Added uart print functions and the Wally banner. SD card can now be initialized. Removed old code from boot.c

This commit is contained in:
Jacob Pease 2024-07-23 14:18:42 -05:00
parent b05052311f
commit bf65cd2817
6 changed files with 239 additions and 420 deletions

View file

@ -2,421 +2,54 @@
#include "boot.h" #include "boot.h"
#include "gpt.h" #include "gpt.h"
/* Card type flags (card_type) */ /* int disk_read(BYTE * buf, LBA_t sector, UINT count, BYTE card_type) { */
#define CT_MMC 0x01 /* MMC ver 3 */
#define CT_SD1 0x02 /* SD ver 1 */
#define CT_SD2 0x04 /* SD ver 2 */
#define CT_SDC (CT_SD1|CT_SD2) /* SD */
#define CT_BLOCK 0x08 /* Block addressing */
#define CMD0 (0) /* GO_IDLE_STATE */ /* /\* This is not needed. This has everything to do with the FAT */
#define CMD1 (1) /* SEND_OP_COND */ /* filesystem stuff that I'm not including. All I need to do is */
#define CMD2 (2) /* SEND_CID */ /* initialize the SD card and read from it. Anything in here that is */
#define CMD3 (3) /* RELATIVE_ADDR */ /* checking for potential errors, I'm going to have to temporarily */
#define CMD4 (4) /* do without. */
#define CMD5 (5) /* SLEEP_WAKE (SDC) */ /* *\/ */
#define CMD6 (6) /* SWITCH_FUNC */ /* // if (!count) return RES_PARERR; */
#define CMD7 (7) /* SELECT */ /* /\* if (drv_status & STA_NOINIT) return RES_NOTRDY; *\/ */
#define CMD8 (8) /* SEND_IF_COND */
#define CMD9 (9) /* SEND_CSD */
#define CMD10 (10) /* SEND_CID */
#define CMD11 (11)
#define CMD12 (12) /* STOP_TRANSMISSION */
#define CMD13 (13)
#define CMD15 (15)
#define CMD16 (16) /* SET_BLOCKLEN */
#define CMD17 (17) /* READ_SINGLE_BLOCK */
#define CMD18 (18) /* READ_MULTIPLE_BLOCK */
#define CMD19 (19)
#define CMD20 (20)
#define CMD23 (23)
#define CMD24 (24)
#define CMD25 (25)
#define CMD27 (27)
#define CMD28 (28)
#define CMD29 (29)
#define CMD30 (30)
#define CMD32 (32)
#define CMD33 (33)
#define CMD38 (38)
#define CMD42 (42)
#define CMD55 (55) /* APP_CMD */
#define CMD56 (56)
#define ACMD6 (0x80+6) /* define the data bus width */
#define ACMD41 (0x80+41) /* SEND_OP_COND (ACMD) */
// Capability bits /* uint32_t response[4]; */
#define SDC_CAPABILITY_SD_4BIT 0x0001 /* struct sdc_regs * regs = (struct sdc_regs *)SDC; */
#define SDC_CAPABILITY_SD_RESET 0x0002
#define SDC_CAPABILITY_ADDR 0xff00
// Control bits
#define SDC_CONTROL_SD_4BIT 0x0001
#define SDC_CONTROL_SD_RESET 0x0002
// Card detect bits
#define SDC_CARD_INSERT_INT_EN 0x0001
#define SDC_CARD_INSERT_INT_REQ 0x0002
#define SDC_CARD_REMOVE_INT_EN 0x0004
#define SDC_CARD_REMOVE_INT_REQ 0x0008
// Command status bits
#define SDC_CMD_INT_STATUS_CC 0x0001 // Command complete
#define SDC_CMD_INT_STATUS_EI 0x0002 // Any error
#define SDC_CMD_INT_STATUS_CTE 0x0004 // Timeout
#define SDC_CMD_INT_STATUS_CCRC 0x0008 // CRC error
#define SDC_CMD_INT_STATUS_CIE 0x0010 // Command code check error
// Data status bits
#define SDC_DAT_INT_STATUS_TRS 0x0001 // Transfer complete
#define SDC_DAT_INT_STATUS_ERR 0x0002 // Any error
#define SDC_DAT_INT_STATUS_CTE 0x0004 // Timeout
#define SDC_DAT_INT_STATUS_CRC 0x0008 // CRC error
#define SDC_DAT_INT_STATUS_CFE 0x0010 // Data FIFO underrun or overrun
#define ERR_EOF 30
#define ERR_NOT_ELF 31
#define ERR_ELF_BITS 32
#define ERR_ELF_ENDIANNESS 33
#define ERR_CMD_CRC 34
#define ERR_CMD_CHECK 35
#define ERR_DATA_CRC 36
#define ERR_DATA_FIFO 37
#define ERR_BUF_ALIGNMENT 38
#define FR_DISK_ERR 39
#define FR_TIMEOUT 40
struct sdc_regs {
volatile uint32_t argument;
volatile uint32_t command;
volatile uint32_t response1;
volatile uint32_t response2;
volatile uint32_t response3;
volatile uint32_t response4;
volatile uint32_t data_timeout;
volatile uint32_t control;
volatile uint32_t cmd_timeout;
volatile uint32_t clock_divider;
volatile uint32_t software_reset;
volatile uint32_t power_control;
volatile uint32_t capability;
volatile uint32_t cmd_int_status;
volatile uint32_t cmd_int_enable;
volatile uint32_t dat_int_status;
volatile uint32_t dat_int_enable;
volatile uint32_t block_size;
volatile uint32_t block_count;
volatile uint32_t card_detect;
volatile uint32_t res_50;
volatile uint32_t res_54;
volatile uint32_t res_58;
