Removed more generate statements

This commit is contained in:
David Harris 2022-01-05 16:25:08 +00:00
parent da5ead23bf
commit 6d4714651c
20 changed files with 562 additions and 651 deletions

View file

@ -153,7 +153,7 @@ fma2 UUT2(.XSgnM(XSgnE), .YSgnM(YSgnE), .XExpM(XExpE), .YExpM(YExpE), .ZExpM(ZEx
.FmtM(FmtE), .FrmM(FrmE), .FMAFlgM, .FMAResM);
// generate clock
// produce clock
always
begin
clk = 1; #5; clk = 0; #5;

View file

@ -45,14 +45,12 @@ endmodule
module INVX2(input logic a, output logic y);
generate
if (LIB == SKY130)
sky130_osu_sc_12T_ms__inv_2 inv(a, y);
else if (LIB == SKL90)
scc9gena_inv_2 inv(a, y)
else if (LIB == GF14)
INV_X2N_A10P5PP84TSL_C14(a, y)
endgenerate
if (LIB == SKY130)
sky130_osu_sc_12T_ms__inv_2 inv(a, y);
else if (LIB == SKL90)
scc9gena_inv_2 inv(a, y)
else if (LIB == GF14)
INV_X2N_A10P5PP84TSL_C14(a, y)
endmodule
module driver #(parameter WDITH=1) (

View file

@ -72,109 +72,106 @@ module cachereplacementpolicy
assign LineReplacementBits = ReplacementBits[RAdrD];
genvar index;
generate
if(NUMWAYS == 2) begin : TwoWay
assign LRUEn[0] = 1'b0;
if(NUMWAYS == 2) begin : TwoWay
assign LRUEn[0] = 1'b0;
assign NewReplacement[0] = WayHit[1];
assign NewReplacement[0] = WayHit[1];
assign VictimWay[1] = ~LineReplacementBits[0];
assign VictimWay[0] = LineReplacementBits[0];
end else if (NUMWAYS == 4) begin : FourWay
assign VictimWay[1] = ~LineReplacementBits[0];
assign VictimWay[0] = LineReplacementBits[0];
end else if (NUMWAYS == 4) begin : FourWay
// VictimWay is a function only of the current value of the LRU.
// binary encoding
//assign VictimWay[0] = LineReplacementBits[2] ? LineReplacementBits[1] : LineReplacementBits[0];
//assign VictimWay[1] = LineReplacementBits[2];
// VictimWay is a function only of the current value of the LRU.
// binary encoding
//assign VictimWay[0] = LineReplacementBits[2] ? LineReplacementBits[1] : LineReplacementBits[0];
//assign VictimWay[1] = LineReplacementBits[2];
// 1 hot encoding
//| WayHit | LRU 2 | LRU 1 | LRU 0 |
//|--------+-------+-------+-------|
//| 0000 | - | - | - |
//| 0001 | 1 | - | 1 |
//| 0010 | 1 | - | 0 |
//| 0100 | 0 | 1 | - |
//| 1000 | 0 | 0 | - |
// 1 hot encoding
//| WayHit | LRU 2 | LRU 1 | LRU 0 |
//|--------+-------+-------+-------|
//| 0000 | - | - | - |
//| 0001 | 1 | - | 1 |
//| 0010 | 1 | - | 0 |
//| 0100 | 0 | 1 | - |
//| 1000 | 0 | 0 | - |
assign VictimWay[0] = ~LineReplacementBits[2] & ~LineReplacementBits[0];
assign VictimWay[1] = ~LineReplacementBits[2] & LineReplacementBits[0];
assign VictimWay[2] = LineReplacementBits[2] & ~LineReplacementBits[1];
assign VictimWay[3] = LineReplacementBits[2] & LineReplacementBits[1];
assign VictimWay[0] = ~LineReplacementBits[2] & ~LineReplacementBits[0];
assign VictimWay[1] = ~LineReplacementBits[2] & LineReplacementBits[0];
assign VictimWay[2] = LineReplacementBits[2] & ~LineReplacementBits[1];
assign VictimWay[3] = LineReplacementBits[2] & LineReplacementBits[1];
// New LRU bits which are updated is function only of the WayHit.
// However the not updated bits come from the old LRU.
assign LRUEn[2] = |WayHit;
assign LRUEn[1] = WayHit[3] | WayHit[2];
assign LRUEn[0] = WayHit[1] | WayHit[0];
// New LRU bits which are updated is function only of the WayHit.
// However the not updated bits come from the old LRU.
assign LRUEn[2] = |WayHit;
assign LRUEn[1] = WayHit[3] | WayHit[2];
assign LRUEn[0] = WayHit[1] | WayHit[0];
assign LRUMask[2] = WayHit[1] | WayHit[0];
assign LRUMask[1] = WayHit[2];
assign LRUMask[0] = WayHit[0];
assign LRUMask[2] = WayHit[1] | WayHit[0];
assign LRUMask[1] = WayHit[2];
assign LRUMask[0] = WayHit[0];
/* -----\/----- EXCLUDED -----\/-----
// selects
assign LRUEn[2] = 1'b1;
assign LRUEn[1] = WayHit[3];
assign LRUEn[0] = WayHit[3] | WayHit[2];
// selects
assign LRUEn[2] = 1'b1;
assign LRUEn[1] = WayHit[3];
assign LRUEn[0] = WayHit[3] | WayHit[2];
// mask
assign LRUMask[0] = WayHit[1];
assign LRUMask[1] = WayHit[3];
assign LRUMask[2] = WayHit[3] | WayHit[2];
-----/\----- EXCLUDED -----/\----- */
// mask
assign LRUMask[0] = WayHit[1];
assign LRUMask[1] = WayHit[3];
assign LRUMask[2] = WayHit[3] | WayHit[2];
-----/\----- EXCLUDED -----/\----- */
for(index = 0; index < NUMWAYS-1; index++)
assign NewReplacement[index] = LRUEn[index] ? LRUMask[index] : LineReplacementBits[index];
for(index = 0; index < NUMWAYS-1; index++)
assign NewReplacement[index] = LRUEn[index] ? LRUMask[index] : LineReplacementBits[index];
/* -----\/----- EXCLUDED -----\/-----
assign EncVicWay[1] = LineReplacementBits[2];
assign EncVicWay[0] = LineReplacementBits[2] ? LineReplacementBits[0] : LineReplacementBits[1];
assign EncVicWay[1] = LineReplacementBits[2];
assign EncVicWay[0] = LineReplacementBits[2] ? LineReplacementBits[0] : LineReplacementBits[1];
onehotdecoder #(2)
waydec(.bin(EncVicWay),
.decoded({VictimWay[0], VictimWay[1], VictimWay[2], VictimWay[3]}));
-----/\----- EXCLUDED -----/\----- */
onehotdecoder #(2)
waydec(.bin(EncVicWay),
.decoded({VictimWay[0], VictimWay[1], VictimWay[2], VictimWay[3]}));
-----/\----- EXCLUDED -----/\----- */
end else if (NUMWAYS == 8) begin : EightWay
end else if (NUMWAYS == 8) begin : EightWay
// selects
assign LRUEn[6] = 1'b1;
assign LRUEn[5] = WayHit[7] | WayHit[6] | WayHit[5] | WayHit[4];
assign LRUEn[4] = WayHit[7] | WayHit[6];
assign LRUEn[3] = WayHit[5] | WayHit[4];
assign LRUEn[2] = WayHit[3] | WayHit[2] | WayHit[1] | WayHit[0];
assign LRUEn[1] = WayHit[3] | WayHit[2];
assign LRUEn[0] = WayHit[1] | WayHit[0];
// selects
assign LRUEn[6] = 1'b1;
assign LRUEn[5] = WayHit[7] | WayHit[6] | WayHit[5] | WayHit[4];
assign LRUEn[4] = WayHit[7] | WayHit[6];
assign LRUEn[3] = WayHit[5] | WayHit[4];
assign LRUEn[2] = WayHit[3] | WayHit[2] | WayHit[1] | WayHit[0];
assign LRUEn[1] = WayHit[3] | WayHit[2];
assign LRUEn[0] = WayHit[1] | WayHit[0];
// mask
assign LRUMask[6] = WayHit[7] | WayHit[6] | WayHit[5] | WayHit[4];
assign LRUMask[5] = WayHit[7] | WayHit[6];
assign LRUMask[4] = WayHit[7];
assign LRUMask[3] = WayHit[5];
assign LRUMask[2] = WayHit[3] | WayHit[2];
assign LRUMask[1] = WayHit[2];
assign LRUMask[0] = WayHit[0];
// mask
assign LRUMask[6] = WayHit[7] | WayHit[6] | WayHit[5] | WayHit[4];
assign LRUMask[5] = WayHit[7] | WayHit[6];
assign LRUMask[4] = WayHit[7];
assign LRUMask[3] = WayHit[5];
assign LRUMask[2] = WayHit[3] | WayHit[2];
assign LRUMask[1] = WayHit[2];
assign LRUMask[0] = WayHit[0];
for(index = 0; index < NUMWAYS-1; index++)
assign NewReplacement[index] = LRUEn[index] ? LRUMask[index] : LineReplacementBits[index];
for(index = 0; index < NUMWAYS-1; index++)
assign NewReplacement[index] = LRUEn[index] ? LRUMask[index] : LineReplacementBits[index];
assign EncVicWay[2] = LineReplacementBits[6];
assign EncVicWay[1] = LineReplacementBits[6] ? LineReplacementBits[5] : LineReplacementBits[2];
assign EncVicWay[0] = LineReplacementBits[6] ? LineReplacementBits[5] ? LineReplacementBits[4] : LineReplacementBits[3] :
LineReplacementBits[2] ? LineReplacementBits[1] : LineReplacementBits[0];
assign EncVicWay[2] = LineReplacementBits[6];
assign EncVicWay[1] = LineReplacementBits[6] ? LineReplacementBits[5] : LineReplacementBits[2];
assign EncVicWay[0] = LineReplacementBits[6] ? LineReplacementBits[5] ? LineReplacementBits[4] : LineReplacementBits[3] :
LineReplacementBits[2] ? LineReplacementBits[1] : LineReplacementBits[0];
onehotdecoder #(3)
waydec(.bin(EncVicWay),
.decoded({VictimWay[0], VictimWay[1], VictimWay[2], VictimWay[3],
VictimWay[4], VictimWay[5], VictimWay[6], VictimWay[7]}));
end
endgenerate
onehotdecoder #(3)
waydec(.bin(EncVicWay),
.decoded({VictimWay[0], VictimWay[1], VictimWay[2], VictimWay[3],
VictimWay[4], VictimWay[5], VictimWay[6], VictimWay[7]}));
end
endmodule

