merged coverage exclusions

This commit is contained in:
David Harris 2023-04-17 10:17:48 -07:00
commit b00b8ba366
38 changed files with 632 additions and 501 deletions

18
sim/GetLineNum.do Normal file
View file

@ -0,0 +1,18 @@
# Alec Vercruysse
# 2023-04-12
# Note that the target string is regex, and needs to be double-escaped.
# e.g. to match a (, you need \\(.
proc GetLineNum {fname target} {
set f [open $fname]
set linectr 1
while {[gets $f line] != -1} {
if {[regexp $target $line]} {
close $f
return $linectr
}
incr linectr
}
close $f
return -code error \
"target string not found"
}

View file

@ -27,6 +27,8 @@
# This file should be a last resort. It's preferable to put
# // coverage off
# statements inline with the code whenever possible.
# a hack to describe coverage exclusions without hardcoding linenumbers:
do GetLineNum.do
# LZA (i<64) statement confuses coverage tool
# This is ugly to exlcude the whole file - is there a better option? // coverage off isn't working
@ -35,6 +37,46 @@ coverage exclude -srcfile lzc.sv
# FDIVSQRT has
coverage exclude -scope /core/fpu/fpu/fdivsqrt/fdivsqrtfsm -ftrans state DONE->BUSY
### Exclude D$ states and logic for the I$ instance
# This is cleaner than trying to set an I$-specific pragma in cachefsm.sv (which would exclude it for the D$ instance too)
# Also exclude the write line to ready transition for the I$ since we can't get a flush during this operation.
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -fstate CurrState STATE_FLUSH STATE_FLUSH_WRITEBACK STATE_FLUSH_WRITEBACK STATE_WRITEBACK
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -ftrans CurrState STATE_WRITE_LINE->STATE_READY
# exclude unused transitions from case statement. Unfortunately the whole branch needs to be excluded I think. Expression coverage should still work.
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -linerange [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag: icache state-case"] -item b 1
# exclude branch/condition coverage: LineDirty if statement
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -linerange [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag: icache FETCHStatement"] -item bc 1
# exclude the unreachable logic
set start [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag-start: icache case"]
set end [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag-end: icache case"]
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -linerange $start-$end
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -linerange [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag: icache WRITEBACKStatement"]
# exclude Atomic Operation logic
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -linerange [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag: icache storeAMO"] -item e 1 -fecexprrow 6
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -linerange [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag: icache storeAMO1"] -item e 1 -fecexprrow 2-4
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -linerange [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag: icache AnyUpdateHit"] -item e 1 -fecexprrow 2
# cache write logic
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -linerange [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag: icache CacheW"] -item e 1 -fecexprrow 4
# output signal logic
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -linerange [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag: icache StallStates"] -item e 1 -fecexprrow 8 12 14
set start [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag-start: icache flushdirtycontrols"]
set end [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag-end: icache flushdirtycontrols"]
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -linerange $start-$end
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -linerange [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag: icache CacheBusW"]
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -linerange [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag: icache SelAdrCauses"] -item e 1 -fecexprrow 4 10
coverage exclude -scope /dut/core/ifu/bus/icache/icache/cachefsm -linerange [GetLineNum ../src/cache/cachefsm.sv "exclusion-tag: icache CacheBusRCauses"] -item e 1 -fecexprrow 1-2 12
# cache.sv AdrSelMux and CacheBusAdrMux, excluding unhit Flush branch
coverage exclude -scope /dut/core/ifu/bus/icache/icache/AdrSelMux -linerange [GetLineNum ../src/generic/mux.sv "exclusion-tag: mux3"] -item b 1
coverage exclude -scope /dut/core/ifu/bus/icache/icache/CacheBusAdrMux -linerange [GetLineNum ../src/generic/mux.sv "exclusion-tag: mux3"] -item b 1 3
# CacheWay Dirty logic. -scope does not accept wildcards.
set numcacheways 4
for {set i 0} {$i < $numcacheways} {incr i} {
coverage exclude -scope /dut/core/ifu/bus/icache/icache/CacheWays[$i] -linerange [GetLineNum ../src/cache/cacheway.sv "exclusion-tag: icache SetDirtyWay"] -item e 1
coverage exclude -scope /dut/core/ifu/bus/icache/icache/CacheWays[$i] -linerange [GetLineNum ../src/cache/cacheway.sv "exclusion-tag: icache SelectedWiteWordEn"] -item e 1 -fecexprrow 4 6
# below: flushD can't go high during an icache write b/c of pipeline stall
coverage exclude -scope /dut/core/ifu/bus/icache/icache/CacheWays[$i] -linerange [GetLineNum ../src/cache/cacheway.sv "exclusion-tag: icache SetValidEN"] -item e 1 -fecexprrow 4
}
# Excluding peripherals as sources of instructions for the ifu
coverage exclude -scope /dut/core/ifu/immu/immu/pmachecker/adrdecs/clintdec