volatile uint32_t res_5c;
volatile uint64_t dma_addres;
};
#define MAX_BLOCK_CNT 0x1000
#define SDC 0x00013000;
// static struct sdc_regs * const regs __attribute__((section(".rodata"))) = (struct sdc_regs *)0x00013000;
// static int errno __attribute__((section(".bss")));
// static DSTATUS drv_status __attribute__((section(".bss")));
// static BYTE card_type __attribute__((section(".bss")));
// static uint32_t response[4] __attribute__((section(".bss")));
// static int alt_mem __attribute__((section(".bss")));
/*static const char * errno_to_str(void) {
switch (errno) {
case ERR_EOF: return "Unexpected EOF";
case ERR_NOT_ELF: return "Not an ELF file";
case ERR_ELF_BITS: return "Wrong ELF word size";
case ERR_ELF_ENDIANNESS: return "Wrong ELF endianness";
case ERR_CMD_CRC: return "Command CRC error";
case ERR_CMD_CHECK: return "Command code check error";
case ERR_DATA_CRC: return "Data CRC error";
case ERR_DATA_FIFO: return "Data FIFO error";
case ERR_BUF_ALIGNMENT: return "Bad buffer alignment";
case FR_DISK_ERR: return "Disk error";
case FR_TIMEOUT: return "Timeout";
}
return "Unknown error code";
}*/
static void usleep(unsigned us) {
uintptr_t cycles0;
uintptr_t cycles1;
asm volatile ("csrr %0, 0xB00" : "=r" (cycles0));
for (;;) {
asm volatile ("csrr %0, 0xB00" : "=r" (cycles1));
if (cycles1 - cycles0 >= us * 100) break;
}
}
static int sdc_cmd_finish(unsigned cmd, uint32_t * response) {
struct sdc_regs * regs = (struct sdc_regs *)SDC;
while (1) { /* /\* Convert LBA to byte address if needed *\/ */
unsigned status = regs->cmd_int_status; /* if (!(card_type & CT_BLOCK)) sector *= 512; */
if (status) { /* while (count > 0) { */
// clear interrupts /* UINT bcnt = count > MAX_BLOCK_CNT ? MAX_BLOCK_CNT : count; */
regs->cmd_int_status = 0; /* unsigned bytes = bcnt * 512; */
while (regs->software_reset != 0) {} /* if (send_data_cmd(bcnt == 1 ? CMD17 : CMD18, sector, buf, bcnt, response) < 0) return 1; */
if (status == SDC_CMD_INT_STATUS_CC) { /* if (bcnt > 1 && send_cmd(CMD12, 0, response) < 0) return 1; */
// get response /* sector += (card_type & CT_BLOCK) ? bcnt : bytes; */
response[0] = regs->response1; /* count -= bcnt; */
response[1] = regs->response2; /* buf += bytes; */
response[2] = regs->response3; /* } */
response[3] = regs->response4;
return 0;
}
/* errno = FR_DISK_ERR;
if (status & SDC_CMD_INT_STATUS_CTE) errno = FR_TIMEOUT;
if (status & SDC_CMD_INT_STATUS_CCRC) errno = ERR_CMD_CRC;
if (status & SDC_CMD_INT_STATUS_CIE) errno = ERR_CMD_CHECK;*/
break;
}
}
return -1;
}
static int sdc_data_finish(void) { /* return 0;; */
int status; /* } */
struct sdc_regs * regs = (struct sdc_regs *)SDC;
while ((status = regs->dat_int_status) == 0) {}
regs->dat_int_status = 0;
while (regs->software_reset != 0) {}
if (status == SDC_DAT_INT_STATUS_TRS) return 0; int disk_read(BYTE * buf, LBA_t sector, UINT count) {
/* errno = FR_DISK_ERR;
if (status & SDC_DAT_INT_STATUS_CTE) errno = FR_TIMEOUT;
if (status & SDC_DAT_INT_STATUS_CRC) errno = ERR_DATA_CRC;
if (status & SDC_DAT_INT_STATUS_CFE) errno = ERR_DATA_FIFO;*/
return -1;
}
static int send_data_cmd(unsigned cmd, unsigned arg, void * buf, unsigned blocks, uint32_t * response) {
struct sdc_regs * regs = (struct sdc_regs *)SDC;
unsigned command = (cmd & 0x3f) << 8;
switch (cmd) {
case CMD0:
case CMD4:
case CMD15:
// No responce
break;
case CMD11:
case CMD13:
case CMD16:
case CMD17:
case CMD18:
case CMD19:
case CMD23:
case CMD24:
case CMD25:
case CMD27:
case CMD30:
case CMD32:
case CMD33:
case CMD42:
case CMD55:
case CMD56:
case ACMD6:
// R1
command |= 1; // 48 bits
command |= 1 << 3; // resp CRC
command |= 1 << 4; // resp OPCODE
break;
case CMD7:
case CMD12:
case CMD20:
case CMD28:
case CMD29:
case CMD38:
// R1b
command |= 1; // 48 bits
command |= 1 << 2; // busy
command |= 1 << 3; // resp CRC
command |= 1 << 4; // resp OPCODE
break;
case CMD2:
case CMD9:
case CMD10:
// R2
command |= 2; // 136 bits
command |= 1 << 3; // resp CRC
break;
case ACMD41:
// R3
command |= 1; // 48 bits
break;
case CMD3:
// R6
command |= 1; // 48 bits
command |= 1 << 2; // busy
command |= 1 << 3; // resp CRC
command |= 1 << 4; // resp OPCODE
