mirror of
https://github.com/openhwgroup/cvw.git
synced 2025-06-27 17:01:20 -04:00
Merge pull request #1433 from davidharrishmc/dev
PMP granularity, trick box support, exercise solutions
This commit is contained in:
commit
d006d017ed
49 changed files with 984 additions and 112 deletions
|
@ -317,7 +317,6 @@ class bcolors:
|
|||
BOLD = '\033[1m'
|
||||
UNDERLINE = '\033[4m'
|
||||
|
||||
|
||||
def addTests(testList, sim, coverStr, configs):
|
||||
sim_logdir = f"{regressionDir}/{sim}/logs/"
|
||||
for test in testList:
|
||||
|
@ -489,12 +488,11 @@ def selectTests(args, sims, coverStr):
|
|||
addTests(tests_buildrootbootlockstep, lockstepsim, coverStr, configs) # lockstep with Questa and ImperasDV runs overnight
|
||||
# only run RV64GC tests on in code coverage mode
|
||||
if args.ccov:
|
||||
addTestsByDir(f"{archVerifDir}/tests/rv64/", "rv64gc", coveragesim, coverStr, configs, lockstepMode=1)
|
||||
addTestsByDir(f"{archVerifDir}/tests/priv/rv64/", "rv64gc", coveragesim, coverStr, configs, lockstepMode=1) # doesn't help coverage much dh 4/12/25
|
||||
addTestsByDir(WALLY+"/tests/coverage/", "rv64gc", coveragesim, coverStr, configs, lockstepMode=1)
|
||||
# Extra tests from riscv-arch-test that should be run as part of the functional coverage suite
|
||||
addTestsByDir(f"{WALLY}/tests/riscof/work/riscv-arch-test/rv64i_m/pmp", "rv64gc", coveragesim, coverStr, configs, lockstepMode=1)
|
||||
addTestsByDir(f"{WALLY}/tests/riscof/work/wally-riscv-arch-test/rv64i_m/privilege", "rv64gc", coveragesim, coverStr, configs, lockstepMode=1)
|
||||
addTestsByDir(f"{archVerifDir}/tests/rv64/", "rv64gc", coveragesim, coverStr, configs, lockstepMode=1)
|
||||
addTestsByDir(WALLY+"/tests/coverage/", "rv64gc", coveragesim, coverStr, configs, lockstepMode=1)
|
||||
# run tests in lockstep in functional coverage mode
|
||||
if args.fcov or args.nightly:
|
||||
addTestsByDir(f"{archVerifDir}/tests/rv32/", "rv32gc", coveragesim, coverStr, configs, lockstepMode=1)
|
||||
|
|
|
@ -137,6 +137,7 @@ localparam logic IDIV_ON_FPU = 0;
|
|||
|
||||
// Legal number of PMP entries are 0, 16, or 64
|
||||
localparam PMP_ENTRIES = 32'd0;
|
||||
localparam PMP_G = 32'b0; // grain of 4 bytes is supported for uncached RV32
|
||||
|
||||
// Address space
|
||||
localparam logic [63:0] RESET_VECTOR = 64'h80000000;
|
||||
|
|
|
@ -137,6 +137,9 @@ localparam logic IDIV_ON_FPU = 0;
|
|||
|
||||
// Legal number of PMP entries are 0, 16, or 64
|
||||
localparam PMP_ENTRIES = 32'd16;
|
||||
// grain size should be a full cache line to avoid problems with accesses within a cache line
|
||||
// that span grain boundaries but are handled without a spill
|
||||
localparam PMP_G = 32'd4; // 64 bytes for 512-bit cache line
|
||||
|
||||
// Address space
|
||||
localparam logic [63:0] RESET_VECTOR = 64'h80000000;
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
// Note: Zmmul is a subset of M, so usually only one or the other would be used.