4
src/cache/cache.sv vendored
View file

@ -1,5 +1,5 @@
///////////////////////////////////////////
// cache
// cache.sv
//
// Written: Ross Thompson ross1728@gmail.com
// Created: 7 July 2021
@ -122,7 +122,7 @@ module cache #(parameter LINELEN, NUMLINES, NUMWAYS, LOGBWPL, WORDLEN, MUXINTE
// Select victim way for associative caches
if(NUMWAYS > 1) begin:vict
cacheLRU #(NUMWAYS, SETLEN, OFFSETLEN, NUMLINES) cacheLRU(
.clk, .reset, .CacheEn, .FlushStage, .HitWay, .ValidWay, .VictimWay, .CacheSet, .LRUWriteEn,
.clk, .reset, .CacheEn, .HitWay, .ValidWay, .VictimWay, .CacheSet, .LRUWriteEn,
.SetValid, .PAdr(PAdr[SETTOP-1:OFFSETLEN]), .InvalidateCache, .FlushCache);
end else
assign VictimWay = 1'b1; // one hot.

49
src/cache/cacheLRU.sv vendored
View file

@ -1,5 +1,5 @@
///////////////////////////////////////////
// dcache (data cache)
// cacheLRU.sv
//
// Written: Ross Thompson ross1728@gmail.com
// Created: 20 July 2021
@ -33,7 +33,6 @@ module cacheLRU
#(parameter NUMWAYS = 4, SETLEN = 9, OFFSETLEN = 5, NUMLINES = 128) (
input logic clk,
input logic reset,
input logic FlushStage, // Pipeline flush of second stage (prevent writes and bus operations)
input logic CacheEn, // Enable the cache memory arrays. Disable hold read data constant
input logic [NUMWAYS-1:0] HitWay, // Which way is valid and matches PAdr's tag
input logic [NUMWAYS-1:0] ValidWay, // Which ways for a particular set are valid, ignores tag
@ -90,16 +89,26 @@ module cacheLRU
assign WayExpanded[StartIndex : EndIndex] = {{DuplicationFactor}{WayEncoded[row]}};
end
genvar r, a, s;
genvar node;
assign LRUUpdate[NUMWAYS-2] = '1;
for(s = NUMWAYS-2; s >= NUMWAYS/2; s--) begin : enables
localparam p = NUMWAYS - s - 1;
localparam g = log2(p);
localparam t0 = s - p;
localparam t1 = t0 - 1;
localparam r = LOGNUMWAYS - g;
assign LRUUpdate[t0] = LRUUpdate[s] & ~WayEncoded[r];
assign LRUUpdate[t1] = LRUUpdate[s] & WayEncoded[r];
for(node = NUMWAYS-2; node >= NUMWAYS/2; node--) begin : enables
localparam ctr = NUMWAYS - node - 1;
localparam ctr_depth = log2(ctr);
localparam lchild = node - ctr;
localparam rchild = lchild - 1;
localparam r = LOGNUMWAYS - ctr_depth;
// the child node will be updated if its parent was updated and
// the WayEncoded bit was the correct value.
// The if statement is only there for coverage since LRUUpdate[root] is always 1.
if (node == NUMWAYS-2) begin
assign LRUUpdate[lchild] = ~WayEncoded[r];
assign LRUUpdate[rchild] = WayEncoded[r];
end
else begin
assign LRUUpdate[lchild] = LRUUpdate[node] & ~WayEncoded[r];
assign LRUUpdate[rchild] = LRUUpdate[node] & WayEncoded[r];
end
end
// The root node of the LRU tree will always be selected in LRUUpdate. No mux needed.
@ -107,15 +116,15 @@ module cacheLRU
mux2 #(1) LRUMuxes[NUMWAYS-3:0](CurrLRU[NUMWAYS-3:0], ~WayExpanded[NUMWAYS-3:0], LRUUpdate[NUMWAYS-3:0], NextLRU[NUMWAYS-3:0]);
// Compute next victim way.
for(s = NUMWAYS-2; s >= NUMWAYS/2; s--) begin
localparam t0 = 2*s - NUMWAYS;
for(node = NUMWAYS-2; node >= NUMWAYS/2; node--) begin
localparam t0 = 2*node - NUMWAYS;
localparam t1 = t0 + 1;
assign Intermediate[s] = CurrLRU[s] ? Intermediate[t0] : Intermediate[t1];
assign Intermediate[node] = CurrLRU[node] ? Intermediate[t0] : Intermediate[t1];
end
for(s = NUMWAYS/2-1; s >= 0; s--) begin
localparam int0 = (NUMWAYS/2-1-s)*2;
for(node = NUMWAYS/2-1; node >= 0; node--) begin
localparam int0 = (NUMWAYS/2-1-node)*2;
localparam int1 = int0 + 1;
assign Intermediate[s] = CurrLRU[s] ? int1[LOGNUMWAYS-1:0] : int0[LOGNUMWAYS-1:0];
assign Intermediate[node] = CurrLRU[node] ? int1[LOGNUMWAYS-1:0] : int0[LOGNUMWAYS-1:0];
end
logic [NUMWAYS-1:0] FirstZero;
@ -134,11 +143,9 @@ module cacheLRU
always_ff @(posedge clk) begin
if (reset) for (int set = 0; set < NUMLINES; set++) LRUMemory[set] <= '0;
if(CacheEn) begin
// if((InvalidateCache | FlushCache) & ~FlushStage) for (int set = 0; set < NUMLINES; set++) LRUMemory[set] <= '0;
if (LRUWriteEn & ~FlushStage) begin
if(LRUWriteEn)
LRUMemory[PAdr] <= NextLRU;
end
if(LRUWriteEn & ~FlushStage & (PAdr == CacheSet))
if(LRUWriteEn & (PAdr == CacheSet))
CurrLRU <= #1 NextLRU;
else
CurrLRU <= #1 LRUMemory[CacheSet];