break;
case CMD8:
// R7
command |= 1; // 48 bits
command |= 1 << 3; // resp CRC
command |= 1 << 4; // resp OPCODE
break;
}
if (blocks) {
command |= 1 << 5;
if ((intptr_t)buf & 3) {
// errno = ERR_BUF_ALIGNMENT;
return -1;
}
regs->dma_addres = (uint64_t)(intptr_t)buf;
regs->block_size = 511;
regs->block_count = blocks - 1;
regs->data_timeout = 0x1FFFFFF;
}
regs->command = command;
regs->cmd_timeout = 0xFFFFF;
regs->argument = arg;
if (sdc_cmd_finish(cmd, response) < 0) return -1;
if (blocks) return sdc_data_finish();
return 0;
}
#define send_cmd(cmd, arg, response) send_data_cmd(cmd, arg, NULL, 0, response)
static BYTE ini_sd(void) {
struct sdc_regs * regs = (struct sdc_regs *)SDC;
unsigned rca;
BYTE card_type;
uint32_t response[4];
/* Reset controller */
regs->software_reset = 1;
while ((regs->software_reset & 1) == 0) {}
// This clock divider is meant to initialize the card at
// 400kHz
// 22MHz/400kHz = 55 (base 10) = 0x37 - 0x01 = 0x36
regs->clock_divider = 0x36;
regs->software_reset = 0;
while (regs->software_reset) {}
usleep(5000);
card_type = 0;
// drv_status = STA_NOINIT;
if (regs->capability & SDC_CAPABILITY_SD_RESET) {
/* Power cycle SD card */
regs->control |= SDC_CONTROL_SD_RESET;
usleep(1000000);
regs->control &= ~SDC_CONTROL_SD_RESET;
usleep(100000);
}
/* Enter Idle state */
send_cmd(CMD0, 0, response);
card_type = CT_SD1;
if (send_cmd(CMD8, 0x1AA, response) == 0) {
if ((response[0] & 0xfff) != 0x1AA) {
// errno = ERR_CMD_CHECK;
return -1;
}
card_type = CT_SD2;
}
/* Wait for leaving idle state (ACMD41 with HCS bit) */
while (1) {
/* ACMD41, Set Operating Conditions: Host High Capacity & 3.3V */
if (send_cmd(CMD55, 0, response) < 0 || send_cmd(ACMD41, 0x40300000, response) < 0) return -1;
if (response[0] & (1 << 31)) {
if (response[0] & (1 << 30)) card_type |= CT_BLOCK;
break;
}
}
/* Enter Identification state */
if (send_cmd(CMD2, 0, response) < 0) return -1;
/* Get RCA (Relative Card Address) */
rca = 0x1234;
if (send_cmd(CMD3, rca << 16, response) < 0) return -1;
rca = response[0] >> 16;
/* Select card */
if (send_cmd(CMD7, rca << 16, response) < 0) return -1;
/* Clock 25MHz */
// 22Mhz/2 = 11Mhz
regs->clock_divider = 1;
usleep(10000);
/* Bus width 1-bit */
regs->control = 0;
if (send_cmd(CMD55, rca << 16, response) < 0 || send_cmd(ACMD6, 0, response) < 0) return -1;
/* Set R/W block length to 512 */
if (send_cmd(CMD16, 512, response) < 0) return -1;
// drv_status &= ~STA_NOINIT;
return card_type;
}
int disk_read(BYTE * buf, LBA_t sector, UINT count, BYTE card_type) {
/* This is not needed. This has everything to do with the FAT
filesystem stuff that I'm not including. All I need to do is
initialize the SD card and read from it. Anything in here that is
checking for potential errors, I'm going to have to temporarily
do without.
*/
// if (!count) return RES_PARERR;
/* if (drv_status & STA_NOINIT) return RES_NOTRDY; */
uint32_t response[4];
struct sdc_regs * regs = (struct sdc_regs *)SDC;
/* Convert LBA to byte address if needed */
if (!(card_type & CT_BLOCK)) sector *= 512;
while (count > 0) {
UINT bcnt = count > MAX_BLOCK_CNT ? MAX_BLOCK_CNT : count;
unsigned bytes = bcnt * 512;
if (send_data_cmd(bcnt == 1 ? CMD17 : CMD18, sector, buf, bcnt, response) < 0) return 1;
if (bcnt > 1 && send_cmd(CMD12, 0, response) < 0) return 1;
sector += (card_type & CT_BLOCK) ? bcnt : bytes;
count -= bcnt;
buf += bytes;
}
return 0;;
} }
// copyFlash: --------------------------------------------------------
// A lot happens in this function:
// * The Wally banner is printed
// * The peripherals are initialized
void copyFlash(QWORD address, QWORD * Dst, DWORD numBlocks) { void copyFlash(QWORD address, QWORD * Dst, DWORD numBlocks) {
BYTE card_type;
int ret = 0; int ret = 0;
card_type = ini_sd();
// BYTE * buf = (BYTE *)Dst; // Initialize UART for messages
init_uart();
// if (disk_read(buf, (LBA_t)address, (UINT)numBlocks, card_type) < 0) /* UART Print function?*/;
// Print the wally banner
print_uart(BANNER);
init_sd();
ret = gpt_load_partitions(card_type); ret = gpt_load_partitions(card_type);
} }
/*
int main() {
ini_sd();
return 0;
}
*/