View file

@ -72,16 +72,13 @@ module cacheway #(parameter NUMLINES=512, parameter LINELEN = 256, TAGLEN = 26,
genvar words;
generate
for(words = 0; words < LINELEN/`XLEN; words++) begin : word
sram1rw #(.DEPTH(`XLEN), .WIDTH(NUMLINES))
CacheDataMem(.clk(clk), .Addr(RAdr),
.ReadData(ReadDataLineWay[(words+1)*`XLEN-1:words*`XLEN] ),
.WriteData(WriteData[(words+1)*`XLEN-1:words*`XLEN]),
.WriteEnable(WriteEnable & WriteWordEnable[words]));
end
endgenerate
for(words = 0; words < LINELEN/`XLEN; words++) begin: word
sram1rw #(.DEPTH(`XLEN), .WIDTH(NUMLINES))
CacheDataMem(.clk(clk), .Addr(RAdr),
.ReadData(ReadDataLineWay[(words+1)*`XLEN-1:words*`XLEN] ),
.WriteData(WriteData[(words+1)*`XLEN-1:words*`XLEN]),
.WriteEnable(WriteEnable & WriteWordEnable[words]));
end
sram1rw #(.DEPTH(TAGLEN), .WIDTH(NUMLINES))
CacheTagMem(.clk(clk),
@ -123,27 +120,21 @@ module cacheway #(parameter NUMLINES=512, parameter LINELEN = 256, TAGLEN = 26,
assign Valid = ValidBits[RAdrD];
generate
if(DIRTY_BITS) begin:dirty
always_ff @(posedge clk) begin
if (reset)
DirtyBits <= {NUMLINES{1'b0}};
else if (SetDirtyD & (WriteEnableD | VDWriteEnableD)) DirtyBits[RAdrD] <= 1'b1;
else if (ClearDirtyD & (WriteEnableD | VDWriteEnableD)) DirtyBits[RAdrD] <= 1'b0;
end
always_ff @(posedge clk) begin
SetDirtyD <= SetDirty;
ClearDirtyD <= ClearDirty;
end
assign Dirty = DirtyBits[RAdrD];
end else begin:dirty
assign Dirty = 1'b0;
// Dirty bits
if(DIRTY_BITS) begin:dirty
always_ff @(posedge clk) begin
if (reset) DirtyBits <= {NUMLINES{1'b0}};
else if (SetDirtyD & (WriteEnableD | VDWriteEnableD)) DirtyBits[RAdrD] <= 1'b1;
else if (ClearDirtyD & (WriteEnableD | VDWriteEnableD)) DirtyBits[RAdrD] <= 1'b0;
end
endgenerate
always_ff @(posedge clk) begin
SetDirtyD <= SetDirty;
ClearDirtyD <= ClearDirty;
end
assign Dirty = DirtyBits[RAdrD];
end else begin:dirty
assign Dirty = 1'b0;
end
endmodule // DCacheMemWay

View file

@ -143,19 +143,17 @@ module dcache #(parameter integer LINELEN,
.WayHit, .VictimDirtyWay, .VictimTagWay,
.InvalidateAll(1'b0));
generate
if(NUMWAYS > 1) begin:vict
cachereplacementpolicy #(NUMWAYS, INDEXLEN, OFFSETLEN, NUMLINES)
cachereplacementpolicy(.clk, .reset,
.WayHit,
.VictimWay,
.LsuPAdrM(LsuPAdrM[INDEXLEN+OFFSETLEN-1:OFFSETLEN]),
.RAdr,
.LRUWriteEn);
end else begin:vict
assign VictimWay = 1'b1; // one hot.
end
endgenerate
if(NUMWAYS > 1) begin:vict
cachereplacementpolicy #(NUMWAYS, INDEXLEN, OFFSETLEN, NUMLINES)
cachereplacementpolicy(.clk, .reset,
.WayHit,
.VictimWay,
.LsuPAdrM(LsuPAdrM[INDEXLEN+OFFSETLEN-1:OFFSETLEN]),
.RAdr,
.LRUWriteEn);
end else begin:vict
assign VictimWay = 1'b1; // one hot.
end
assign CacheHit = | WayHit;
assign VictimDirty = | VictimDirtyWay;
@ -172,12 +170,9 @@ module dcache #(parameter integer LINELEN,
// easily build a variable input mux.
// *** consider using a limited range shift to do this final muxing.
genvar index;
generate
for (index = 0; index < WORDSPERLINE; index++) begin:readdatalinesetsmux
assign ReadDataLineSetsM[index] = ReadDataLineM[((index+1)*`XLEN)-1: (index*`XLEN)];
end
endgenerate
for (index = 0; index < WORDSPERLINE; index++)
assign ReadDataLineSetsM[index] = ReadDataLineM[((index+1)*`XLEN)-1: (index*`XLEN)];
// variable input mux
assign ReadDataWordM = ReadDataLineSetsM[LsuPAdrM[LOGWPL + LOGXLENBYTES - 1 : LOGXLENBYTES]];

View file

@ -114,19 +114,17 @@ module icache #(parameter integer LINELEN,
.VictimDirtyWay(), .VictimTagWay(),
.InvalidateAll(InvalidateICacheM));
generate
if(NUMWAYS > 1) begin:vict
cachereplacementpolicy #(NUMWAYS, INDEXLEN, OFFSETLEN, NUMLINES)
cachereplacementpolicy(.clk, .reset,
.WayHit,
.VictimWay,
.LsuPAdrM(PCPF[INDEXLEN+OFFSETLEN-1:OFFSETLEN]),
.RAdr,
.LRUWriteEn);
end else begin:vict
assign VictimWay = 1'b1; // one hot.
end
endgenerate
if(NUMWAYS > 1) begin:vict
cachereplacementpolicy #(NUMWAYS, INDEXLEN, OFFSETLEN, NUMLINES)
cachereplacementpolicy(.clk, .reset,
.WayHit,
.VictimWay,
.LsuPAdrM(PCPF[INDEXLEN+OFFSETLEN-1:OFFSETLEN]),
.RAdr,
.LRUWriteEn);
end else begin:vict
assign VictimWay = 1'b1; // one hot.
end
assign hit = | WayHit;
@ -136,12 +134,9 @@ module icache #(parameter integer LINELEN,
or_rows #(NUMWAYS, LINELEN) ReadDataAOMux(.a(ReadDataLineWayMasked), .y(ReadLineF));
genvar index;
generate
for(index = 0; index < LINELEN / 16 - 1; index++) begin:readlinesetsmux
for(index = 0; index < LINELEN / 16 - 1; index++)
assign ReadLineSetsF[index] = ReadLineF[((index+1)*16)+16-1 : (index*16)];
end
assign ReadLineSetsF[LINELEN/16-1] = {16'b0, ReadLineF[LINELEN-1:LINELEN-16]};
endgenerate
assign FinalInstrRawF = ReadLineSetsF[PCPF[$clog2(LINELEN / 32) + 1 : 1]];