42
src/cache/cachefsm.sv vendored
View file

@ -1,11 +1,11 @@
///////////////////////////////////////////
// dcache (data cache) fsm
// cachefsm.sv
//
// Written: Ross Thompson ross1728@gmail.com
// Created: 25 August 2021
// Modified: 20 January 2023
//
// Purpose: Controller for the dcache fsm
// Purpose: Controller for the cache fsm
//
// Documentation: RISC-V System on Chip Design Chapter 7 (Figure 7.14 and Table 7.1)
//
@ -89,13 +89,13 @@ module cachefsm #(parameter READ_ONLY_CACHE = 0) (
assign AMO = CacheAtomic[1] & (&CacheRW);
assign StoreAMO = AMO | CacheRW[0];
assign AnyMiss = (StoreAMO | CacheRW[1]) & ~CacheHit & ~InvalidateCache;
assign AnyUpdateHit = (StoreAMO) & CacheHit;
assign AnyHit = AnyUpdateHit | (CacheRW[1] & CacheHit);
assign AnyMiss = (StoreAMO | CacheRW[1]) & ~CacheHit & ~InvalidateCache; // exclusion-tag: icache storeAMO
assign AnyUpdateHit = (StoreAMO) & CacheHit; // exclusion-tag: icache storeAMO1
assign AnyHit = AnyUpdateHit | (CacheRW[1] & CacheHit); // exclusion-tag: icache AnyUpdateHit
assign FlushFlag = FlushAdrFlag & FlushWayFlag;
// outputs for the performance counters.
assign CacheAccess = (AMO | CacheRW[1] | CacheRW[0]) & CurrState == STATE_READY;
assign CacheAccess = (AMO | CacheRW[1] | CacheRW[0]) & CurrState == STATE_READY; // exclusion-tag: icache CacheW
assign CacheMiss = CacheAccess & ~CacheHit;
// special case on reset. When the fsm first exists reset the
@ -109,17 +109,18 @@ module cachefsm #(parameter READ_ONLY_CACHE = 0) (
always_comb begin
NextState = STATE_READY;
case (CurrState)
case (CurrState) // exclusion-tag: icache state-case
STATE_READY: if(InvalidateCache) NextState = STATE_READY;
else if(FlushCache & ~READ_ONLY_CACHE) NextState = STATE_FLUSH;
else if(AnyMiss & (READ_ONLY_CACHE | ~LineDirty)) NextState = STATE_FETCH;
else if(AnyMiss & LineDirty) NextState = STATE_WRITEBACK;
else if(AnyMiss & (READ_ONLY_CACHE | ~LineDirty)) NextState = STATE_FETCH; // exclusion-tag: icache FETCHStatement
else if(AnyMiss & LineDirty) NextState = STATE_WRITEBACK; // exclusion-tag: icache WRITEBACKStatement
else NextState = STATE_READY;
STATE_FETCH: if(CacheBusAck) NextState = STATE_WRITE_LINE;
else NextState = STATE_FETCH;
STATE_WRITE_LINE: NextState = STATE_READ_HOLD;
STATE_READ_HOLD: if(Stall) NextState = STATE_READ_HOLD;
else NextState = STATE_READY;
// exclusion-tag-start: icache case
STATE_WRITEBACK: if(CacheBusAck) NextState = STATE_FETCH;
else NextState = STATE_WRITEBACK;
// eviction needs a delay as the bus fsm does not correctly handle sending the write command at the same time as getting back the bus ack.
@ -129,13 +130,14 @@ module cachefsm #(parameter READ_ONLY_CACHE = 0) (
STATE_FLUSH_WRITEBACK: if(CacheBusAck & ~FlushFlag) NextState = STATE_FLUSH;
else if(CacheBusAck) NextState = STATE_READ_HOLD;
else NextState = STATE_FLUSH_WRITEBACK;
// exclusion-tag-end: icache case
default: NextState = STATE_READY;
endcase
end
// com back to CPU
assign CacheCommitted = (CurrState != STATE_READY) & ~(READ_ONLY_CACHE & CurrState == STATE_READ_HOLD);
assign CacheStall = (CurrState == STATE_READY & (FlushCache | AnyMiss)) |
assign CacheStall = (CurrState == STATE_READY & (FlushCache | AnyMiss)) | // exclusion-tag: icache StallStates