View file

@ -19,6 +19,16 @@ typedef QWORD LBA_t;
#define OPENSBI_ADDRESS 0x80000000 // FW_TEXT_START #define OPENSBI_ADDRESS 0x80000000 // FW_TEXT_START
#define KERNEL_ADDRESS 0x80200000 // FW_JUMP_ADDR #define KERNEL_ADDRESS 0x80200000 // FW_JUMP_ADDR
#define BANNER " █▀█ █▀█ █▀█ █▀▀ █ █\n" \
" █ █ █ █▄▀ █▄▄ ▄▄▄ █ █\n" \
" █▄█ █▄█ █ █ █▄▄ ▀▄▀\n" \
" ____ ____ ____ ___ ___ ____ ___\n" \
" \\ \\ / / / \\ | | | | \\ \\ / /\n" \
" \\ \\ __ / / / \\ | | | | \\ \\/ /\n" \
" \\ \\/ \\/ / / /\\ \\ | | | | \\ /\n" \
" \\ / / ____ \\ | |___ | |___ | |\n" \
" \\___/\\___/ /___/ \\___\\|_______||_______| |___|\n\n"
// Export disk_read // Export disk_read
int disk_read(BYTE * buf, LBA_t sector, UINT count, BYTE card_type); int disk_read(BYTE * buf, LBA_t sector, UINT count, BYTE card_type);