View file

@ -56,25 +56,22 @@ module amoalu (
endcase
// sign extend if necessary
generate
if (`XLEN == 32) begin:sext
assign a = srca;
assign b = srcb;
assign result = y;
end else begin:sext // `XLEN = 64
always_comb
if (width == 2'b10) begin // sign-extend word-length operations
// *** it would be more efficient to look at carry out of bit 31 to determine comparisons than do this big mux on and b
a = {{32{srca[31]}}, srca[31:0]};
b = {{32{srcb[31]}}, srcb[31:0]};
result = {{32{y[31]}}, y[31:0]};
end else begin
a = srca;
b = srcb;
result = y;
end
end
endgenerate
if (`XLEN == 32) begin:sext
assign a = srca;
assign b = srcb;
assign result = y;
end else begin:sext // `XLEN = 64
always_comb
if (width == 2'b10) begin // sign-extend word-length operations
// *** it would be more efficient to look at carry out of bit 31 to determine comparisons than do this big mux on and b
a = {{32{srca[31]}}, srca[31:0]};
b = {{32{srcb[31]}}, srcb[31:0]};
result = {{32{y[31]}}, y[31:0]};
end else begin
a = srca;
b = srcb;
result = y;
end
end
endmodule

View file

@ -157,7 +157,7 @@ module cvtfp (
// Result Selection
///////////////////////////////////////////////////////////////////////////////
generate if(`IEEE754) begin
if(`IEEE754) begin
// select the double to single precision result
assign DSRes = XNaNE ? {XSgnE, {8{1'b1}}, 1'b1, XManE[50:29]} :
Underflow & ~Denorm ? {XSgnE, 30'b0, CalcPlus1&(|FrmE[1:0]|Shift)} :
@ -178,8 +178,6 @@ module cvtfp (
// select the final result based on the opperation
assign CvtFpResE = FmtE ? {{32{1'b1}},DSRes} : {XSgnE&~XNaNE, SDExp, SDFrac[51]|XNaNE, SDFrac[50:0]&{51{~XNaNE}}};
end
endgenerate
endmodule // fpadd

View file

@ -185,11 +185,9 @@ module csa #(parameter WIDTH=8) (
/*
logic [WIDTH:0] carry_temp;
genvar i;
generate
for (i=0;i<WIDTH;i=i+1) begin : genbit
for (i=0;i<WIDTH;i=i+1) begin : genbit
fa fa_inst (a[i], b[i], c[i], sum[i], carry_temp[i+1]);
end
endgenerate
assign carry = {carry_temp[WIDTH-1:1], 1'b0};
*/
endmodule // csa

View file

@ -173,7 +173,7 @@ module fcvt (
// - only set invalid flag for out-of-range vales
// - set inexact if in representable range and not exact
generate if(`IEEE754) begin // checks before rounding
if(`IEEE754) begin // checks before rounding
assign Invalid = (Of | Uf)&FOpCtrlE[0];
assign Inexact = (Guard|Round|Sticky)&~(&FOpCtrlE[1:0]&(XSgnE|Of))&~((Of|Uf)&~FOpCtrlE[1]&FOpCtrlE[0]);
assign CvtFlgE = {Invalid&~Inexact, 3'b0, Inexact};
@ -182,10 +182,6 @@ module fcvt (
assign Inexact = (Guard|Round|Sticky)&~(&FOpCtrlE[1:0]&((XSgnE&~(ShiftCnt[12]&~Plus1))|Of))&~((Of|Uf)&~FOpCtrlE[1]&FOpCtrlE[0]);
assign CvtFlgE = {Invalid&~Inexact, 3'b0, Inexact};
end
endgenerate
endmodule // fpadd

View file

@ -814,21 +814,18 @@ module resultselect(
);
logic [`FLEN-1:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
generate
if(`IEEE754) begin:nan
if(`IEEE754) begin
assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XManM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XManM[50:29]};
assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YManM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YManM[50:29]};
assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, ZManM[`NF-2:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, ZManM[50:29]};
assign InvalidResult = FmtM ? {ResultSgn, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0};
end else begin:nan
end else begin
assign XNaNResult = FmtM ? {1'b0, XExpM, 1'b1, 51'b0} : {{32{1'b1}}, 1'b0, XExpM[7:0], 1'b1, 22'b0};
assign YNaNResult = FmtM ? {1'b0, YExpM, 1'b1, 51'b0} : {{32{1'b1}}, 1'b0, YExpM[7:0], 1'b1, 22'b0};
assign ZNaNResult = FmtM ? {1'b0, ZExpM, 1'b1, 51'b0} : {{32{1'b1}}, 1'b0, ZExpM[7:0], 1'b1, 22'b0};
assign InvalidResult = FmtM ? {1'b0, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, 1'b0, 8'hff, 1'b1, 22'b0};
end
endgenerate
assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{32{1'b1}}, ResultSgn, 8'hfe, {23{1'b1}}} :

View file

@ -39,30 +39,28 @@ module shifter (
// For RV64, 32 and 64-bit shifts are needed, with sign extension.
// funnel shifter input (see CMOS VLSI Design 4e Section 11.8.1, note Table 11.11 shift types wrong)
// generate
if (`XLEN==32) begin:shifter // RV32
always_comb // funnel mux
if (Right)
if (Arith) z = {{31{A[31]}}, A};
else z = {31'b0, A};
else z = {A, 31'b0};
assign amttrunc = Amt; // shift amount
end else begin:shifter // RV64
always_comb // funnel mux
if (W64) begin // 32-bit shifts
if (Right)
if (Arith) z = {64'b0, {31{A[31]}}, A[31:0]};
else z = {95'b0, A[31:0]};
else z = {32'b0, A[31:0], 63'b0};
end else begin
if (Right)
if (Arith) z = {{63{A[63]}}, A};
else z = {63'b0, A};
else z = {A, 63'b0};
end
assign amttrunc = W64 ? {1'b0, Amt[4:0]} : Amt; // 32 or 64-bit shift
end
// endgenerate
if (`XLEN==32) begin:shifter // RV32
always_comb // funnel mux
if (Right)
if (Arith) z = {{31{A[31]}}, A};
else z = {31'b0, A};
else z = {A, 31'b0};
assign amttrunc = Amt; // shift amount
end else begin:shifter // RV64
always_comb // funnel mux
if (W64) begin // 32-bit shifts
if (Right)
if (Arith) z = {64'b0, {31{A[31]}}, A[31:0]};
else z = {95'b0, A[31:0]};
else z = {32'b0, A[31:0], 63'b0};
end else begin
if (Right)
if (Arith) z = {{63{A[63]}}, A};
else z = {63'b0, A};
else z = {A, 63'b0};
end
assign amttrunc = W64 ? {1'b0, Amt[4:0]} : Amt; // 32 or 64-bit shift
end
// opposite offset for right shfits
assign offset = Right ? amttrunc : ~amttrunc;