|
||||
`define ZMMUL_COVERAGE
|
||||
`define ZICOND_COVERAGE
|
||||
`define ZIFENCEI_COVERAGE
|
||||
`define ZCA_COVERAGE
|
||||
`define ZCB_COVERAGE
|
||||
`define ZCF_COVERAGE
|
||||
|
@ -58,10 +59,12 @@
|
|||
`define ENDIANU_COVERAGE
|
||||
`define ENDIANS_COVERAGE
|
||||
`define ENDIANM_COVERAGE
|
||||
`define ENDIANZALRSC_COVERAGE
|
||||
`define ENDIANZAAMO_COVERAGE
|
||||
`define EXCEPTIONSM_COVERAGE
|
||||
`define EXCEPTIONSS_COVERAGE
|
||||
`define EXCEPTIONSU_COVERAGE
|
||||
`define EXCEPTIONSV_COVERAGE
|
||||
//`define EXCEPTIONSV_COVERAGE
|
||||
`define EXCEPTIONSF_COVERAGE
|
||||
`define EXCEPTIONSZC_COVERAGE
|
||||
`define EXCEPTIONSZAAMO_COVERAGE
|
||||
|
|
|
@ -45,7 +45,9 @@
|
|||
|
||||
# PMP Configuration
|
||||
--override cpu/PMP_registers=16
|
||||
--override cpu/PMP_undefined=T
|
||||
--override cpu/PMP_grain=4 # 64-byte grains to match cache line width
|
||||
--override cpu/PMP_decompose=T # unaligned accesses are decomposed into separate aligned accesses
|
||||
--override cpu/PMP_undefined=T # access to unimplemented PMP registers cause illegal instruction exception
|
||||
|
||||
# PMA Settings
|
||||
# 'r': read access allowed
|
||||
|
|
|
@ -137,6 +137,7 @@ localparam logic IDIV_ON_FPU = 0;
|
|||
|
||||
// Legal number of PMP entries are 0, 16, or 64
|
||||
localparam PMP_ENTRIES = 32'd0;
|
||||
localparam PMP_G = 32'b0; // grain of 4 bytes is supported for uncached RV32
|
||||
|
||||
// Address space
|
||||
localparam logic [63:0] RESET_VECTOR = 64'h80000000;
|
||||
|
|
|
@ -137,6 +137,7 @@ localparam logic IDIV_ON_FPU = 0;
|
|||
|
||||
// Legal number of PMP entries are 0, 16, or 64
|
||||
localparam PMP_ENTRIES = 32'd0;
|
||||
localparam PMP_G = 32'b0; // grain of 4 bytes is supported for uncached RV32
|
||||
|
||||
// Address space
|
||||
localparam logic [63:0] RESET_VECTOR = 64'h80000000;
|
||||
|
|
|
@ -138,6 +138,10 @@ localparam logic IDIV_ON_FPU = 1;
|
|||
// Legal number of PMP entries are 0, 16, or 64
|
||||
localparam PMP_ENTRIES = 32'd16;
|
||||
|
||||
// grain size should be a full cache line to avoid problems with accesses within a cache line
|
||||
// that span grain boundaries but are handled without a spill
|
||||
localparam PMP_G = 32'd4; //e.g. 4 for 64-byte grains (512-bit cache lines)
|
||||
|
||||
// Address space
|
||||
localparam logic [63:0] RESET_VECTOR = 64'h0000000080000000;
|
||||
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
// Note: Zmmul is a subset of M, so usually only one or the other would be used.