(CurrState == STATE_FETCH) |
(CurrState == STATE_WRITEBACK) |
(CurrState == STATE_WRITE_LINE) | // this cycle writes the sram, must keep stalling so the next cycle can read the next hit/miss unless its a write.
@ -143,12 +145,14 @@ module cachefsm #(parameter READ_ONLY_CACHE = 0) (
(CurrState == STATE_FLUSH_WRITEBACK);
// write enables internal to cache
assign SetValid = CurrState == STATE_WRITE_LINE;
assign SetDirty = (CurrState == STATE_READY & AnyUpdateHit) |
(CurrState == STATE_WRITE_LINE & (StoreAMO));
assign ClearDirty = (CurrState == STATE_WRITE_LINE & ~(StoreAMO)) |
(CurrState == STATE_FLUSH & LineDirty); // This is wrong in a multicore snoop cache protocal. Dirty must be cleared concurrently and atomically with writeback. For single core cannot clear after writeback on bus ack and change flushadr. Clears the wrong set.
// coverage off -item e 1 -fecexprrow 8
assign LRUWriteEn = (CurrState == STATE_READY & AnyHit) |
(CurrState == STATE_WRITE_LINE);
(CurrState == STATE_WRITE_LINE) & ~FlushStage;
// exclusion-tag-start: icache flushdirtycontrols
assign SetDirty = (CurrState == STATE_READY & AnyUpdateHit) | // exclusion-tag: icache SetDirty
(CurrState == STATE_WRITE_LINE & (StoreAMO));
assign ClearDirty = (CurrState == STATE_WRITE_LINE & ~(StoreAMO)) | // exclusion-tag: icache ClearDirty
(CurrState == STATE_FLUSH & LineDirty); // This is wrong in a multicore snoop cache protocal. Dirty must be cleared concurrently and atomically with writeback. For single core cannot clear after writeback on bus ack and change flushadr. Clears the wrong set.
// Flush and eviction controls
assign SelWriteback = (CurrState == STATE_WRITEBACK & ~CacheBusAck) |
(CurrState == STATE_READY & AnyMiss & LineDirty);
@ -162,20 +166,20 @@ module cachefsm #(parameter READ_ONLY_CACHE = 0) (
(CurrState == STATE_FLUSH_WRITEBACK & CacheBusAck);
assign FlushCntRst = (CurrState == STATE_FLUSH & FlushFlag & ~LineDirty) |
(CurrState == STATE_FLUSH_WRITEBACK & FlushFlag & CacheBusAck);
// exclusion-tag-end: icache flushdirtycontrols
// Bus interface controls
assign CacheBusRW[1] = (CurrState == STATE_READY & AnyMiss & ~LineDirty) |
assign CacheBusRW[1] = (CurrState == STATE_READY & AnyMiss & ~LineDirty) | // exclusion-tag: icache CacheBusRCauses
(CurrState == STATE_FETCH & ~CacheBusAck) |
(CurrState == STATE_WRITEBACK & CacheBusAck);
assign CacheBusRW[0] = (CurrState == STATE_READY & AnyMiss & LineDirty) |
assign CacheBusRW[0] = (CurrState == STATE_READY & AnyMiss & LineDirty) | // exclusion-tag: icache CacheBusW
(CurrState == STATE_WRITEBACK & ~CacheBusAck) |
(CurrState == STATE_FLUSH_WRITEBACK & ~CacheBusAck);
assign SelAdr = (CurrState == STATE_READY & (StoreAMO | AnyMiss)) | // changes if store delay hazard removed
assign SelAdr = (CurrState == STATE_READY & (StoreAMO | AnyMiss)) | // exclusion-tag: icache SelAdrCauses // changes if store delay hazard removed
(CurrState == STATE_FETCH) |
(CurrState == STATE_WRITEBACK) |
(CurrState == STATE_WRITE_LINE) |
resetDelay;
assign SelFetchBuffer = CurrState == STATE_WRITE_LINE | CurrState == STATE_READ_HOLD;
assign CacheEn = (~Stall | FlushCache | AnyMiss) | (CurrState != STATE_READY) | reset | InvalidateCache;