View file

@ -70,74 +70,72 @@ module bpred
// Part 1 branch direction prediction
generate
if (`BPTYPE == "BPTWOBIT") begin:Predictor
twoBitPredictor DirPredictor(.clk(clk),
.reset(reset),
.StallF(StallF),
.LookUpPC(PCNextF),
.Prediction(BPPredF),
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0] & ~StallE),
.UpdatePrediction(UpdateBPPredE));
if (`BPTYPE == "BPTWOBIT") begin:Predictor
twoBitPredictor DirPredictor(.clk(clk),
.reset(reset),
.StallF(StallF),
.LookUpPC(PCNextF),
.Prediction(BPPredF),
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0] & ~StallE),
.UpdatePrediction(UpdateBPPredE));
end else if (`BPTYPE == "BPGLOBAL") begin:Predictor
end else if (`BPTYPE == "BPGLOBAL") begin:Predictor
globalHistoryPredictor DirPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.PCNextF(PCNextF),
.BPPredF(BPPredF),
// update
.InstrClassE(InstrClassE),
.BPInstrClassE(BPInstrClassE),
.BPPredDirWrongE(BPPredDirWrongE),
.PCE(PCE),
.PCSrcE(PCSrcE),
.UpdateBPPredE(UpdateBPPredE));
end else if (`BPTYPE == "BPGSHARE") begin:Predictor
globalHistoryPredictor DirPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.PCNextF(PCNextF),
.BPPredF(BPPredF),
// update
.InstrClassE(InstrClassE),
.BPInstrClassE(BPInstrClassE),
.BPPredDirWrongE(BPPredDirWrongE),
.PCE(PCE),
.PCSrcE(PCSrcE),
.UpdateBPPredE(UpdateBPPredE));
end else if (`BPTYPE == "BPGSHARE") begin:Predictor
gsharePredictor DirPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.PCNextF(PCNextF),
.BPPredF(BPPredF),
// update
.InstrClassE(InstrClassE),
.BPInstrClassE(BPInstrClassE),
.BPPredDirWrongE(BPPredDirWrongE),
.PCE(PCE),
.PCSrcE(PCSrcE),
.UpdateBPPredE(UpdateBPPredE));
end
else if (`BPTYPE == "BPLOCALPAg") begin:Predictor
gsharePredictor DirPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.PCNextF(PCNextF),
.BPPredF(BPPredF),
// update
.InstrClassE(InstrClassE),
.BPInstrClassE(BPInstrClassE),
.BPPredDirWrongE(BPPredDirWrongE),
.PCE(PCE),
.PCSrcE(PCSrcE),
.UpdateBPPredE(UpdateBPPredE));
end
else if (`BPTYPE == "BPLOCALPAg") begin:Predictor
localHistoryPredictor DirPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.LookUpPC(PCNextF),
.Prediction(BPPredF),
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0] & ~StallE),
.PCSrcE(PCSrcE),
.UpdatePrediction(UpdateBPPredE));
end
else if (`BPTYPE == "BPLOCALPAg") begin:Predictor
localHistoryPredictor DirPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.LookUpPC(PCNextF),
.Prediction(BPPredF),
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0] & ~StallE),
.PCSrcE(PCSrcE),
.UpdatePrediction(UpdateBPPredE));
end
else if (`BPTYPE == "BPLOCALPAg") begin:Predictor
localHistoryPredictor DirPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.LookUpPC(PCNextF),
.Prediction(BPPredF),
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0] & ~StallE),
.PCSrcE(PCSrcE),
.UpdatePrediction(UpdateBPPredE));
end
endgenerate
localHistoryPredictor DirPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.LookUpPC(PCNextF),
.Prediction(BPPredF),
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0] & ~StallE),
.PCSrcE(PCSrcE),
.UpdatePrediction(UpdateBPPredE));
end
// this predictor will have two pieces of data,

View file

@ -111,7 +111,6 @@ module ifu (
logic [31:0] PostSpillInstrRawF;
generate
if(`C_SUPPORTED) begin : SpillSupport
logic [`XLEN-1:0] PCFp2;
logic Spill;
@ -166,7 +165,6 @@ module ifu (
assign SelNextSpill = 0;
assign PostSpillInstrRawF = InstrRawF;
end
endgenerate
assign PCFExt = {2'b00, PCFMux};
@ -235,10 +233,6 @@ module ifu (
logic [`PA_BITS-1:0] ICacheBusAdr;
logic SelUncachedAdr;
generate
if(`MEM_ICACHE) begin : icache
logic [1:0] IfuRWF;
assign IfuRWF = CacheableF ? 2'b10 : 2'b00;
@ -280,17 +274,13 @@ module ifu (
.InvalidateCacheM(InvalidateICacheM));
assign FinalInstrRawF = FinalInstrRawF_FIXME[31:0];
end else begin : passthrough
end else begin
assign ICacheFetchLine = 0;
assign ICacheBusAdr = 0;
//assign CompressedF = 0; //?
assign ICacheStallF = 0;
assign FinalInstrRawF = 0;
end
endgenerate
// select between dcache and direct from the BUS. Always selected if no dcache.
// handled in the busfsm.
@ -301,14 +291,12 @@ module ifu (
// always present
genvar index;
generate
for (index = 0; index < WORDSPERLINE; index++) begin:fetchbuffer
flopen #(`XLEN) fb(.clk(clk),
.en(IfuBusAck & IfuBusRead & (index == WordCount)),
.d(IfuBusHRDATA),
.q(ICacheMemWriteData[(index+1)*`XLEN-1:index*`XLEN]));
end
endgenerate
for (index = 0; index < WORDSPERLINE; index++) begin:fetchbuffer
flopen #(`XLEN) fb(.clk(clk),
.en(IfuBusAck & IfuBusRead & (index == WordCount)),
.d(IfuBusHRDATA),
.q(ICacheMemWriteData[(index+1)*`XLEN-1:index*`XLEN]));
end
assign LocalIfuBusAdr = SelUncachedAdr ? PCPF : ICacheBusAdr;
assign IfuBusAdr = ({{`PA_BITS-LOGWPL{1'b0}}, WordCount} << $clog2(`XLEN/8)) + LocalIfuBusAdr;
@ -382,25 +370,23 @@ module ifu (
flopenl #(`XLEN) pcreg(clk, reset, ~StallF & ~ICacheStallF, PCNextF, `RESET_VECTOR, PCF);
// branch and jump predictor
generate
if (`BPRED_ENABLED == 1) begin : bpred
bpred bpred(.clk, .reset,
.StallF, .StallD, .StallE,
.FlushF, .FlushD, .FlushE,
.PCNextF, .BPPredPCF, .SelBPPredF, .PCE, .PCSrcE, .IEUAdrE,
.PCD, .PCLinkE, .InstrClassE, .BPPredWrongE, .BPPredDirWrongE,
.BTBPredPCWrongE, .RASPredPCWrongE, .BPPredClassNonCFIWrongE);
end else begin : bpred
assign BPPredPCF = {`XLEN{1'b0}};
assign SelBPPredF = 1'b0;
assign BPPredWrongE = PCSrcE;
assign BPPredDirWrongE = 1'b0;
assign BTBPredPCWrongE = 1'b0;
assign RASPredPCWrongE = 1'b0;
assign BPPredClassNonCFIWrongE = 1'b0;
end
endgenerate
if (`BPRED_ENABLED == 1) begin : bpred
bpred bpred(.clk, .reset,
.StallF, .StallD, .StallE,
.FlushF, .FlushD, .FlushE,
.PCNextF, .BPPredPCF, .SelBPPredF, .PCE, .PCSrcE, .IEUAdrE,
.PCD, .PCLinkE, .InstrClassE, .BPPredWrongE, .BPPredDirWrongE,
.BTBPredPCWrongE, .RASPredPCWrongE, .BPPredClassNonCFIWrongE);
end else begin : bpred
assign BPPredPCF = {`XLEN{1'b0}};
assign SelBPPredF = 1'b0;
assign BPPredWrongE = PCSrcE;
assign BPPredDirWrongE = 1'b0;
assign BTBPredPCWrongE = 1'b0;
assign RASPredPCWrongE = 1'b0;
assign BPPredClassNonCFIWrongE = 1'b0;
end
// The true correct target is IEUAdrE if PCSrcE is 1 else it is the fall through PCLinkE.
assign PCCorrectE = PCSrcE ? IEUAdrE : PCLinkE;

View file

@ -66,16 +66,10 @@ module localHistoryPredictor
// .BitWEN1(2'b11));
genvar index;
generate
for (index = 0; index < 2**m; index = index +1) begin:localhist
flopenr #(k) LocalHistoryRegister(.clk(clk),
.reset(reset),
.en(UpdateEN & (index == UpdatePCIndex)),
.d(LHRFNext),
.q(LHRNextF[index]));
end
endgenerate
for (index = 0; index < 2**m; index = index +1) begin:localhist
flopenr #(k) LocalHistoryRegister(.clk, .reset, .en(UpdateEN & (index == UpdatePCIndex)),
.d(LHRFNext), .q(LHRNextF[index]));
end
// need to forward when updating to the same address as reading.
// first we compare to see if the update and lookup addreses are the same

