:h?")) != -1) {
switch (c) {
case 'n':
count = atoi(optarg);
break;
case 'k':
kernel_file = optarg;
break;
case 'h':
case '?': {
show_usage();
exit(0);
} break;
default:
show_usage();
exit(-1);
}
}
}
void cleanup() {
if (staging_buf) {
vx_buf_release(staging_buf);
}
if (device) {
vx_dev_close(device);
}
}
void gen_input_data(uint32_t num_points) {
src_data.resize(num_points);
uint32_t u = 0, k = 0;
for (uint32_t i = 0; i < num_points; ++i) {
if (0 ==(i % 4)) {
k = (i + u) % NUM_ADDRS;
++u;
}
uint32_t j = i % NUM_ADDRS;
uint32_t v = ((j == k) ? usr_test_mem : IO_BASE_ADDR) + j * sizeof(uint32_t);
src_data[i] = v;
std::cout << std::dec << i << "," << k << ": value=0x" << std::hex << v << std::endl;
}
}
void gen_ref_data(uint32_t num_points) {
ref_data.resize(num_points);
for (uint32_t i = 0; i < num_points; ++i) {
uint32_t j = i % NUM_ADDRS;
ref_data[i] = j * j;
}
}
int run_test(const kernel_arg_t& kernel_arg,
uint32_t buf_size,
uint32_t num_points) {
// start device
std::cout << "start device" << std::endl;
RT_CHECK(vx_start(device));
// wait for completion
std::cout << "wait for completion" << std::endl;
RT_CHECK(vx_ready_wait(device, -1));
// download destination buffer
std::cout << "download destination buffer" << std::endl;
RT_CHECK(vx_copy_from_dev(staging_buf, kernel_arg.dst_ptr, buf_size, 0));
// verify result
std::cout << "verify result" << std::endl;
{
int errors = 0;
auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf);
for (uint32_t i = 0; i < num_points; ++i) {
int ref = ref_data.at(i);
int cur = buf_ptr[i];
if (cur != ref) {
std::cout << "error at result #" << std::dec << i
<< std::hex << ": actual 0x" << cur << ", expected 0x" << ref << std::endl;
++errors;
}
}
if (errors != 0) {
std::cout << "Found " << std::dec << errors << " errors!" << std::endl;
std::cout << "FAILED!" << std::endl;
return 1;
}
}
return 0;
}
int main(int argc, char *argv[]) {
size_t value;
kernel_arg_t kernel_arg;
// parse command arguments
parse_args(argc, argv);
if (count == 0) {
count = 1;
}
std::srand(50);
// open device connection
std::cout << "open device connection" << std::endl;
RT_CHECK(vx_dev_open(&device));
uint32_t num_points = count;
RT_CHECK(vx_alloc_dev_mem(device, NUM_ADDRS * sizeof(uint32_t), &usr_test_mem));
// generate input data
gen_input_data(num_points);
// generate reference data
gen_ref_data(num_points);
uint32_t src_buf_size = src_data.size() * sizeof(int32_t);
uint32_t dst_buf_size = src_data.size() * sizeof(int32_t);
std::cout << "number of points: " << num_points << std::endl;
std::cout << "buffer size: " << dst_buf_size << " bytes" << std::endl;
// upload program
std::cout << "upload program" << std::endl;
RT_CHECK(vx_upload_kernel_file(device, kernel_file));
// allocate device memory
std::cout << "allocate device memory" << std::endl;
RT_CHECK(vx_alloc_dev_mem(device, src_buf_size, &value));
kernel_arg.src_ptr = value;
RT_CHECK(vx_alloc_dev_mem(device, dst_buf_size, &value));
kernel_arg.dst_ptr = value;
kernel_arg.num_points = num_points;
std::cout << "dev_src=" << std::hex << kernel_arg.src_ptr << std::endl;
std::cout << "dev_dst=" << std::hex << kernel_arg.dst_ptr << std::endl;
// allocate shared memory
std::cout << "allocate shared memory" << std::endl;
uint32_t staging_buf_size = std::max<uint32_t>(NUM_ADDRS * sizeof(uint32_t),
std::max<uint32_t>(src_buf_size,
std::max<uint32_t>(dst_buf_size,
sizeof(kernel_arg_t))));
RT_CHECK(vx_alloc_shared_mem(device, staging_buf_size, &staging_buf));
// upload kernel argument
std::cout << "upload kernel argument" << std::endl;
{
auto buf_ptr = (int*)vx_host_ptr(staging_buf);
memcpy(buf_ptr, &kernel_arg, sizeof(kernel_arg_t));
RT_CHECK(vx_copy_to_dev(staging_buf, KERNEL_ARG_DEV_MEM_ADDR, sizeof(kernel_arg_t), 0));
}
// upload test address data
{
auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf);
for (uint32_t i = 0; i < NUM_ADDRS; ++i) {
buf_ptr[i] = i * i;
}
}
RT_CHECK(vx_copy_to_dev(staging_buf, 0xFF000000, NUM_ADDRS * sizeof(uint32_t), 0));
RT_CHECK(vx_copy_to_dev(staging_buf, usr_test_mem, NUM_ADDRS * sizeof(uint32_t), 0));
// upload source buffer
{
auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf);
for (uint32_t i = 0; i < num_points; ++i) {
buf_ptr[i] = src_data.at(i);
}
}
std::cout << "upload source buffer" << std::endl;
RT_CHECK(vx_copy_to_dev(staging_buf, kernel_arg.src_ptr, src_buf_size, 0));
// clear destination buffer
{
auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf);
for (uint32_t i = 0; i < num_points; ++i) {
buf_ptr[i] = 0xdeadbeef;
}
}
std::cout << "clear destination buffer" << std::endl;
RT_CHECK(vx_copy_to_dev(staging_buf, kernel_arg.dst_ptr, dst_buf_size, 0));
// run tests
std::cout << "run tests" << std::endl;
RT_CHECK(run_test(kernel_arg, dst_buf_size, num_points));
// cleanup
std::cout << "cleanup" << std::endl;
cleanup();
std::cout << "PASSED!" << std::endl;
return 0;
}