End of lecture
This commit is contained in:
parent
d4fef57913
commit
2c8e2a8680
2 changed files with 152 additions and 0 deletions
100
week9/15-03-2022/15-03-2022.tex
Normal file
100
week9/15-03-2022/15-03-2022.tex
Normal file
|
@ -0,0 +1,100 @@
|
|||
% File: 20-01-2022.tex
|
||||
% Created: 12:28:35 Thu, 20 Jan 2022 EST
|
||||
% Last Change: 12:28:35 Thu, 20 Jan 2022 EST
|
||||
%
|
||||
\documentclass[letterpaper]{article}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{cancel}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{listings}
|
||||
\usepackage[shortlabels]{enumitem}
|
||||
\usepackage{soul}
|
||||
%\usepackage[smartEllipses,hashEnumerators,hybrid]{markdown}
|
||||
\usepackage{geometry}
|
||||
\usepackage{dirtytalk}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{lplfitch}
|
||||
|
||||
\geometry{portrait, margin=1in}
|
||||
|
||||
%\begin{minted}[linenos,bgcolor=LightGray]{[language]}
|
||||
|
||||
\date{03/15/2022}
|
||||
\title{%
|
||||
Strong Induction\\
|
||||
\large MATH--190--01 : Discrete Mathematics for Computing}
|
||||
\author{Blizzard MacDougall}
|
||||
\begin{document}
|
||||
\maketitle
|
||||
\pagenumbering{arabic}
|
||||
Previously, we talked on mathematical induction.
|
||||
Its used when we can't really use mathematical induction isn't really enough.
|
||||
In mathematical induction, the inductive step assumes $P(n)$ and use that to
|
||||
show that $P(n+1)$ is also true.
|
||||
In strong induction, we instead assume $P(k)$, where $base \le k\le n$, and use
|
||||
that to prove that $P(n+1)$ is true.\\
|
||||
|
||||
\section{Proof Example 1}
|
||||
|
||||
Lets say that every integer greater than $1$ can be written as the product of
|
||||
prime numbers.
|
||||
The proof follows as such.\\
|
||||
|
||||
Let $P(n)$ be the predicate "$n$ can be written as a product of primes."
|
||||
|
||||
Basis step: $P(2)$ is true, since $2$ is, itself, a prime.
|
||||
|
||||
Inductive step: The inductive hypothesis is that $P(j)$ is true for every $2\le j\le k$.
|
||||
That is, for any $j$ between $2$ and $k$, we can write $j$ as the product of prime numbers.
|
||||
Now, we have to show that $P(k+1)$.
|
||||
Alternatively, we need to show that $k+1$ can be written as the product of primes.
|
||||
|
||||
There are two cases to consider, when $k+1$ is prime, and when it is composite.
|
||||
|
||||
Case 1: If $k+1$ is prime, then we're done.
|
||||
|
||||
Case 2: If $k+1$ is composite, then we can write $k+1=a * b$ where $2\le a \le k+1$, and
|
||||
$2\le b \le k+1$. Since $b$ and $a$ are both less than $k$, through the inductive hypothesis
|
||||
they can also be written as a product of primes.
|
||||
Thus, if $k+1$ is composite, it can be written as a product of primes -- those primes
|
||||
in the factorizations of $a$ and $b$.\\
|
||||
|
||||
\section{Proof Example 2}
|
||||
Recall that the Fibonnacci sequence is the recursively defined sequence given by:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
a_0=1\\
|
||||
a_1=1\\
|
||||
a_{k+1}=a_k+a_{k-1}\ for\ k>1
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
The claim to prove is that $a_k\ge (\frac{3}{2})^{k-2}$ for every $k\ge1$\\
|
||||
|
||||
Let $P(n)$ be the predicate $a_{n}=a_k+a_{n-1}$.