11
src/cache/cacheway.sv vendored
View file

@ -97,18 +97,13 @@ module cacheway #(parameter NUMLINES=512, LINELEN = 256, TAGLEN = 26,
/////////////////////////////////////////////////////////////////////////////////////////////
assign SetValidWay = SetValid & SelData;
assign SetDirtyWay = SetDirty & SelData; // exclusion-tag: icache SetDirtyWay
assign ClearDirtyWay = ClearDirty & SelData;
if (!READ_ONLY_CACHE) begin
assign SetDirtyWay = SetDirty & SelData;
assign SelectedWriteWordEn = (SetValidWay | SetDirtyWay) & ~FlushStage;
end
else begin
assign SelectedWriteWordEn = SetValidWay & ~FlushStage;
end
assign SelectedWriteWordEn = (SetValidWay | SetDirtyWay) & ~FlushStage; // exclusion-tag: icache SelectedWiteWordEn
assign SetValidEN = SetValidWay & ~FlushStage; // exclusion-tag: icache SetValidEN
// If writing the whole line set all write enables to 1, else only set the correct word.
assign FinalByteMask = SetValidWay ? '1 : LineByteMask; // OR
assign SetValidEN = SetValidWay & ~FlushStage;
/////////////////////////////////////////////////////////////////////////////////////////////
// Tag Array

View file

@ -1,11 +1,11 @@
///////////////////////////////////////////
// subcachelineread
// subcachelineread.sv
//
// Written: Ross Thompson ross1728@gmail.com
// Created: 4 February 2022
// Modified: 20 January 2023
//
// Purpose: Muxes the cache line downto the word size. Also include possilbe save/restore registers/muxes.
// Purpose: Muxes the cache line down to the word size. Also include possible save/restore registers/muxes.
//
// Documentation: RISC-V System on Chip Design Chapter 7
@ -31,7 +31,6 @@
module subcachelineread #(parameter LINELEN, WORDLEN,
parameter MUXINTERVAL )( // The number of bits between mux. Set to 16 for I$ to support compressed. Set to `LLEN for D$
input logic [$clog2(LINELEN/8) - $clog2(MUXINTERVAL/8) - 1 : 0] PAdr, // Physical address
input logic [LINELEN-1:0] ReadDataLine,// Read data of the whole cacheline
output logic [WORDLEN-1:0] ReadDataWord // read data of selected word.

View file

@ -51,11 +51,11 @@ module ahbcacheinterface #(
// cache interface
input logic [`PA_BITS-1:0] CacheBusAdr, // Address of cache line
input logic [`LLEN-1:0] CacheReadDataWordM, // one word of cache line during a writeback
input logic [`LLEN-1:0] CacheReadDataWordM, // One word of cache line during a writeback
input logic CacheableOrFlushCacheM, // Memory operation is cacheable or flushing D$
input logic Cacheable, // Memory operation is cachable
input logic [1:0] CacheBusRW, // Cache bus operation, 01: writeback, 10: fetch
output logic CacheBusAck, // Handshack to $ indicating bus transaction completed
output logic CacheBusAck, // Handshake to $ indicating bus transaction completed
output logic [LINELEN-1:0] FetchBuffer, // Register to hold beats of cache line as the arrive from bus
output logic [AHBWLOGBWPL-1:0] BeatCount, // Beat position within the cache line in the Address Phase
output logic SelBusBeat, // Tells the cache to select the word from ReadData or WriteData from BeatCount rather than PAdr

View file

@ -1,5 +1,5 @@
///////////////////////////////////////////
// controller input stage
// controllerinput.sv
//
// Written: Ross Thompson ross1728@gmail.com
// Created: August 31, 2022
@ -40,7 +40,7 @@ module controllerinput #(
input logic HRESETn,
input logic Save, // Two or more managers requesting (HTRANS != 00) at the same time. Save the non-granted manager inputs
input logic Restore, // Restore a saved manager inputs when it is finally granted
input logic Disable, // Supress HREADY to the non-granted manager
input logic Disable, // Suppress HREADY to the non-granted manager
output logic Request, // This manager is making a request
// controller input
input logic [1:0] HTRANSIn, // Manager input. AHB transaction type, 00: IDLE, 10 NON_SEQ, 11 SEQ
@ -48,14 +48,14 @@ module controllerinput #(
input logic [2:0] HSIZEIn, // Manager input. AHB transaction width
input logic [2:0] HBURSTIn, // Manager input. AHB burst length
input logic [`PA_BITS-1:0] HADDRIn, // Manager input. AHB address
output logic HREADYOut, // Indicate to manager the peripherial is not busy and another manager does not have priority
output logic HREADYOut, // Indicate to manager the peripheral is not busy and another manager does not have priority
// controller output
output logic [1:0] HTRANSOut, // Aribrated manager transaction. AHB transaction type, 00: IDLE, 10 NON_SEQ, 11 SEQ
output logic HWRITEOut, // Aribrated manager transaction. AHB 0: Read operation 1: Write operation
output logic [2:0] HSIZEOut, // Aribrated manager transaction. AHB transaction width
output logic [2:0] HBURSTOut, // Aribrated manager transaction. AHB burst length
output logic [`PA_BITS-1:0] HADDROut, // Aribrated manager transaction. AHB address
input logic HREADYIn // Peripherial ready
output logic [1:0] HTRANSOut, // Arbitrated manager transaction. AHB transaction type, 00: IDLE, 10 NON_SEQ, 11 SEQ
output logic HWRITEOut, // Arbitrated manager transaction. AHB 0: Read operation 1: Write operation
output logic [2:0] HSIZEOut, // Arbitrated manager transaction. AHB transaction width
output logic [2:0] HBURSTOut, // Arbitrated manager transaction. AHB burst length
output logic [`PA_BITS-1:0] HADDROut, // Arbitrated manager transaction. AHB address
input logic HREADYIn // Peripheral ready
);
logic HWRITESave;