|
||||
`define ZMMUL_COVERAGE
|
||||
`define ZICOND_COVERAGE
|
||||
`define ZIFENCEI_COVERAGE
|
||||
`define ZCA_COVERAGE
|
||||
`define ZCB_COVERAGE
|
||||
`define ZCD_COVERAGE
|
||||
|
@ -55,10 +56,12 @@
|
|||
`define ENDIANU_COVERAGE
|
||||
`define ENDIANS_COVERAGE
|
||||
`define ENDIANM_COVERAGE
|
||||
`define ENDIANZALRSC_COVERAGE
|
||||
`define ENDIANZAAMO_COVERAGE
|
||||
`define EXCEPTIONSM_COVERAGE
|
||||
`define EXCEPTIONSS_COVERAGE
|
||||
`define EXCEPTIONSU_COVERAGE
|
||||
`define EXCEPTIONSV_COVERAGE
|
||||
//`define EXCEPTIONSV_COVERAGE
|
||||
`define EXCEPTIONSF_COVERAGE
|
||||
`define EXCEPTIONSZC_COVERAGE
|
||||
`define EXCEPTIONSVM_COVERAGE
|
||||
|
|
|
@ -48,7 +48,9 @@
|
|||
|
||||
# PMP Configuration
|
||||
--override cpu/PMP_registers=16
|
||||
--override cpu/PMP_undefined=T
|
||||
--override cpu/PMP_grain=4 # 64-byte grains to match cache line width
|
||||
--override cpu/PMP_decompose=T # unaligned accesses are decomposed into separate aligned accesses
|
||||
--override cpu/PMP_undefined=T # access to unimplemented PMP registers cause illegal instruction exception
|
||||
|
||||
# PMA Settings
|
||||
# 'r': read access allowed
|
||||
|
|
|
@ -137,6 +137,7 @@ localparam logic IDIV_ON_FPU = 0;
|
|||
|
||||
// Legal number of PMP entries are 0, 16, or 64
|
||||
localparam PMP_ENTRIES = 32'd0;
|
||||
localparam PMP_G = 32'b0; // grain of 8 bytes is supported for uncached RV64
|
||||
|
||||
// Address space
|
||||
localparam logic [63:0] RESET_VECTOR = 64'h0000000080000000;
|
||||
|
|
|
@ -48,6 +48,7 @@ localparam cvw_t P = '{
|
|||
IDIV_BITSPERCYCLE : IDIV_BITSPERCYCLE,
|
||||
IDIV_ON_FPU : IDIV_ON_FPU,
|
||||
PMP_ENTRIES : PMP_ENTRIES,
|
||||
PMP_G : PMP_G,
|
||||
RESET_VECTOR : RESET_VECTOR,
|
||||
WFI_TIMEOUT_BIT : WFI_TIMEOUT_BIT,
|
||||
DTIM_SUPPORTED : DTIM_SUPPORTED,
|
||||
|
|
|
@ -7,13 +7,15 @@ CORE-V Wally is functionally tested in the following ways. Each test is run in
|
|||
| Verilator Lint | 5.3 | All configs | rv64gc | lint-wally | PASS | regression-wally --nightly |
|
||||
| Instructions | 3.7 | All configs | rv64gc | riscv-arch-test | PASS | regression-wally --nightly |
|
||||
| Privileged | 3.7 | All configs | rv64gc | wally-riscv-arch-test | PASS | regression-wally --nightly |
|
||||
| Floating-point | 5.11.7, 16.5.3 | rv{32/64}gc + derived | rv64gc | TestFloat | FAIL | regression-wally --nightly |
|
||||
| CoreMark | 21.1 | Many configs | rv64gc | CoreMark | | regression-wally --nightly |
|
||||
| Embench | 21.2 | rv32* | n/a | Embench | | regression-wally --nightly |
|
||||
| Cache PV | 21.3.1 | rv{32/64}gc | rv64gc | TBD | TBD | TBD |
|
||||
| Cache PV | 21.3.2 | rv{32/64}gc | rv64gc | TBD | TBD | TBD |
|
||||
| Linux Boot | 22.3.2 | rv64gc | rv64gc | TBD | TBD | TBD |
|
||||
