2.8 KiB
Skyler MacDougall
Homework 2: Due 1/29/2020
-
Consider the circuit below, with
R=1k\Omega
.-
Determine the transconductance.
g={1\over R}={1\over 1k\Omega}=100\mu S
-
For
V_1=10V
determinei_L
forR_L=500\Omega
.i_L=i_i={V_i\over R}={10V\over1k\Omega}\ i_L=1mA
-
Repeat (2.) for
R_L=1k\Omega
.i_i=i_L \therefore i_L = 1mA
-
Determine the maximum value for
R_L
for linear operation.i_iR_L<V_{sat};i_i=1mA;V_{sat}=13V\ R_L=1.3k\Omega
-
-
Consider the circuit below.
-
Determine the transconductance.
g={1\over R}={1\over 2k\Omega}=500\mu S
-
For
V_i=6V
andR_L=1.2k\Omega
, determinei_L
.i_L={V_i\over R}={6V\over 2k\Omega}\ i_L=3mA
-
Determine the maximum value for
R_L
for linear operation.R_Li_L<{V_{sat}\over2}
-
-
Consider the circuit below.
-
Determine the value of
\beta
.\beta=1+{R_2\over R_1}=1+{8k\Omega\over2k\Omega}\ \beta=5
-
For
i_i=0.6mA
andR_L=1k\Omega
, verify linear operation.(R_2+\beta R_L)(i_i)<V_{sat}\ (8k\Omega+5(1k\Omega))(0.6mA)<13V\ 13\cancel{k}\Omega*0.6\cancel{m}A<13V \ 7.8V<13V
-
Determine
i_L
for the conditions in (2.)i_L=\beta i_i\ i_L=3mA
-
-
Consider the circuit below.
-
Write an equation for
V_O
in terms of the three input voltages.V_O=-(V_1+2V_2+4V_3)
-
Determine
V_O
givenV_1=10V;V_2=3V;V_3=-7V
.V_O=-(10V+2(3V)+4(-7V))=28V-16V\ V_O=12V
-
Determine
V_O
givenV_1=8V;V_2=-4V;V_3=5V
.V_O=-(\cancel{8V}+\cancel{2(4V)}+4(5V))\ V_O=-20V
-
-
Design a current controlled voltage source to have a transresistance of
2k\Omega
. Then determine the peak valuei_{i_{pk}}
permitted for the input current for linear operation.
V_O=-Ri_i<V_{sat}\
2k\Omega*i_i<13V\
i_i=6.5mA
- Design a linear combination circuit to combine two signals as follows:
v_o=-4v_1-8v_2
Using the following specifications:
R_{in}\ge10k\Omega
at both inputs- All resistance values
\le100k\Omega
- Design a balanced closed-loop differential circuit to combine two signals as follows:
v_o=3(v_1-v_2)
Use resistances in the range of
10k\Omega-100k\Omega
.