View file

@ -120,75 +120,73 @@ module lsu
flopenrc #(`XLEN) AddressMReg(clk, reset, FlushM, ~StallM, IEUAdrE, IEUAdrM);
assign IEUAdrExtM = {2'b00, IEUAdrM};
generate
if(`MEM_VIRTMEM) begin : MEM_VIRTMEM
logic AnyCPUReqM;
logic [`PA_BITS-1:0] HPTWAdr;
logic HPTWRead;
logic [2:0] HPTWSize;
logic SelReplayCPURequest;
if(`MEM_VIRTMEM) begin : MEM_VIRTMEM
logic AnyCPUReqM;
logic [`PA_BITS-1:0] HPTWAdr;
logic HPTWRead;
logic [2:0] HPTWSize;
logic SelReplayCPURequest;
assign AnyCPUReqM = (|MemRWM) | (|AtomicM);
assign AnyCPUReqM = (|MemRWM) | (|AtomicM);
interlockfsm interlockfsm (.clk, .reset, .AnyCPUReqM, .ITLBMissF, .ITLBWriteF,
.DTLBMissM, .DTLBWriteM, .ExceptionM, .PendingInterruptM, .DCacheStall,
.InterlockStall, .SelReplayCPURequest, .SelHPTW,
.IgnoreRequest);
hptw hptw(.clk, .reset, .SATP_REGW, .PCF, .IEUAdrM,
.ITLBMissF(ITLBMissF & ~PendingInterruptM),
.DTLBMissM(DTLBMissM & ~PendingInterruptM),
.MemRWM, .PTE, .PageType, .ITLBWriteF, .DTLBWriteM,
.HPTWReadPTE(ReadDataM),
.DCacheStall, .HPTWAdr, .HPTWRead, .HPTWSize, .AnyCPUReqM);
interlockfsm interlockfsm (.clk, .reset, .AnyCPUReqM, .ITLBMissF, .ITLBWriteF,
.DTLBMissM, .DTLBWriteM, .ExceptionM, .PendingInterruptM, .DCacheStall,
.InterlockStall, .SelReplayCPURequest, .SelHPTW,
.IgnoreRequest);
hptw hptw(.clk, .reset, .SATP_REGW, .PCF, .IEUAdrM,
.ITLBMissF(ITLBMissF & ~PendingInterruptM),
.DTLBMissM(DTLBMissM & ~PendingInterruptM),
.MemRWM, .PTE, .PageType, .ITLBWriteF, .DTLBWriteM,
.HPTWReadPTE(ReadDataM),
.DCacheStall, .HPTWAdr, .HPTWRead, .HPTWSize, .AnyCPUReqM);
// arbiter between IEU and hptw
// multiplex the outputs to LSU
mux2 #(2) rwmux(MemRWM, {HPTWRead, 1'b0}, SelHPTW, PreLsuRWM);
mux2 #(3) sizemux(Funct3M, HPTWSize, SelHPTW, LsuFunct3M);
mux2 #(2) atomicmux(AtomicM, 2'b00, SelHPTW, LsuAtomicM);
mux2 #(12) adremux(IEUAdrE[11:0], HPTWAdr[11:0], SelHPTW, PreLsuAdrE);
mux2 #(`PA_BITS) lsupadrmux(IEUAdrExtM[`PA_BITS-1:0], HPTWAdr, SelHPTW, PreLsuPAdrM);
// arbiter between IEU and hptw
// multiplex the outputs to LSU
mux2 #(2) rwmux(MemRWM, {HPTWRead, 1'b0}, SelHPTW, PreLsuRWM);
mux2 #(3) sizemux(Funct3M, HPTWSize, SelHPTW, LsuFunct3M);
mux2 #(2) atomicmux(AtomicM, 2'b00, SelHPTW, LsuAtomicM);
mux2 #(12) adremux(IEUAdrE[11:0], HPTWAdr[11:0], SelHPTW, PreLsuAdrE);
mux2 #(`PA_BITS) lsupadrmux(IEUAdrExtM[`PA_BITS-1:0], HPTWAdr, SelHPTW, PreLsuPAdrM);
// always block interrupts when using the hardware page table walker.
assign CPUBusy = StallW & ~SelHPTW;
// It is not possible to pipeline hptw as the following load will depend on the previous load's
// data. Therefore we don't need a pipeline register
//flop #(`PA_BITS) HPTWAdrMReg(clk, HPTWAdr, HPTWAdrM); // delay HPTWAdrM by a cycle
// always block interrupts when using the hardware page table walker.
assign CPUBusy = StallW & ~SelHPTW;
// It is not possible to pipeline hptw as the following load will depend on the previous load's
// data. Therefore we don't need a pipeline register
//flop #(`PA_BITS) HPTWAdrMReg(clk, HPTWAdr, HPTWAdrM); // delay HPTWAdrM by a cycle
// Specify which type of page fault is occurring
assign DTLBLoadPageFaultM = DTLBPageFaultM & PreLsuRWM[1];
assign DTLBStorePageFaultM = DTLBPageFaultM & PreLsuRWM[0];
// Specify which type of page fault is occurring
assign DTLBLoadPageFaultM = DTLBPageFaultM & PreLsuRWM[1];
assign DTLBStorePageFaultM = DTLBPageFaultM & PreLsuRWM[0];
// When replaying CPU memory request after PTW select the IEUAdrM for correct address.
assign LsuAdrE = SelReplayCPURequest ? IEUAdrM[11:0] : PreLsuAdrE;
// When replaying CPU memory request after PTW select the IEUAdrM for correct address.
assign LsuAdrE = SelReplayCPURequest ? IEUAdrM[11:0] : PreLsuAdrE;
end // if (`MEM_VIRTMEM)
else begin
assign InterlockStall = 1'b0;
assign LsuAdrE = PreLsuAdrE;
assign SelHPTW = 1'b0;
assign IgnoreRequest = 1'b0;
end // if (`MEM_VIRTMEM)
else begin
assign InterlockStall = 1'b0;
assign LsuAdrE = PreLsuAdrE;
assign SelHPTW = 1'b0;
assign IgnoreRequest = 1'b0;
assign PTE = '0;
assign PageType = '0;
assign DTLBWriteM = 1'b0;
assign ITLBWriteF = 1'b0;
assign PreLsuRWM = MemRWM;
assign LsuFunct3M = Funct3M;
assign LsuAtomicM = AtomicM;
assign PreLsuAdrE = IEUAdrE[11:0];
assign PreLsuPAdrM = IEUAdrExtM;
assign CPUBusy = StallW;
assign DTLBLoadPageFaultM = 1'b0;
assign DTLBStorePageFaultM = 1'b0;
end
endgenerate
assign PTE = '0;
assign PageType = '0;
assign DTLBWriteM = 1'b0;
assign ITLBWriteF = 1'b0;
assign PreLsuRWM = MemRWM;
assign LsuFunct3M = Funct3M;
assign LsuAtomicM = AtomicM;
assign PreLsuAdrE = IEUAdrE[11:0];
assign PreLsuPAdrM = IEUAdrExtM;
assign CPUBusy = StallW;
assign DTLBLoadPageFaultM = 1'b0;
assign DTLBStorePageFaultM = 1'b0;
end
// **** look into this confusing signal.
// This signal is confusing. CommittedM tells the CPU's trap unit the current instruction
@ -200,72 +198,66 @@ module lsu
// to flush the memory operation at that time.
assign CommittedM = SelHPTW | DCacheCommittedM | BusCommittedM;
generate
if(`ZICSR_SUPPORTED == 1) begin : dmmu
logic DataMisalignedM;
if(`ZICSR_SUPPORTED == 1) begin : dmmu
logic DataMisalignedM;
mmu #(.TLB_ENTRIES(`DTLB_ENTRIES), .IMMU(0))
dmmu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.PrivilegeModeW, .DisableTranslation(SelHPTW),
.PAdr(PreLsuPAdrM),
.VAdr(IEUAdrM),
.Size(LsuFunct3M[1:0]),
.PTE,
.PageTypeWriteVal(PageType),
.TLBWrite(DTLBWriteM),
.TLBFlush(DTLBFlushM),
.PhysicalAddress(LsuPAdrM),
.TLBMiss(DTLBMissM),
.Cacheable(CacheableM),
.Idempotent(), .AtomicAllowed(),
.TLBPageFault(DTLBPageFaultM),
.InstrAccessFaultF(), .LoadAccessFaultM, .StoreAccessFaultM,
.AtomicAccessM(1'b0), .ExecuteAccessF(1'b0), /// atomicaccessm is probably a bug
.WriteAccessM(PreLsuRWM[0]), .ReadAccessM(PreLsuRWM[1]),
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW
); // *** the pma/pmp instruction access faults don't really matter here. is it possible to parameterize which outputs exist?
mmu #(.TLB_ENTRIES(`DTLB_ENTRIES), .IMMU(0))
dmmu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.PrivilegeModeW, .DisableTranslation(SelHPTW),
.PAdr(PreLsuPAdrM),
.VAdr(IEUAdrM),
.Size(LsuFunct3M[1:0]),
.PTE,
.PageTypeWriteVal(PageType),
.TLBWrite(DTLBWriteM),
.TLBFlush(DTLBFlushM),
.PhysicalAddress(LsuPAdrM),
.TLBMiss(DTLBMissM),
.Cacheable(CacheableM),
.Idempotent(), .AtomicAllowed(),
.TLBPageFault(DTLBPageFaultM),
.InstrAccessFaultF(), .LoadAccessFaultM, .StoreAccessFaultM,
.AtomicAccessM(1'b0), .ExecuteAccessF(1'b0), /// atomicaccessm is probably a bug
.WriteAccessM(PreLsuRWM[0]), .ReadAccessM(PreLsuRWM[1]),
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW
); // *** the pma/pmp instruction access faults don't really matter here. is it possible to parameterize which outputs exist?
// Determine if an Unaligned access is taking place
