230 lines
4.3 KiB
TeX
230 lines
4.3 KiB
TeX
% File: 11-03-2021.tex
|
|
% Created: 10:16:20 Wed, 03 Nov 2021 EDT
|
|
% Last Change: 10:16:20 Wed, 03 Nov 2021 EDT
|
|
%
|
|
\documentclass[letterpaper]{article}
|
|
\usepackage{amsmath}
|
|
\usepackage{graphicx}
|
|
\usepackage{cancel}
|
|
\usepackage{amssymb}
|
|
\usepackage{listings}
|
|
\usepackage[shortlabels]{enumitem}
|
|
\usepackage{soul}
|
|
%\usepackage[smartEllipses,hashEnumerators,hybrid]{markdown}
|
|
\usepackage{minted}
|
|
\usepackage{geometry}
|
|
\usepackage{dirtytalk}
|
|
\usepackage{lplfitch}
|
|
|
|
\geometry{portrait, margin=1in}
|
|
|
|
%\begin{minted}[linenos,bgcolor=LightGray]{[language]}
|
|
|
|
\date{11/03/2021}
|
|
\title{%
|
|
Expanded TFL Proofs\\
|
|
\large PHIL--205--01:Symbolic Logic}
|
|
\author{Blizzard MacDougall}
|
|
\begin{document}
|
|
\maketitle
|
|
\pagenumbering{arabic}
|
|
Below is a complete list of available rules for TFL Proofs.
|
|
\section{Conjunction $\land$ Rules}
|
|
|
|
\subsection{$\land$ Elim}
|
|
\fitchctx
|
|
{
|
|
\pline[m.]{A\land B}\\
|
|
\pline[n.]{A}[\lande{m}]
|
|
}
|
|
\subsection{$\land$ Intro}
|
|
\fitchctx
|
|
{
|
|
\pline[m.]{A}\\
|
|
\pline[n.]{B}\\
|
|
\pline[r.]{A\land B}[\landi{m, n}]
|
|
|
|
}
|
|
\section{Disjunction $\lor$ Rules}
|
|
\subsection{$\lor$ Intro}
|
|
\fitchctx
|
|
{
|
|
\pline[m.]{A}\\
|
|
\pline[n.]{A\lor B}[\lori{m}]
|
|
|
|
}
|
|
\subsection{$\lor$ Elim}
|
|
\fitchctx
|
|
{
|
|
\pline[m.]{A\lor B}\\
|
|
\subproof
|
|
{
|
|
\pline[i.]{A}
|
|
}
|
|
{
|
|
\pline[j.]{C}
|
|
}
|
|
\subproof
|
|
{
|
|
\pline[k.]{B}
|
|
}
|
|
{
|
|
\pline[l.]{C}
|
|
}
|
|
\pline[r.]{C}[\lore{m}{i--j}{k--l}]
|
|
}
|
|
|
|
\section{Conditional $\rightarrow$ Rules}
|
|
\subsection{$\rightarrow$ Elim (\textit{Modus Ponens})}
|
|
\fitchctx
|
|
{
|
|
\pline[m.]{P\lif Q}\\
|
|
\pline[n.]{P}\\
|
|
\pline[r.]{Q}[\life{m}{n}]
|
|
}
|
|
Note that order in the reference is important. You must first reference the conditional before referencing the anticedent.
|
|
|
|
\subsection{$\rightarrow$ Intro}
|
|
\fitchctx
|
|
{
|
|
\subproof
|
|
{
|
|
\pline[i.]{A}
|
|
}
|
|
{
|
|
\pline[j.]{B}
|
|
}
|
|
\pline[r.]{A\lif B}[\lifi{i--j}]
|
|
}
|
|
|
|
\section{Biconditional $\leftrightarrow$ Rules}
|
|
\subsection{$\leftrightarrow$ Intro}
|
|
\fitchctx
|
|
{
|
|
\subproof
|
|
{
|
|
\pline[i.]{A}
|
|
}
|
|
{
|
|
\pline[j.]{B}
|
|
}
|
|
\subproof
|
|
{
|
|
\pline[k.]{B}
|
|
}
|
|
{
|
|
\pline[l.]{A}
|
|
}
|
|
\pline{A\liff B}[\liffi{i--j}{k--l}]
|
|
}
|
|
\subsection{$\leftrightarrow$ Elim}
|
|
\fitchctx
|
|
{
|
|
\pline[m.]{A\liff B}\\
|
|
\pline[n.]{A}\\
|
|
\pline[r.]{B}[\liffe{m}{n}]
|
|
}
|
|
|
|
As with $\rightarrow$'s reference, first list the biconditional, then the condition.