View file

@ -1,5 +1,5 @@
///////////////////////////////////////////
// ebufsmarb
// ebufsmarb.sv
//
// Written: Ross Thompson ross1728@gmail.com
// Created: 23 January 2023
@ -86,7 +86,7 @@ module ebufsmarb (
// Controller 1 (LSU)
// When both the IFU and LSU request at the same time, the FSM will go into the arbitrate state.
// Once the LSU request is done the fsm returns to IDLE. To prevent the LSU from regaining
// priority and re issuing the same memroy operation, the delayed IFUReqD squashes the LSU request.
// priority and re-issuing the same memory operation, the delayed IFUReqD squashes the LSU request.
// This is necessary because the pipeline is stalled for the entire duration of both transactions,
// and the LSU memory request will stil be active.
flopr #(1) ifureqreg(HCLK, ~HRESETn, IFUReq, IFUReqD);

View file

@ -1,5 +1,5 @@
///////////////////////////////////////////
// fdivsqrtpreproc.sv
// fdivsqrtexpcalc.sv
//
// Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu
// Modified:13 January 2022

View file

@ -40,7 +40,7 @@ module mux3 #(parameter WIDTH = 8) (
input logic [1:0] s,
output logic [WIDTH-1:0] y);
assign y = s[1] ? d2 : (s[0] ? d1 : d0);
assign y = s[1] ? d2 : (s[0] ? d1 : d0); // exclusion-tag: mux3
endmodule
module mux4 #(parameter WIDTH = 8) (

View file

@ -1,5 +1,5 @@
///////////////////////////////////////////
// oneHotDecoder.sv
// onehotdecoder.sv
//
// Written: ross1728@gmail.com July 09, 2021
// Modified:

View file

@ -187,7 +187,7 @@ module bpred (
// Correct branch/jump target.
mux2 #(`XLEN) pccorrectemux(PCLinkE, IEUAdrE, PCSrcE, PCCorrectE);
// If the fence/csrw was predicted as a taken branch then we select PCF, rather PCE.
// If the fence/csrw was predicted as a taken branch then we select PCF, rather than PCE.
// Effectively this is PCM+4 or the non-existant PCLinkM
if(`INSTR_CLASS_PRED) mux2 #(`XLEN) pcmuxBPWrongInvalidateFlush(PCE, PCF, BPWrongM, NextValidPCE);
else assign NextValidPCE = PCE;
@ -201,7 +201,7 @@ module bpred (
// 3. target ras (ras target wrong / class[2])
// 4. direction (br dir wrong / class[0])
// Unforuantely we can't use PCD to infer the correctness of the BTB or RAS because the class prediction
// Unfortunately we can't use PCD to infer the correctness of the BTB or RAS because the class prediction
// could be wrong or the fall through address selected for branch predict not taken.
// By pipeline the BTB's PC and RAS address through the pipeline we can measure the accuracy of
// both without the above inaccuracies.

View file

@ -1,7 +1,7 @@
///////////////////////////////////////////
// btb.sv
//
// Written: Ross Thomposn ross1728@gmail.com
// Written: Ross Thompson ross1728@gmail.com
// Created: February 15, 2021
// Modified: 24 January 2023
//
@ -34,7 +34,7 @@ module btb #(parameter Depth = 10 ) (
input logic clk,
input logic reset,
input logic StallF, StallD, StallE, StallM, StallW, FlushD, FlushE, FlushM, FlushW,
input logic [`XLEN-1:0] PCNextF, PCF, PCD, PCE, PCM,// PC at various stages
input logic [`XLEN-1:0] PCNextF, PCF, PCD, PCE, PCM, // PC at various stages
output logic [`XLEN-1:0] BPBTAF, // BTB's guess at PC
output logic [`XLEN-1:0] BPBTAD,
output logic [`XLEN-1:0] BPBTAE,
@ -73,7 +73,7 @@ module btb #(parameter Depth = 10 ) (
// must output a valid PC and valid bit during reset. Because only PCF, not PCNextF is reset, PCNextF is invalid
// during reset. The BTB must produce a non X PC1NextF to allow the simulation to run.
// While thie mux could be included in IFU it is not necessary for the IROM/I$/bus.
// While the mux could be included in IFU it is not necessary for the IROM/I$/bus.
// For now it is optimal to leave it here.
assign ResetPC = `RESET_VECTOR;
assign PCNextFIndex = reset ? ResetPC[Depth+1:2] : {PCNextF[Depth+1] ^ PCNextF[1], PCNextF[Depth:2]};