View file

@ -1,5 +1,6 @@
#include "sd.h" #include "sd.h"
#include "spi.h" #include "spi.h"
#include "uart.h"
// Parallel byte update CRC7-CCITT algorithm. // Parallel byte update CRC7-CCITT algorithm.
// The result is the CRC7 result, left shifted over by 1 // The result is the CRC7 result, left shifted over by 1
@ -23,27 +24,44 @@ uint16_t crc16(uint16_t crc, uint8_t data) {
return crc; return crc;
} }
// sd_cmd ------------------------------------------------------------
// Sends SD card command using SPI mode.
// This function:
// * Chooses the response length based on the input command
// * Makes use of SPI's full duplex. For every byte sent,
// a byte is received. Thus for every byte sent as part of
// a command, a useless byte must be read from the receive
// FIFO.
// * Takes advantage of the Sifive SPI peripheral spec's
// watermark and interrupt features to determine when a
// transfer is complete. This should save on cycles since
// no arbitrary delays need to be added.
uint64_t sd_cmd(uint8_t cmd, uint32_t arg, uint8_t crc) { uint64_t sd_cmd(uint8_t cmd, uint32_t arg, uint8_t crc) {
uint8_t response_len; uint8_t response_len;
uint8_t i; uint8_t i;
uint64_t r; uint64_t r;
uint8_t rbyte; uint8_t rbyte;
// Initialize the response with 0's.
r = 0;
// Choose response length based on cmd input.
// Most commands return an R1 format response.
switch (cmd) { switch (cmd) {
case 0:
response_len = 1;
break;
case 8: case 8:
response_len = 7 response_len = R7_RESPONSE;
break; break;
case 12:
response_len = R1B_RESPONSE;
default: default:
response_len = 1; response_len = R1_RESPONSE;
break; break;
} }
// Make interrupt pending after response fifo receives the correct // Make interrupt pending after response fifo receives the correct
// response length. // response length. Probably unecessary so let's wait and see what
write_reg(SPI_RXMARK, response_len); // happens.
// write_reg(SPI_RXMARK, response_len);
// Write all 6 bytes into transfer fifo // Write all 6 bytes into transfer fifo
spi_sendbyte(0x40 | cmd); spi_sendbyte(0x40 | cmd);
@ -79,18 +97,44 @@ uint64_t sd_cmd(uint8_t cmd, uint32_t arg, uint8_t crc) {
} }
return r; return r;
} } // sd_cmd
#define cmd0() sd_cmd( 0, 0x00000000, 0x95) // Utility defines for CMD0, CMD8, CMD55, and ACMD41
#define cmd8() sd_cmd( 8, 0x000001aa, 0x87) #define CMD0() sd_cmd( 0, 0x00000000, 0x95) // Reset SD card into IDLE state
// CMD55 has to be sent before ACMD41 (it means the next command is #define CMD8() sd_cmd( 8, 0x000001aa, 0x87) //
// application specific) #define CMD55() sd_cmd(55, 0x00000000, 0x65) //
#define cmd55() sd_cmd(55, 0x00000000, 0x65) #define ACMD41() sd_cmd(41, 0x40000000, 0x77) //
#defube acmd41() sd_cmd(41, 0x40000000, 0x77)
// init_sd: ----------------------------------------------------------
// This first initializes the SPI peripheral then initializes the SD
// card itself. We use the uart to display anything that goes wrong.
void init_sd(){ void init_sd(){
init_spi(); init_spi();
cmd0() uint64_t r;
print_uart("Initializing SD Card in SPI mode");
// Reset SD Card command
// Initializes SD card into SPI mode if CS is asserted '0'
if (!(( r = CMD0() ) & 0x10) ) {
print_uart("SD ERROR: ");
print_uart_byte(r & 0xff);
print_uart("\r\n");
}
//
if (!(( r = CMD8() ) & 0x10 )) {
print_uart("SD ERROR: ");
print_uart_byte(r & 0xff);
print_uart("\r\n");
}
do {
CMD55();
r = ACMD41();
} while (r == 0x1);
print_uart("SD card is initialized");
} }