| FPGA Linux Boot | 23.2 | | rv64gc | TBD | TBD | TBD |
|
||||
| Code Coverage | 5.11.10 | | rv64gc | TBD | TBD | TBD |
|
||||
| Functional Coverage | 5.11.11 | | rv64gc | TBD | TBD | TBD |
|
||||
| Floating-point | 5.11.7, 16.5.3 | rv{32/64}gc + derived | rv64gc | TestFloat | PASS | regression-wally --nightly |
|
||||
| CoreMark | 21.1 | Many configs | rv64gc | CoreMark | PASS | regression-wally --nightly |
|
||||
| Embench | 21.2 | rv32* | n/a | Embench | PASS | regression-wally --nightly |
|
||||
| Cache PV | 21.3.1 | rv{32/64}gc | rv64gc | CacheSim | TBD | TBD |
|
||||
| Branch PV | 21.3.2 | rv{32/64}gc | rv64gc | BP simulator | TBD | TBD |
|
||||
| Linux Boot | 22.3.2 | rv64gc | rv64gc | buildroot | PASS | regression-wally --nightly |
|
||||
| FPGA Linux Boot | 23.2 | | rv64gc | Lab test | PASS | TBD |
|
||||
| Code Coverage | 5.11.10 | | rv64gc | multiple tests | TBD | regression-wally --nightly |
|
||||
| Functional Coverage | 5.11.11 | | rv64gc | cvw-arch-verif | TBD | regression-wally --nightly |
|
||||
|
||||
Functional Verification plans are in
|
||||
https://drive.google.com/drive/folders/11hTR2Yl48kOMODxhwrSsC-eXYtM_rJJE?usp=sharing
|
||||
|
|
77
examples/exercises/11p6/11p6.S
Normal file
77
examples/exercises/11p6/11p6.S
Normal file
|
@ -0,0 +1,77 @@
|
|||
.section .text.init
|
||||
.globl rvtest_entry_point
|
||||
|
||||
rvtest_entry_point:
|
||||
|
||||
# set up PMP so all of memory is accessible and we don't trap when entering supervisor mode
|
||||
# Define region 0 to cover all addresses as RWX
|
||||
nop
|
||||
csrw pmpcfg0, 0xF # configure PMP0 to TOR RWX
|
||||
li t0, 0xFFFFFFFF
|
||||
csrw pmpaddr0, t0 # configure PMP0 top of range to 0xFFFFFFFF to allow all 32-bit addresses
|
||||
|
||||
# switch to supervisor mode
|
||||
# Set mstatus.MPP to 01, set MPEC to a trampoline address where supervisor should begin, do mret
|
||||
la t0, supervisorstart
|
||||
csrw mepc, t0 # set address for supervisor code to starting
|
||||
li t0, 1
|
||||
slli t1, t0, 11 # 1 in bit 11
|
||||
csrs mstatus, t1
|
||||
slli t1, t0, 12 # 1 in bit 12
|
||||
csrc mstatus, t1 # change mstatus.MPP to 01 (for supervisor mode)
|
||||
mret # enter supervisor mode at supervisorstart
|
||||
nop
|
||||
|
||||
supervisorstart:
|
||||
la t0, pagetable # get address of root page table
|
||||
srli t0, t0, 12 # extract PPN of root page table
|
||||
li t1, 1
|
||||
slli t1, t1, 31 # 1 in bit 31
|
||||
or t0, t0, t1 # satp value to enable SV32 with root page table
|
||||
csrw satp, t0 # enable virtual memory
|
||||
|
||||
# now we are execuiting on virtual page 0x80000, which is also physical page 0x80000
|
||||
li t0, 0x90000300
|
||||
li t1, 42
|
||||
sw t1, 0(t0)
|
||||
|
||||
|
||||
la t0, testcode # address of a routine to run
|
||||
lui t1, 0x10000
|
||||