View file

@ -198,9 +198,12 @@ module csrsr (
STATUS_UBE <= #1 CSRWriteValM[6] & `U_SUPPORTED & `BIGENDIAN_SUPPORTED;
STATUS_MBE <= #1 nextMBE;
STATUS_SBE <= #1 nextSBE;
// coverage off
// MSTATUSH only exists in 32-bit configurations, will not be hit on rv64gc
end else if (WriteMSTATUSHM) begin
STATUS_MBE <= #1 CSRWriteValM[5] & `BIGENDIAN_SUPPORTED;
STATUS_SBE <= #1 CSRWriteValM[4] & `S_SUPPORTED & `BIGENDIAN_SUPPORTED;
// coverage on
end else if (WriteSSTATUSM) begin // write a subset of the STATUS bits
STATUS_MXR_INT <= #1 CSRWriteValM[19];
STATUS_SUM_INT <= #1 CSRWriteValM[18];

View file

@ -81,11 +81,14 @@ module trap (
///////////////////////////////////////////
assign BothInstrAccessFaultM = InstrAccessFaultM | HPTWInstrAccessFaultM;
// coverage off -item e 1 -fecexprrow 2
// excludes InstrMisalignedFaultM from coverage of this line, since misaligned instructions cannot occur in rv64gc.
assign ExceptionM = InstrMisalignedFaultM | BothInstrAccessFaultM | IllegalInstrFaultM |
LoadMisalignedFaultM | StoreAmoMisalignedFaultM |
InstrPageFaultM | LoadPageFaultM | StoreAmoPageFaultM |
BreakpointFaultM | EcallFaultM |
LoadAccessFaultM | StoreAmoAccessFaultM;
// coverage on
assign TrapM = ExceptionM | InterruptM;
assign RetM = mretM | sretM;