View file

@ -2,6 +2,16 @@
#include <stdint.h> #include <stdint.h>
// Command names
#define SD_CMD_STOP_TRANSMISSION 12
#define SD_CMD_READ_BLOCK_MULTIPLE 18
#define SD_DATA_TOKEN 0xfe
// Response lengths in bytes
#define R1_RESPONSE 1
#define R7_RESPONSE 7
#define R1B_RESPONSE 2
uint8_t crc7(uint8_t prev, uint8_t in); uint8_t crc7(uint8_t prev, uint8_t in);
uint16_t crc16(uint16_t crc, uint8_t data); uint16_t crc16(uint16_t crc, uint8_t data);
uint64_t sd_cmd(uint8_t cmd, uint32_t arg, uint8_t crc); uint64_t sd_cmd(uint8_t cmd, uint32_t arg, uint8_t crc);

96
fpga/zsbl/uart.c Normal file
View file

@ -0,0 +1,96 @@
#include "uart.h"
void write_reg_u8(uintptr_t addr, uint8_t value)
{
volatile uint8_t *loc_addr = (volatile uint8_t *)addr;
*loc_addr = value;
}
uint8_t read_reg_u8(uintptr_t addr)
{
return *(volatile uint8_t *)addr;
}
int is_transmit_empty()
{
return read_reg_u8(UART_LINE_STATUS) & 0x20;
}
int is_receive_empty()
{
return !(read_reg_u8(UART_LINE_STATUS) & 0x1);
}
void write_serial(char a)
{
while (is_transmit_empty() == 0) {};
write_reg_u8(UART_THR, a);
}
void init_uart(uint32_t freq, uint32_t baud)
{
uint32_t divisor = freq / (baud << 4);
write_reg_u8(UART_IER, 0x00); // Disable all interrupts
write_reg_u8(UART_LCR, 0x80); // Enable DLAB (set baud rate divisor)
write_reg_u8(UART_DLL, divisor); // divisor (lo byte)
write_reg_u8(UART_DLM, (divisor >> 8) & 0xFF); // divisor (hi byte)
write_reg_u8(UART_LCR, 0x03); // 8 bits, no parity, one stop bit
write_reg_u8(UART_FCR, 0xC7); // Enable FIFO, clear them, with 14-byte threshold
}
void print_uart(const char *str)
{
const char *cur = &str[0];
while (*cur != '\0')
{
write_serial((uint8_t)*cur);
++cur;
}
}
uint8_t bin_to_hex_table[16] = {
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
void bin_to_hex(uint8_t inp, uint8_t res[2])
{
res[1] = bin_to_hex_table[inp & 0xf];
res[0] = bin_to_hex_table[(inp >> 4) & 0xf];
return;
}
void print_uart_int(uint32_t addr)
{
int i;
for (i = 3; i > -1; i--)
{
uint8_t cur = (addr >> (i * 8)) & 0xff;
uint8_t hex[2];
bin_to_hex(cur, hex);
write_serial(hex[0]);
write_serial(hex[1]);
}
}
void print_uart_addr(uint64_t addr)
{
int i;
for (i = 7; i > -1; i--)
{
uint8_t cur = (addr >> (i * 8)) & 0xff;
uint8_t hex[2];
bin_to_hex(cur, hex);
write_serial(hex[0]);
write_serial(hex[1]);
}
}
void print_uart_byte(uint8_t byte)
{
uint8_t hex[2];
bin_to_hex(byte, hex);
write_serial(hex[0]);
write_serial(hex[1]);
}

26
fpga/zsbl/uart.h Normal file
View file

@ -0,0 +1,26 @@
#pragma once
#include <stdint.h>
#define UART_BASE 0x10000000
#define UART_RBR UART_BASE + 0x00
#define UART_THR UART_BASE + 0x00
#define UART_IER UART_BASE + 0x01
#define UART_IIR UART_BASE + 0x02
#define UART_FCR UART_BASE + 0x02
#define UART_LCR UART_BASE + 0x03
#define UART_MCR UART_BASE + 0x04
#define UART_LSR UART_BASE + 0x05
#define UART_MSR UART_BASE + 0x06
#define UART_SCR UART_BASE + 0x07
#define UART_DLL UART_BASE + 0x00
#define UART_DLM UART_BASE + 0x01
void init_uart();
void write_reg_u8(uintptr_t addr, uint8_t value);
uint8_t read_reg_u8(uintptr_t addr);
int read_serial(uint8_t *res);
void print_uart(const char* str);
void print_uart_int(uint32_t addr);
void print_uart_addr(uint64_t addr);
void print_uart_byte(uint8_t byte);