// hptw guarantees alignment, only check inputs from IEU.
always_comb
case(Funct3M[1:0])
2'b00: DataMisalignedM = 0; // lb, sb, lbu
2'b01: DataMisalignedM = IEUAdrM[0]; // lh, sh, lhu
2'b10: DataMisalignedM = IEUAdrM[1] | IEUAdrM[0]; // lw, sw, flw, fsw, lwu
2'b11: DataMisalignedM = |IEUAdrM[2:0]; // ld, sd, fld, fsd
endcase
// Determine if an Unaligned access is taking place
// hptw guarantees alignment, only check inputs from IEU.
always_comb
case(Funct3M[1:0])
2'b00: DataMisalignedM = 0; // lb, sb, lbu
2'b01: DataMisalignedM = IEUAdrM[0]; // lh, sh, lhu
2'b10: DataMisalignedM = IEUAdrM[1] | IEUAdrM[0]; // lw, sw, flw, fsw, lwu
2'b11: DataMisalignedM = |IEUAdrM[2:0]; // ld, sd, fld, fsd
endcase
// If the CPU's (not HPTW's) request is a page fault.
assign LoadMisalignedFaultM = DataMisalignedM & MemRWM[1];
assign StoreMisalignedFaultM = DataMisalignedM & MemRWM[0];
end else begin
assign LsuPAdrM = PreLsuPAdrM;
assign DTLBMissM = 0;
assign CacheableM = 1;
assign DTLBPageFaultM = 0;
assign LoadAccessFaultM = 0;
assign StoreAccessFaultM = 0;
assign LoadMisalignedFaultM = 0;
assign StoreMisalignedFaultM = 0;
end
endgenerate
// If the CPU's (not HPTW's) request is a page fault.
assign LoadMisalignedFaultM = DataMisalignedM & MemRWM[1];
assign StoreMisalignedFaultM = DataMisalignedM & MemRWM[0];
end else begin
assign LsuPAdrM = PreLsuPAdrM;
assign DTLBMissM = 0;
assign CacheableM = 1;
assign DTLBPageFaultM = 0;
assign LoadAccessFaultM = 0;
assign StoreAccessFaultM = 0;
assign LoadMisalignedFaultM = 0;
assign StoreMisalignedFaultM = 0;
end
assign LSUStall = DCacheStall | InterlockStall | BusStall;
// Move generate from lrsc to outside this module.
// use PreLsu as prefix for lrsc
generate
if (`A_SUPPORTED) begin:lrsc
assign MemReadM = PreLsuRWM[1] & ~(IgnoreRequest) & ~DTLBMissM;
lrsc lrsc(.clk, .reset, .FlushW, .CPUBusy, .MemReadM, .PreLsuRWM, .LsuAtomicM, .LsuPAdrM,
.SquashSCW, .LsuRWM);
end else begin:lrsc
assign SquashSCW = 0;
assign LsuRWM = PreLsuRWM;
end
endgenerate
if (`A_SUPPORTED) begin:lrsc
assign MemReadM = PreLsuRWM[1] & ~(IgnoreRequest) & ~DTLBMissM;
lrsc lrsc(.clk, .reset, .FlushW, .CPUBusy, .MemReadM, .PreLsuRWM, .LsuAtomicM, .LsuPAdrM,
.SquashSCW, .LsuRWM);
end else begin:lrsc
assign SquashSCW = 0;
assign LsuRWM = PreLsuRWM;
end
// conditional
@ -304,30 +296,28 @@ module lsu
logic SelUncachedAdr;
generate
if(`MEM_DCACHE) begin : dcache
cache #(.LINELEN(`DCACHE_LINELENINBITS), .NUMLINES(`DCACHE_WAYSIZEINBYTES*8/LINELEN),
.NUMWAYS(`DCACHE_NUMWAYS), .DCACHE(1))
dcache(.clk, .reset, .CPUBusy,
.RW(CacheableM ? LsuRWM : 2'b00), .FlushCache(FlushDCacheM), .Atomic(CacheableM ? LsuAtomicM : 2'b00),
.LsuAdrE, .LsuPAdrM, .PreLsuPAdrM(PreLsuPAdrM[11:0]), // still don't like this name PreLsuPAdrM, not always physical
.FinalWriteData(FinalWriteDataM), .ReadDataWord(ReadDataWordM), .CacheStall(DCacheStall),
.CacheMiss(DCacheMiss), .CacheAccess(DCacheAccess),
.IgnoreRequest, .CacheCommitted(DCacheCommittedM),
.CacheBusAdr(DCacheBusAdr), .ReadDataLineSets(ReadDataLineSetsM), .CacheMemWriteData(DCacheMemWriteData),
.CacheFetchLine(DCacheFetchLine), .CacheWriteLine(DCacheWriteLine), .CacheBusAck(DCacheBusAck), .InvalidateCacheM(1'b0));
end else begin : passthrough
assign ReadDataWordM = 0;
assign DCacheStall = 0;
assign DCacheMiss = 1;
assign DCacheAccess = CacheableM;
assign DCacheCommittedM = 0;
assign DCacheWriteLine = 0;
assign DCacheFetchLine = 0;
assign DCacheBusAdr = 0;
assign ReadDataLineSetsM[0] = 0;
end
endgenerate
if(`MEM_DCACHE) begin : dcache
cache #(.LINELEN(`DCACHE_LINELENINBITS), .NUMLINES(`DCACHE_WAYSIZEINBYTES*8/LINELEN),
.NUMWAYS(`DCACHE_NUMWAYS), .DCACHE(1))
dcache(.clk, .reset, .CPUBusy,
.RW(CacheableM ? LsuRWM : 2'b00), .FlushCache(FlushDCacheM), .Atomic(CacheableM ? LsuAtomicM : 2'b00),
.LsuAdrE, .LsuPAdrM, .PreLsuPAdrM(PreLsuPAdrM[11:0]), // still don't like this name PreLsuPAdrM, not always physical
.FinalWriteData(FinalWriteDataM), .ReadDataWord(ReadDataWordM), .CacheStall(DCacheStall),
.CacheMiss(DCacheMiss), .CacheAccess(DCacheAccess),
.IgnoreRequest, .CacheCommitted(DCacheCommittedM),
.CacheBusAdr(DCacheBusAdr), .ReadDataLineSets(ReadDataLineSetsM), .CacheMemWriteData(DCacheMemWriteData),
.CacheFetchLine(DCacheFetchLine), .CacheWriteLine(DCacheWriteLine), .CacheBusAck(DCacheBusAck), .InvalidateCacheM(1'b0));
end else begin : passthrough
assign ReadDataWordM = 0;
assign DCacheStall = 0;
assign DCacheMiss = 1;
assign DCacheAccess = CacheableM;
assign DCacheCommittedM = 0;
assign DCacheWriteLine = 0;
assign DCacheFetchLine = 0;
assign DCacheBusAdr = 0;
assign ReadDataLineSetsM[0] = 0;
end
// select between dcache and direct from the BUS. Always selected if no dcache.
@ -343,15 +333,13 @@ module lsu
.Funct3M(LsuFunct3M),
.ReadDataM);
generate
if (`A_SUPPORTED) begin : amo
logic [`XLEN-1:0] AMOResult;
amoalu amoalu(.srca(ReadDataM), .srcb(WriteDataM), .funct(Funct7M), .width(LsuFunct3M[1:0]),
.result(AMOResult));
mux2 #(`XLEN) wdmux(WriteDataM, AMOResult, LsuAtomicM[1], FinalAMOWriteDataM);
end else
assign FinalAMOWriteDataM = WriteDataM;
endgenerate
if (`A_SUPPORTED) begin : amo
logic [`XLEN-1:0] AMOResult;
amoalu amoalu(.srca(ReadDataM), .srcb(WriteDataM), .funct(Funct7M), .width(LsuFunct3M[1:0]),
.result(AMOResult));
mux2 #(`XLEN) wdmux(WriteDataM, AMOResult, LsuAtomicM[1], FinalAMOWriteDataM);
end else
assign FinalAMOWriteDataM = WriteDataM;
// this might only get instantiated if there is a dcache or dtim.
// There is a copy in the ebu.
@ -368,24 +356,20 @@ module lsu
logic [LOGWPL-1:0] WordCount;
genvar index;
generate
for (index = 0; index < WORDSPERLINE; index++) begin:fetchbuffer
flopen #(`XLEN) fb(.clk(clk),
.en(LsuBusAck & LsuBusRead & (index == WordCount)),
.d(LsuBusHRDATA),
.q(DCacheMemWriteData[(index+1)*`XLEN-1:index*`XLEN]));
end
endgenerate
for (index = 0; index < WORDSPERLINE; index++) begin:fetchbuffer
flopen #(`XLEN) fb(.clk,
.en(LsuBusAck & LsuBusRead & (index == WordCount)),
.d(LsuBusHRDATA),
.q(DCacheMemWriteData[(index+1)*`XLEN-1:index*`XLEN]));
end
assign LocalLsuBusAdr = SelUncachedAdr ? LsuPAdrM : DCacheBusAdr ;
assign LsuBusAdr = ({{`PA_BITS-LOGWPL{1'b0}}, WordCount} << $clog2(`XLEN/8)) + LocalLsuBusAdr;
assign PreLsuBusHWDATA = ReadDataLineSetsM[WordCount];
assign LsuBusHWDATA = SelUncachedAdr ? WriteDataM : PreLsuBusHWDATA; // *** why is this not FinalWriteDataM? which does not work.
generate
if (`XLEN == 32) assign LsuBusSize = SelUncachedAdr ? LsuFunct3M : 3'b010;
else assign LsuBusSize = SelUncachedAdr ? LsuFunct3M : 3'b011;
endgenerate;
if (`XLEN == 32) assign LsuBusSize = SelUncachedAdr ? LsuFunct3M : 3'b010;
else assign LsuBusSize = SelUncachedAdr ? LsuFunct3M : 3'b011;
busfsm #(WordCountThreshold, LOGWPL, `MEM_DCACHE)
busfsm(.clk, .reset, .IgnoreRequest, .LsuRWM, .DCacheFetchLine, .DCacheWriteLine,

