eeet-242/lab3-4/lab3-4.md

6.1 KiB

Objective

The objective of this lab was to study the relationship between primary and secondary values in a single phase transformer.

Procedure

For lab 3, for each part, connect the power supply to the transformer according to the respective figure below. Then, connect the load to the opposite side of the transformer. Then measure the voltage, current, and power, using the wattmeter.

Results and Conclusions

At the end of lab 3, we showed that changing the turns ratios of the transformers changes the power out to the load, and that the load being partially reactive does pass over to the primary side of the transformer.

At the end of lab 4, we were able to calculate the internal losses of the transformer. We found the internal resistance for the core to be R_m=5760\Omega and X_m=5559\Omega. We then found the internal resistances of the transformer to be R_f=23\Omega and X_f=25.3\Omega. We also found that the efficiency of a transformer goes down as the load resistance goes up.

Wiring Diagrams

Lab 3

Figure 1: Resistive Circuit 1

Figure 2: Resistive Circuit 2

Figure 3: Resistive and Inductive Circuit 1

Figure 4: Resistive and inductive Circuit 2

Lab 4

Figure 5: Short Circuit Test

Figure 6: Open Circuit Test

Load Test

Experimental Data

Lab 3

Resistive Circuit 1

Measurement Value
V_p 120.17V
V_s 58.7V
I_p 0.0962A
I_s 0.1425A
P_p 11.30W
P_s 8.48W
S_p 11.56VA
S_s 8.36VA
a \approx2.047

V_p,V_s,I_p,I_s,P_p,P_s\ measured\ S_p=V_p\times I_p=120.17V\times0.0962A=11.56VA\ S_s=V_s\times I_s=58.7V\times0.1425A=8.36VA\ a=\frac{V_p}{V_s}=\frac{120.17V}{58.7V}\approx2.047

Resistive Circuit 2

Measurement Value
V_p 120.54V
V_s 99.03V
I_p 0.234A
I_s 0.2414A
P_p 28.21W
P_s 24.25W
S_p 28.206VA
S_s 23.906VA
a \approx1.217

V_p,V_s,I_p,I_s,P_p,P_s\ measured\ S_p=V_p\times I_p=120.54V\times0.234A=28.206VA\ S_s=V_s\times I_s=99.03V\times0.2414A=23.906VA\ a=\frac{V_p}{V_s}=\frac{120.54V}{99.03V}\approx1.217

Resistive and Inductive Circuit 1

Measurement Value
V_p 119.95V
V_s 58.41V
I_p 0.0831A
I_s 0.1066A
P_p 7.95W
P_s 5.19W
S_p 9.97VA
S_s 6.23VA
a \approx2.054

V_p,V_s,I_p,I_s,P_p,P_s\ measured\ S_p=V_p\times I_p=119.95V\times0.0831A=9.97VA\ S_s=V_s\times I_s=58.41V\times0.1066A=6.23VA\ a=\frac{V_p}{V_s}=\frac{119.95V}{58.41V}\approx2.054

Resistive and Inductive Circuit 2

Measurement Value
V_p 119.93V
V_s 221.8V
I_p 1.138A
I_s 0.417A
P_p 97.9W
P_s 77.3W
S_p 136.48VA
S_s 92.49VA
a \approx0.54

V_p,V_s,I_p,I_s,P_p,P_s\ measured\ S_p=V_p\times I_p=119.93V\times1.138A=136.48VA\ S_s=V_s\times I_s=221.8V\times0.417A=92.49VA\ a=\frac{V_p}{V_s}=\frac{119.93V}{221.8V}\approx0.54

Lab 4

Short Circuit Test

% I_H\ (A) V_H\ (V) P_H\ (W)
25 0.125 4.26 0.362
50 0.25 8.59 1.463
75 0.375 12.73 3.17
90 0.45 15.25 4.63
100 0.5 17.09 5.75

All values measured R_f={P\over I^2}={5.75W\over0.5A^2}\R_f=23\Omega\ X_f=\sqrt{({V\over I})^2- ({P\over I^2})^2}= \sqrt{({17.09V\over 0.5A})^2- ({5.75W\over0.5A^2})^2}\ X_f=25.3\Omega

Open Circuit Test

% V_L\ (V) I_L\ (A) P_L\ (W)
25 15 0.0227 0.248
50 30 0.0339 0.771
75 45 0.0458 1.576
100 60 0.0600 2.50
125 75 0.0829 3.92

All values measured R_m=a^2{V_s^2\over P}= 4({60V^2\over2.5W})\R_m=5760\Omega\ X_m={V^2\over\sqrt{(VI)^2-P^2}}={60V^2\over\sqrt{(60V\times0.06A)^2-2.5W^2}}\ X_m=5559\Omega

Load Test

R_L I_H(A) V_H(V) P_H(W) I_L(A) V_{L_{NL}}(V) V_{L_{FL}}(V) P_L(W) Eff % Reg
1200 0.0517 120 5.49 0.0492 59.3 59.6 2.8 51.0\% 0.50
600 0.0719 120 8.31 0.0951 59.1 59.6 5.67 68.2\% 0.84
400 0.0954 120 11.20 0.1428 58.7 59.6 8.48 75.7\% 1.51
300 0.1234 120 14.62 0.1996 58.6 59.6 11.79 80.6\% 1.68
240 0.1470 120 17.43 0.2463 58.3 59.6 14.50 83.2\% 2.18
200 0.1688 120 20.04 0.2903 57.9 59.6 16.98 84.7\% 2.85

eff(%)=\frac{P_L}{P_H}=\frac{2.8}{5.49}\approx51.0%\ %\ reg = \frac{V_{L_{NL}-V_{L_{FL}}}}{V_{L_{FL}}}=\frac{59.3-59.6}{59.6}=0.50%