add t0, t0, t1 # address of testcode on virtual page 0x90000
|
||||
jr t0 # jump to the testcode on Virtual page 0x90000,
|
||||
# which still points to same code on physical page 0x80000
|
||||
nop # shouldn't be executed
|
||||
|
||||
testcode:
|
||||
li t0, 42 # do something
|
||||
|
||||
write_tohost:
|
||||
la s1, tohost # terminate with write tohost
|
||||
li t0, 1 # 1 for success, 3 for failure
|
||||
sw t0, 0(s1) # send success code
|
||||
sw zero, 4(s1) # not obvious why Sail isn't terminating unless this write is done
|
||||
|
||||
self_loop:
|
||||
j self_loop
|
||||
|
||||
tohost:
|
||||
.word 0
|
||||
|
||||
.data
|
||||
|
||||
|
||||
.align 16
|
||||
# root (L1) Page table situated at 0x80010000
|
||||
pagetable:
|
||||
.space 2048 # skip over addresses below 0x80000000
|
||||
.4byte 0x20004401 # VPN1 = 512 (VA = 0x80000000) points to L0 page table at 80011000
|
||||
.space 252 # skip over addresses below 0x90000000
|
||||
.4byte 0x20004401 # VPN 576 (VA = 0x90000000) points to L0 page table at 0x80011000
|
||||
|
||||
.align 12
|
||||
# L0 page table situated at 0x80011000
|
||||
.4byte 0x200000CF # VPN 0 points to physical kilopage at 0x80000000 with Dirty, Access, XWR, Valid
|
||||
|
||||
|
||||
|
17
examples/exercises/11p6/Makefile
Normal file
17
examples/exercises/11p6/Makefile
Normal file
|
@ -0,0 +1,17 @@
|
|||
TARGET = 11p6
|
||||
|
||||
$(TARGET).elf.objdump: $(TARGET).elf
|
||||
riscv64-unknown-elf-objdump -D $(TARGET).elf > $(TARGET).elf.objdump
|
||||
|
||||
$(TARGET).elf: $(TARGET).S Makefile
|
||||
riscv64-unknown-elf-gcc -g -o $(TARGET) -march=rv32i_zicsr -mabi=ilp32 -mcmodel=medany \
|
||||
-nostartfiles -T../../link/link.ld $(TARGET).S -o $(TARGET).elf
|
||||
|
||||
# simulate in ImperasDV lockstep
|
||||
sim: $(TARGET).elf.objdump
|
||||
wsim rv32gc $(TARGET).elf --lockstepverbose
|
||||
|
||||
clean:
|
||||
rm -f $(TARGET).elf*
|
||||
|
||||
|
9
examples/exercises/8p3/8p3.S
Normal file
9
examples/exercises/8p3/8p3.S
Normal file
|
@ -0,0 +1,9 @@
|
|||
.section .text.init
|
||||
.globl rvtest_entry_point
|
||||
|
||||
rvtest_entry_point:
|
||||
li t0, 32 # 1 in bit 5
|
||||
csrs mstatush, t0 # set bit 5 (mstatush.MBE)
|
||||
|
||||
self_loop:
|
||||
j self_loop
|
17
examples/exercises/8p3/Makefile
Normal file
17
examples/exercises/8p3/Makefile
Normal file
|
@ -0,0 +1,17 @@
|
|||
TARGET = 8p3
|
||||
|
||||
$(TARGET).elf.objdump: $(TARGET).elf
|
||||
riscv64-unknown-elf-objdump -D $(TARGET).elf > $(TARGET).elf.objdump
|
||||
|
||||
$(TARGET).elf: $(TARGET).S Makefile
|
||||
riscv64-unknown-elf-gcc -g -o $(TARGET) -march=rv32i_zicsr -mabi=ilp32 -mcmodel=medany \
|
||||
-nostartfiles -T../../link/link.ld $(TARGET).S -o $(TARGET).elf
|
||||
|
||||
# simulate in ImperasDV lockstep
|
||||
sim: $(TARGET).elf.objdump