|
|
|
|
\section{Negation $\neg$ Rules}
|
|
\subsection{$\neg$ Elim}
|
|
Any double negation can be eliminated.
|
|
|
|
\subsection{$\bot$ Intro}
|
|
This is proven by showing a contradiction.\\
|
|
\fitchctx
|
|
{
|
|
\pline[1.]{P}\\
|
|
\pline[2.]{\neg P}\\
|
|
\pline[3.]{\lfalse}
|
|
}
|
|
\subsection{$\neg$ Intro}
|
|
We have to prove this by proof by contradiction. (Shown below)\\
|
|
\fitchctx
|
|
{
|
|
\subproof
|
|
{
|
|
\pline[1.]{P}
|
|
}
|
|
{
|
|
\pline[2.]{\lfalse}
|
|
}
|
|
\pline[3.]{\neg P}[\lfalsei{1--2}]
|
|
}
|
|
|
|
\subsection{Explosions}
|
|
\fitchctx
|
|
{
|
|
\pline[m.]{\lfalse}\\
|
|
\pline[r.]{A}[\textbf{X:} m]
|
|
}
|
|
Anything can be proven after a contradiction.
|
|
|
|
\subsection{Tertium non datur}
|
|
Latin for \say{no third way}.\\
|
|
\fitchctx
|
|
{
|
|
\subproof
|
|
{
|
|
\pline[i.]{A}
|
|
}
|
|
{
|
|
\pline[j.]{B}
|
|
}
|
|
\subproof
|
|
{
|
|
\pline[k.]{\lnot A}
|
|
}
|
|
{
|
|
\pline[l.]{B}
|
|
}
|
|
\pline[r.]{B}[\textbf{TND:} i--j, k--l]
|
|
}
|
|
|
|
\section{New Additions}
|
|
\subsection{Disjunctive Syllogism}
|
|
\fitchctx
|
|
{
|
|
\pline[m.]{P\lor Q}\\
|
|
\pline[n.]{\lnot Q}\\
|
|
\pline[r.]{P}[\textbf{DS:} 1, 2]
|
|
}
|
|
\subsection{Modus Tollens}
|
|
\fitchctx
|
|
{
|
|
\pline[m.]{P\lif Q}\\
|
|
\pline[n.]{\lnot Q}\\
|
|
\pline[r.]{\lnot P}[\textbf{MT:} 1, 2]
|
|
}
|
|
\section{Example Theorem Proofs}
|
|
\subsection{Frege's Theorem}
|
|
\fitchprf
|
|
{}
|
|
{
|
|
\subproof
|
|
{
|
|
\pline[1.]{P\lif (Q\lif R)}
|
|
}
|
|
{
|
|
\subproof
|
|
{
|
|
\pline[2.]{P\lif Q}
|
|
}
|
|
{
|
|
\subproof
|
|
{
|
|
\pline[3.]{P}
|
|
}
|
|
{
|
|
\pline[4.]{Q\lif R}[\life{1}{3}]\\
|
|
\pline[5.]{Q}[\life{2}{3}]\\
|
|
\pline[6.]{R}[\life{4}{5}]
|
|
}
|
|
\pline[7.]{P\lif R}[\lifi{3--6}]
|
|
}
|
|
\pline[8.]{(P\lif Q)\lif(P\lif R)}[\lifi{2--7}]
|
|
}
|
|
\pline[9.]{(P\lif (Q\lif R))\lif((P\lif Q)\lif(P\lif R))}[\lifi{1--8}]
|
|
}
|
|
\end{document}
|