View file

@ -169,7 +169,7 @@ module testbench;
logic InitializingMemories;
integer ResetCount, ResetThreshold;
logic InReset;
logic Begin;
logic BeginSample;
// instantiate device to be tested
assign GPIOIN = 0;
@ -225,7 +225,8 @@ module testbench;
totalerrors = 0;
testadr = 0;
testadrNoBase = 0;
// riscof tests have a different signature, tests[0] == "1" refers to RiscvArchTests and tests[0] == "2" refers to WallyRiscvArchTests
// riscof tests have a different signature, tests[0] == "1" refers to RiscvArchTests
// and tests[0] == "2" refers to WallyRiscvArchTests
riscofTest = tests[0] == "1" | tests[0] == "2";
// fill memory with defined values to reduce Xs in simulation
// Quick note the memory will need to be initialized. The C library does not
@ -265,8 +266,9 @@ module testbench;
ProgramAddrMapFile = {pathname, tests[test], ".elf.objdump.addr"};
ProgramLabelMapFile = {pathname, tests[test], ".elf.objdump.lab"};
end
// declare memory labels that interest us, the updateProgramAddrLabelArray task will find the addr of each label and fill the array
// to expand, add more elements to this array and initialize them to zero (also initilaize them to zero at the start of the next test)
// declare memory labels that interest us, the updateProgramAddrLabelArray task will find
// the addr of each label and fill the array. To expand, add more elements to this array
// and initialize them to zero (also initilaize them to zero at the start of the next test)
if(!`FPGA) begin
updateProgramAddrLabelArray(ProgramAddrMapFile, ProgramLabelMapFile, ProgramAddrLabelArray);
$display("Read memfile %s", memfilename);
@ -311,8 +313,10 @@ module testbench;
#600; // give time for instructions in pipeline to finish
if (TEST == "embench") begin
// Writes contents of begin_signature to .sim.output file
// this contains instret and cycles for start and end of test run, used by embench python speed script to calculate embench speed score
// also begin_signature contains the results of the self checking mechanism, which will be read by the python script for error checking
// this contains instret and cycles for start and end of test run, used by embench
// python speed script to calculate embench speed score.
// also, begin_signature contains the results of the self checking mechanism,
// which will be read by the python script for error checking
$display("Embench Benchmark: %s is done.", tests[test]);
if (riscofTest) outputfile = {pathname, tests[test], "/ref/ref.sim.output"};
else outputfile = {pathname, tests[test], ".sim.output"};
@ -366,15 +370,14 @@ module testbench;
errors = errors+1;
$display(" Error on test %s result %d: adr = %h sim (D$) %h sim (DTIM_SUPPORTED) = %h, signature = %h",
tests[test], i, (testadr+i)*(`XLEN/8), DCacheFlushFSM.ShadowRAM[testadr+i], sig, signature[i]);
$stop;//***debug
$stop; //***debug
end
i = i + 1;
end
/* verilator lint_on INFINITELOOP */
if (errors == 0) begin
$display("%s succeeded. Brilliant!!!", tests[test]);
end
else begin
end else begin
$display("%s failed with %d errors. :(", tests[test], errors);
totalerrors = totalerrors+1;
end
@ -385,8 +388,7 @@ module testbench;
if (totalerrors == 0) $display("SUCCESS! All tests ran without failures.");
else $display("FAIL: %d test programs had errors", totalerrors);
$stop;
end
else begin
end else begin
InitializingMemories = 1;
// If there are still additional tests to run, read in information for the next test
//pathname = tvpaths[tests[0]];
@ -480,10 +482,9 @@ module testbench;
assign EndSample = DCacheFlushStart & ~DCacheFlushDone;
flop #(1) BeginReg(clk, StartSampleFirst, BeginDelayed);
assign Begin = StartSampleFirst & ~BeginDelayed;
assign BeginSample = StartSampleFirst & ~BeginDelayed;
end
always @(negedge clk) begin
if(StartSample) begin
for(HPMCindex = 0; HPMCindex < 32; HPMCindex += 1) begin
@ -552,14 +553,15 @@ module testbench;
end
end
end
end
end
if (`ICACHE_SUPPORTED && `I_CACHE_ADDR_LOGGER) begin : ICacheLogger
int file;
string LogFile;
logic resetD, resetEdge;
logic Enable, InvalDelayed;
logic Enable;
logic InvalDelayed, InvalEdge;
assign Enable = dut.core.ifu.bus.icache.icache.cachefsm.LRUWriteEn &
dut.core.ifu.immu.immu.pmachecker.Cacheable &
@ -581,7 +583,7 @@ end
dut.core.ifu.bus.icache.icache.vict.cacheLRU.AllValid ? "E" : "M";
always @(posedge clk) begin
if(resetEdge) $fwrite(file, "TRAIN\n");
if(Begin) $fwrite(file, "BEGIN %s\n", memfilename);
if(BeginSample) $fwrite(file, "BEGIN %s\n", memfilename);
if(Enable) begin // only log i cache reads
$fwrite(file, "%h R %s\n", dut.core.ifu.PCPF, HitMissString);
end
@ -621,7 +623,7 @@ end
end
always @(posedge clk) begin
if(resetEdge) $fwrite(file, "TRAIN\n");
if(Begin) $fwrite(file, "BEGIN %s\n", memfilename);
if(BeginSample) $fwrite(file, "BEGIN %s\n", memfilename);
if(Enabled) begin
$fwrite(file, "%h %s %s\n", dut.core.lsu.PAdrM, AccessTypeString, HitMissString);
end
@ -656,7 +658,7 @@ end
end
end
// check for hange up.
// check for hang up.
logic [`XLEN-1:0] OldPCW;
integer WatchDogTimerCount;
localparam WatchDogTimerThreshold = 1000000;
@ -806,8 +808,7 @@ task automatic updateProgramAddrLabelArray;
integer returncode;
returncode = $fscanf(ProgramLabelMapFP, "%s\n", label);
returncode = $fscanf(ProgramAddrMapFP, "%s\n", adrstr);
if (ProgramAddrLabelArray.exists(label))
ProgramAddrLabelArray[label] = adrstr.atohex();
if (ProgramAddrLabelArray.exists(label)) ProgramAddrLabelArray[label] = adrstr.atohex();
end
end
$fclose(ProgramLabelMapFP);

View file

@ -143,6 +143,65 @@ main:
csrw frm, t0
csrw fflags, t0
# CSRC MCOUNTEREN Register
# Go to machine mode
li a0, 3
ecall
# Activate HPM3
li t0, -1
csrw mcounteren, t0
csrw scounteren, t0
# Go to supervisor
li a0, 1
ecall
#try to write to HPMs
csrw 333, t0
#go to user mode
li a0, 0
ecall
csrr t0, hpmcounter22
# setting registers bits to 0
li a0, 3 # back to machine mode
ecall
li t0, 0
csrw mcounteren, t0
csrw scounteren, t0
# Write to satp when status.TVM is 1 from machine mode
bseti t0, zero, 20
csrs mstatus, t0
csrw satp, t0
# Test checking privilege for reading counters (using counter 22 as an example)
# Go to machine mode
li a0, 3
ecall
# Set SCOUNTEREN to all 0s, MCOUNTEREN to all 1s
li t0, 0
csrw scounteren, t0
li t1, -1
csrw mcounteren, t1
# Go to supervisor mode
li a0, 1
ecall
# try to read from HPM22
csrr t0, hpmcounter22
# go to user mode
li a0, 0
ecall
csrr t0, hpmcounter22
j done