|
||||
|
||||
Basis Step: $P(1)$ is true, since:
|
||||
\begin{equation}
|
||||
a_1=1\ge \frac{2}{3}=\left( \frac{3}{2} \right)^{-1}=\left( \frac{3}{2} \right)^{(1-2)}
|
||||
\end{equation}
|
||||
|
||||
Inductive Step: Assume $P(j)$ is true for all $1\le j\le k$. Now we have to show $P(k+1)$ is true.
|
||||
That is, that $a_{k+1}\ge\left( \frac{3}{2} \right)^{k-1}$
|
||||
By definition, we know that $a_{k+1}=a_k+a_{k-1}$.
|
||||
By the inductive hypothesis, we know that $a_k\ge\left( \frac{3}{2} \right)^{k-2}$.
|
||||
Additionally, we know that $a_{k-1}\ge\left( \frac{3}{2} \right)^{k-3}$.
|
||||
Given this, we can do the following:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
a_{k+1}=a_k+a_{k-1}\\
|
||||
\ge \left( \frac{3}{2} \right) ^{k-2} + \left( \frac{3}{2} \right) ^{k-2}\\
|
||||
=\left(1+\frac{3}{2}\right) \left( \frac{3}{2} \right)^{k-3}\\
|
||||
=\frac{5}{2}\left( \frac{3}{2} \right)^{k-3}\\
|
||||
\ge \frac{9}{4}\left( \frac{3}{2} \right)^{k-3}\\
|
||||
= \frac{3}{2}^2\left( \frac{3}{2} \right)^{k-3}\\
|
||||
=\left(\frac{3}{2}\right)^{k-1}
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
\end{document}
|
52
week9/17-03-2022/17-03-2022.tex
Normal file
52
week9/17-03-2022/17-03-2022.tex
Normal file
|
@ -0,0 +1,52 @@
|
|||
% File: 20-01-2022.tex
|
||||
% Created: 12:28:35 Thu, 20 Jan 2022 EST
|
||||
% Last Change: 12:28:35 Thu, 20 Jan 2022 EST
|
||||
%
|
||||
\documentclass[letterpaper]{article}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{cancel}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{listings}
|
||||
\usepackage[shortlabels]{enumitem}
|
||||
\usepackage{soul}
|
||||
%\usepackage[smartEllipses,hashEnumerators,hybrid]{markdown}
|
||||
\usepackage{geometry}
|
||||
\usepackage{dirtytalk}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{lplfitch}
|
||||
|
||||
\geometry{portrait, margin=1in}
|
||||
|
||||
%\begin{minted}[linenos,bgcolor=LightGray]{[language]}
|
||||
|
||||
\date{03/15/2022}
|
||||
\title{%
|
||||
Recursive Definitions and Structural Induction\\
|
||||
\large MATH--190--01 : Discrete Mathematics for Computing}
|
||||
\author{Blizzard MacDougall}
|
||||
\begin{document}
|
||||
\maketitle
|
||||
\pagenumbering{arabic}
|
||||
|
||||
Recursively defined functions have some initial value, and a defined rule for
|
||||
how to get to any other value.
|
||||
They can theoretically work for any integer, but for simplicity, we're only going to work
|
||||
with a domain of non-negative integers.
|
||||
|
||||
Note that this is similar to induction.
|
||||
Example:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
Basis: \sum_{k=0}^{n}a_k\\
|
||||
Recursive: \sum_{k=0}^{n}a_k=(\sum_{k=0}^{n-1}a_k) + a_n
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
$\Sigma$ is the alphabet (a set of characters.)
|
||||
$\Sigma$ does not necessarily mean the Latin alphabet.
|
||||
(i.e. $\Sigma=\{ 0,1\}$) is an acceptable definition.
|
||||
$\Sigma^*$ is the set of strings over the alphabet $\Sigma$
|
||||
You can define the length of a string recursively.
|
||||
|
||||
\end{document}
|
Loading…
Add table
Reference in a new issue