View file

@ -49,56 +49,53 @@ module ram #(parameter BASE=0, RANGE = 65535) (
logic memwrite;
logic [3:0] busycount;
generate
if(`FPGA) begin:ram
initial begin
//$readmemh(PRELOAD, RAM);
// FPGA only
RAM[0] = 64'h94e1819300002197;
RAM[1] = 64'h4281420141014081;
RAM[2] = 64'h4481440143814301;
RAM[3] = 64'h4681460145814501;
RAM[4] = 64'h4881480147814701;
RAM[5] = 64'h4a814a0149814901;
RAM[6] = 64'h4c814c014b814b01;
RAM[7] = 64'h4e814e014d814d01;
RAM[8] = 64'h0110011b4f814f01;
RAM[9] = 64'h059b45011161016e;
RAM[10] = 64'h0004063705fe0010;
RAM[11] = 64'h05a000ef8006061b;
RAM[12] = 64'h0ff003930000100f;
RAM[13] = 64'h4e952e3110012e37;
RAM[14] = 64'hc602829b0053f2b7;
RAM[15] = 64'h2023fe02dfe312fd;
RAM[16] = 64'h829b0053f2b7007e;
RAM[17] = 64'hfe02dfe312fdc602;
RAM[18] = 64'h4de31efd000e2023;
RAM[19] = 64'h059bf1402573fdd0;
RAM[20] = 64'h0000061705e20870;
RAM[21] = 64'h0010029b01260613;
RAM[22] = 64'h11010002806702fe;
RAM[23] = 64'h84b2842ae426e822;
RAM[24] = 64'h892ee04aec064505;
RAM[25] = 64'h06e000ef07e000ef;
RAM[26] = 64'h979334fd02905563;
RAM[27] = 64'h07930177d4930204;
RAM[28] = 64'h4089093394be2004;
RAM[29] = 64'h04138522008905b3;
RAM[30] = 64'h19e3014000ef2004;
RAM[31] = 64'h64a2644260e2fe94;
RAM[32] = 64'h6749808261056902;
RAM[33] = 64'hdfed8b8510472783;
RAM[34] = 64'h2423479110a73823;
RAM[35] = 64'h10472783674910f7;
RAM[36] = 64'h20058693ffed8b89;
RAM[37] = 64'h05a1118737836749;
RAM[38] = 64'hfed59be3fef5bc23;
RAM[39] = 64'h1047278367498082;
RAM[40] = 64'h67c98082dfed8b85;
RAM[41] = 64'h0000808210a7a023;
end // initial begin
end // if (FPGA)
endgenerate
if(`FPGA) begin:ram
initial begin
//$readmemh(PRELOAD, RAM);
RAM[0] = 64'h94e1819300002197;
RAM[1] = 64'h4281420141014081;
RAM[2] = 64'h4481440143814301;
RAM[3] = 64'h4681460145814501;
RAM[4] = 64'h4881480147814701;
RAM[5] = 64'h4a814a0149814901;
RAM[6] = 64'h4c814c014b814b01;
RAM[7] = 64'h4e814e014d814d01;
RAM[8] = 64'h0110011b4f814f01;
RAM[9] = 64'h059b45011161016e;
RAM[10] = 64'h0004063705fe0010;
RAM[11] = 64'h05a000ef8006061b;
RAM[12] = 64'h0ff003930000100f;
RAM[13] = 64'h4e952e3110012e37;
RAM[14] = 64'hc602829b0053f2b7;
RAM[15] = 64'h2023fe02dfe312fd;
RAM[16] = 64'h829b0053f2b7007e;
RAM[17] = 64'hfe02dfe312fdc602;
RAM[18] = 64'h4de31efd000e2023;
RAM[19] = 64'h059bf1402573fdd0;
RAM[20] = 64'h0000061705e20870;
RAM[21] = 64'h0010029b01260613;
RAM[22] = 64'h11010002806702fe;
RAM[23] = 64'h84b2842ae426e822;
RAM[24] = 64'h892ee04aec064505;
RAM[25] = 64'h06e000ef07e000ef;
RAM[26] = 64'h979334fd02905563;
RAM[27] = 64'h07930177d4930204;
RAM[28] = 64'h4089093394be2004;
RAM[29] = 64'h04138522008905b3;
RAM[30] = 64'h19e3014000ef2004;
RAM[31] = 64'h64a2644260e2fe94;
RAM[32] = 64'h6749808261056902;
RAM[33] = 64'hdfed8b8510472783;
RAM[34] = 64'h2423479110a73823;
RAM[35] = 64'h10472783674910f7;
RAM[36] = 64'h20058693ffed8b89;
RAM[37] = 64'h05a1118737836749;
RAM[38] = 64'hfed59be3fef5bc23;
RAM[39] = 64'h1047278367498082;
RAM[40] = 64'h67c98082dfed8b85;
RAM[41] = 64'h0000808210a7a023;
end // initial begin
end // if (FPGA)
assign initTrans = HREADY & HSELRam & (HTRANS != 2'b00);
@ -144,26 +141,23 @@ module ram #(parameter BASE=0, RANGE = 65535) (
-----/\----- EXCLUDED -----/\----- */
/* verilator lint_off WIDTH */
generate
if (`XLEN == 64) begin:ramrd
always_ff @(posedge HCLK) begin
HWADDR <= #1 A;
HREADRam0 <= #1 RAM[A[31:3]];
if (memwrite & risingHREADYRam) RAM[HWADDR[31:3]] <= #1 HWDATA;
end
end else begin
always_ff @(posedge HCLK) begin:ramrd
HWADDR <= #1 A;
HREADRam0 <= #1 RAM[A[31:2]];
if (memwrite & risingHREADYRam) RAM[HWADDR[31:2]] <= #1 HWDATA;
end
if (`XLEN == 64) begin:ramrw
always_ff @(posedge HCLK) begin
HWADDR <= #1 A;
HREADRam0 <= #1 RAM[A[31:3]];
if (memwrite & risingHREADYRam) RAM[HWADDR[31:3]] <= #1 HWDATA;
end
endgenerate
end else begin
always_ff @(posedge HCLK) begin:ramrw
HWADDR <= #1 A;
HREADRam0 <= #1 RAM[A[31:2]];
if (memwrite & risingHREADYRam) RAM[HWADDR[31:2]] <= #1 HWDATA;
end
end
/* verilator lint_on WIDTH */
//assign HREADRam = HREADYRam ? HREADRam0 : `XLEN'bz;
// *** Ross Thompson: removed tristate as fpga synthesis removes.
assign HREADRam = HREADRam0;
endmodule

