RPU/tests/tb_alu_int32_div.vhd
Colin Riley 4b16f9bf6f RPU 1.0
Updated ISA support to RV32IMZcsr - Passes riscv-compliance.
Integer divide/rem in 34 cycles.
Integer multiply in 2 cycles (when using xilinx dsp blocks!)
Saved multiple cycles from fetch/memory load stages by short-cutting the start of memory requests.
Compliant misaligned exceptions for jumps,loads and stores. Addrs starting 0xFxxxxxxx ignore alignment requests (assumes mmio space).
Added CSRs for riscv-compliance requirements.
Source ran through a formatter for ease of use.
2020-09-11 00:06:01 +01:00

168 lines
4.6 KiB
VHDL

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 12.11.2018 22:51:11
-- Design Name:
-- Module Name: rpu_core_tb - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
library work;
use work.constants.all;
entity alu_int32_div_tb is
-- Port ( );
end alu_int32_div_tb;
architecture Behavioral of alu_int32_div_tb is
-- The RPU core definition
component alu_int32_div is
Port (
I_clk : in STD_LOGIC;
I_exec : in STD_LOGIC;
I_dividend : in STD_LOGIC_VECTOR (XLEN32M1 downto 0);
I_divisor : in STD_LOGIC_VECTOR (XLEN32M1 downto 0);
I_op : in STD_LOGIC_VECTOR (1 downto 0);
O_dataResult : out STD_LOGIC_VECTOR (XLEN32M1 downto 0);
O_done : out STD_LOGIC;
O_int : out std_logic
);
end component;
signal I_clk : std_logic := '0';
signal I_exec : std_logic := '0';
signal I_dividend : std_logic_vector(31 downto 0) := (others => '0');
signal I_divisor : std_logic_vector(31 downto 0) := (others => '0');
signal I_op : std_logic_vector(1 downto 0) := (others => '0');
signal O_dataResult : std_logic_vector(31 downto 0) := (others => '0');
signal O_done : std_logic := '0';
signal O_int : std_logic := '0';
-- Clock period definitions
constant I_clk_period : time := 10 ns;
BEGIN
-- Instantiate the Unit Under Test (UUT)
uut: alu_int32_div PORT MAP (
I_clk => I_clk,
I_exec => I_exec,
I_dividend => I_dividend,
I_divisor => I_divisor,
I_op => I_op,
O_dataResult => O_dataResult,
O_done => O_done,
O_int => O_int
);
-- Clock process definitions
I_clk_process :process
begin
I_clk <= '0';
wait for I_clk_period/2;
I_clk <= '1';
wait for I_clk_period/2;
end process;
-- Stimulus process
stim_proc: process
begin
-- hold reset state for 100 ns.
wait for 100 ns;
wait for I_clk_period*10;
-- insert stimulus here
I_dividend <= X"ffffffff";
I_divisor <= X"00000000";
I_op <= ALU_INT32_DIV_OP_DIVU;
I_exec <= '1';
wait for I_clk_period;
I_exec <= '0';
wait for I_clk_period*500;
I_dividend <= X"0000000a";
I_divisor <= X"0000000a";
I_op <= ALU_INT32_DIV_OP_REMU;
I_exec <= '1';
wait for I_clk_period;
I_exec <= '0';
wait for I_clk_period*500;
I_dividend <= X"00001001";
I_divisor <= X"00000111";
I_op <= ALU_INT32_DIV_OP_REM;
I_exec <= '1';
wait for I_clk_period;
I_exec <= '0';
wait for I_clk_period*500;
I_dividend <= X"ffff0001";
I_divisor <= X"00000111";
I_op <= ALU_INT32_DIV_OP_DIV;
I_exec <= '1';
wait for I_clk_period;
I_exec <= '0';
wait for I_clk_period*500;
-- I_dividend <= X"ffff0001";
-- I_divisor <= X"00000111";
-- I_op <= ALU_INT32_DIV_OP_DIVU;
-- I_exec <= '1';
-- wait for I_clk_period;
-- I_exec <= '0';
-- wait for I_clk_period*500;
I_dividend <= X"00011101";
I_divisor <= X"00000001";
I_op <= ALU_INT32_DIV_OP_DIV;
I_exec <= '1';
wait for I_clk_period;
I_exec <= '0';
wait for I_clk_period*500;
I_dividend <= X"00010001";
I_divisor <= X"00000111";
I_op <= ALU_INT32_DIV_OP_DIV;
I_exec <= '1';
wait for I_clk_period;
I_exec <= '0';
wait;
end process;
end Behavioral;