View file

@ -35,75 +35,72 @@ module subwordwrite (
logic [`XLEN-1:0] WriteDataSubwordDuplicated;
generate
if (`XLEN == 64) begin:sww
logic [7:0] ByteMaskM;
// Compute write mask
always_comb
case(HSIZED[1:0])
2'b00: begin ByteMaskM = 8'b00000000; ByteMaskM[HADDRD[2:0]] = 1; end // sb
2'b01: case (HADDRD[2:1])
2'b00: ByteMaskM = 8'b00000011;
2'b01: ByteMaskM = 8'b00001100;
2'b10: ByteMaskM = 8'b00110000;
2'b11: ByteMaskM = 8'b11000000;
endcase
2'b10: if (HADDRD[2]) ByteMaskM = 8'b11110000;
else ByteMaskM = 8'b00001111;
2'b11: ByteMaskM = 8'b11111111;
endcase
if (`XLEN == 64) begin:sww
logic [7:0] ByteMaskM;
// Compute write mask
always_comb
case(HSIZED[1:0])
2'b00: begin ByteMaskM = 8'b00000000; ByteMaskM[HADDRD[2:0]] = 1; end // sb
2'b01: case (HADDRD[2:1])
2'b00: ByteMaskM = 8'b00000011;
2'b01: ByteMaskM = 8'b00001100;
2'b10: ByteMaskM = 8'b00110000;
2'b11: ByteMaskM = 8'b11000000;
endcase
2'b10: if (HADDRD[2]) ByteMaskM = 8'b11110000;
else ByteMaskM = 8'b00001111;
2'b11: ByteMaskM = 8'b11111111;
endcase
// Handle subword writes
always_comb
case(HSIZED[1:0])
2'b00: WriteDataSubwordDuplicated = {8{HWDATAIN[7:0]}}; // sb
2'b01: WriteDataSubwordDuplicated = {4{HWDATAIN[15:0]}}; // sh
2'b10: WriteDataSubwordDuplicated = {2{HWDATAIN[31:0]}}; // sw
2'b11: WriteDataSubwordDuplicated = HWDATAIN; // sw
endcase
// Handle subword writes
always_comb
case(HSIZED[1:0])
2'b00: WriteDataSubwordDuplicated = {8{HWDATAIN[7:0]}}; // sb
2'b01: WriteDataSubwordDuplicated = {4{HWDATAIN[15:0]}}; // sh
2'b10: WriteDataSubwordDuplicated = {2{HWDATAIN[31:0]}}; // sw
2'b11: WriteDataSubwordDuplicated = HWDATAIN; // sw
endcase
always_comb begin
HWDATA=HRDATA;
if (ByteMaskM[0]) HWDATA[7:0] = WriteDataSubwordDuplicated[7:0];
if (ByteMaskM[1]) HWDATA[15:8] = WriteDataSubwordDuplicated[15:8];
if (ByteMaskM[2]) HWDATA[23:16] = WriteDataSubwordDuplicated[23:16];
if (ByteMaskM[3]) HWDATA[31:24] = WriteDataSubwordDuplicated[31:24];
if (ByteMaskM[4]) HWDATA[39:32] = WriteDataSubwordDuplicated[39:32];
if (ByteMaskM[5]) HWDATA[47:40] = WriteDataSubwordDuplicated[47:40];
if (ByteMaskM[6]) HWDATA[55:48] = WriteDataSubwordDuplicated[55:48];
if (ByteMaskM[7]) HWDATA[63:56] = WriteDataSubwordDuplicated[63:56];
end
always_comb begin
HWDATA=HRDATA;
if (ByteMaskM[0]) HWDATA[7:0] = WriteDataSubwordDuplicated[7:0];
if (ByteMaskM[1]) HWDATA[15:8] = WriteDataSubwordDuplicated[15:8];
if (ByteMaskM[2]) HWDATA[23:16] = WriteDataSubwordDuplicated[23:16];
if (ByteMaskM[3]) HWDATA[31:24] = WriteDataSubwordDuplicated[31:24];
if (ByteMaskM[4]) HWDATA[39:32] = WriteDataSubwordDuplicated[39:32];
if (ByteMaskM[5]) HWDATA[47:40] = WriteDataSubwordDuplicated[47:40];
if (ByteMaskM[6]) HWDATA[55:48] = WriteDataSubwordDuplicated[55:48];
if (ByteMaskM[7]) HWDATA[63:56] = WriteDataSubwordDuplicated[63:56];
end
end else begin:sww // 32-bit
logic [3:0] ByteMaskM;
// Compute write mask
always_comb
case(HSIZED[1:0])
2'b00: begin ByteMaskM = 4'b0000; ByteMaskM[HADDRD[1:0]] = 1; end // sb
2'b01: if (HADDRD[1]) ByteMaskM = 4'b1100;
else ByteMaskM = 4'b0011;
2'b10: ByteMaskM = 4'b1111;
default: ByteMaskM = 4'b111; // shouldn't happen
endcase
end else begin:sww // 32-bit
logic [3:0] ByteMaskM;
// Compute write mask
always_comb
case(HSIZED[1:0])
2'b00: begin ByteMaskM = 4'b0000; ByteMaskM[HADDRD[1:0]] = 1; end // sb
2'b01: if (HADDRD[1]) ByteMaskM = 4'b1100;
else ByteMaskM = 4'b0011;
2'b10: ByteMaskM = 4'b1111;
default: ByteMaskM = 4'b111; // shouldn't happen
endcase
// Handle subword writes
always_comb
case(HSIZED[1:0])
2'b00: WriteDataSubwordDuplicated = {4{HWDATAIN[7:0]}}; // sb
2'b01: WriteDataSubwordDuplicated = {2{HWDATAIN[15:0]}}; // sh
2'b10: WriteDataSubwordDuplicated = HWDATAIN; // sw
default: WriteDataSubwordDuplicated = HWDATAIN; // shouldn't happen
endcase
// Handle subword writes
always_comb
case(HSIZED[1:0])
2'b00: WriteDataSubwordDuplicated = {4{HWDATAIN[7:0]}}; // sb
2'b01: WriteDataSubwordDuplicated = {2{HWDATAIN[15:0]}}; // sh
2'b10: WriteDataSubwordDuplicated = HWDATAIN; // sw
default: WriteDataSubwordDuplicated = HWDATAIN; // shouldn't happen
endcase
always_comb begin
HWDATA=HRDATA;
if (ByteMaskM[0]) HWDATA[7:0] = WriteDataSubwordDuplicated[7:0];
if (ByteMaskM[1]) HWDATA[15:8] = WriteDataSubwordDuplicated[15:8];
if (ByteMaskM[2]) HWDATA[23:16] = WriteDataSubwordDuplicated[23:16];
if (ByteMaskM[3]) HWDATA[31:24] = WriteDataSubwordDuplicated[31:24];
end
end
endgenerate
always_comb begin
HWDATA=HRDATA;
if (ByteMaskM[0]) HWDATA[7:0] = WriteDataSubwordDuplicated[7:0];
if (ByteMaskM[1]) HWDATA[15:8] = WriteDataSubwordDuplicated[15:8];
if (ByteMaskM[2]) HWDATA[23:16] = WriteDataSubwordDuplicated[23:16];
if (ByteMaskM[3]) HWDATA[31:24] = WriteDataSubwordDuplicated[31:24];
end
end
endmodule

View file

@ -54,33 +54,31 @@ module uart (
assign HRESPUART = 0; // OK
assign HREADYUART = 1; // should idle high during address phase and respond high when done; will need to be modified if UART ever needs more than 1 cycle to do something
generate
if (`XLEN == 64) begin:uart
always_comb begin
HREADUART = {Dout, Dout, Dout, Dout, Dout, Dout, Dout, Dout};
case (A)
3'b000: Din = HWDATA[7:0];
3'b001: Din = HWDATA[15:8];
3'b010: Din = HWDATA[23:16];
3'b011: Din = HWDATA[31:24];
3'b100: Din = HWDATA[39:32];
3'b101: Din = HWDATA[47:40];
3'b110: Din = HWDATA[55:48];
3'b111: Din = HWDATA[63:56];
endcase
end
end else begin:uart // 32-bit
always_comb begin
HREADUART = {Dout, Dout, Dout, Dout};
case (A[1:0])
2'b00: Din = HWDATA[7:0];
2'b01: Din = HWDATA[15:8];
2'b10: Din = HWDATA[23:16];
2'b11: Din = HWDATA[31:24];
endcase
end
if (`XLEN == 64) begin:uart
always_comb begin
HREADUART = {Dout, Dout, Dout, Dout, Dout, Dout, Dout, Dout};
case (A)
3'b000: Din = HWDATA[7:0];
3'b001: Din = HWDATA[15:8];
3'b010: Din = HWDATA[23:16];
3'b011: Din = HWDATA[31:24];
3'b100: Din = HWDATA[39:32];
3'b101: Din = HWDATA[47:40];
3'b110: Din = HWDATA[55:48];
3'b111: Din = HWDATA[63:56];
endcase
end
end else begin:uart // 32-bit
always_comb begin
HREADUART = {Dout, Dout, Dout, Dout};
case (A[1:0])
2'b00: Din = HWDATA[7:0];
2'b01: Din = HWDATA[15:8];
2'b10: Din = HWDATA[23:16];
2'b11: Din = HWDATA[31:24];
endcase
end
endgenerate
end
logic BAUDOUTb; // loop tx clock BAUDOUTb back to rx clock RCLK
// *** make sure reads don't occur on UART unless fully selected because they could change state. This applies to all peripherals

View file

@ -36,7 +36,7 @@
// 4: print memory accesses whenever they happen
// 5: print everything
module testbench();
module testbench;
///////////////////////////////////////////////////////////////////////////////
/////////////////////////////////// CONFIG ////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////