|
||||
wsim rv32gc $(TARGET).elf --lockstepverbose
|
||||
|
||||
clean:
|
||||
rm -f $(TARGET).elf*
|
||||
|
||||
|
20
examples/exercises/8p4/8p4.S
Normal file
20
examples/exercises/8p4/8p4.S
Normal file
|
@ -0,0 +1,20 @@
|
|||
.section .text.init
|
||||
.globl rvtest_entry_point
|
||||
|
||||
rvtest_entry_point:
|
||||
csrr a0, cycle # read cycle register before computation
|
||||
|
||||
# add up numbers from 1 to 10. Place result in s0
|
||||
li s0, 0 # initialize sum to 0 in s0
|
||||
li s1, 1 # initialize loop variable i to 1 in s1
|
||||
li t0, 10 # temporary for maximum number
|
||||
loop:
|
||||
add s0, s0, s1 # sum = sum + i
|
||||
addi s1, s1, 1 # i = i + 1
|
||||
ble s1, t0, loop # repeat while i <= 10
|
||||
|
||||
csrr a1, cycle # read cycle register after computation
|
||||
sub a0, a1, a0 # compute difference in a0
|
||||
|
||||
self_loop:
|
||||
j self_loop
|
17
examples/exercises/8p4/Makefile
Normal file
17
examples/exercises/8p4/Makefile
Normal file
|
@ -0,0 +1,17 @@
|
|||
TARGET = 8p4
|
||||
|
||||
$(TARGET).elf.objdump: $(TARGET).elf
|
||||
riscv64-unknown-elf-objdump -D $(TARGET).elf > $(TARGET).elf.objdump
|
||||
|
||||
$(TARGET).elf: $(TARGET).S Makefile
|
||||
riscv64-unknown-elf-gcc -g -o $(TARGET) -march=rv32i_zicsr -mabi=ilp32 -mcmodel=medany \
|
||||
-nostartfiles -T../../link/link.ld $(TARGET).S -o $(TARGET).elf
|
||||
|
||||
# simulate in ImperasDV lockstep
|
||||
sim: $(TARGET).elf.objdump
|
||||
wsim rv32gc $(TARGET).elf --lockstepverbose
|
||||
|
||||
clean:
|
||||
rm -f $(TARGET).elf*
|
||||
|
||||
|
29
examples/exercises/8p5/8p5.S
Normal file
29
examples/exercises/8p5/8p5.S
Normal file
|
@ -0,0 +1,29 @@
|
|||
.section .text.init
|
||||
.globl rvtest_entry_point
|
||||
|
||||
rvtest_entry_point:
|
||||
|
||||
# set up trap trap_handler
|
||||
la t0, trap_handler # address of trap trap_handler
|
||||
csrw mtvec, t0 # mtvec = pointer to trap handler
|
||||
la t0, trapstack # address of trap stack
|
||||
csrw mscratch, t0 # mscratch = pointer to trap stack
|
||||
|
||||
lw t0, 1(zero) # cause access or misaligned load fault to invoke trap handler
|
||||
|
||||
self_loop:
|
||||
j self_loop
|
||||
|
||||
|
||||
trap_handler:
|
||||
csrrw tp, mscratch, tp # swap tp and mscratch to put a trap stack pointer in tp
|
||||
sw t0, 0(tp) # save t0 on trap stack
|
||||
csrr t0, mepc # read mepc
|
||||
addi t0, t0, 4 # mepc + 4
|
||||
csrw mepc, t0 # mepc = mpec + 4 (return to next instruction)
|
||||
lw t0, 0(tp) # restore t0 from trap stack
|
||||
csrrw tp, mscratch, tp # restore tp and trap stack pointer
|
||||
mret
|
||||
|
||||
trapstack:
|
||||
.word 0 # room to save a register
|
17
examples/exercises/8p5/Makefile
Normal file
17
examples/exercises/8p5/Makefile
Normal file
|
@ -0,0 +1,17 @@
|
|||
TARGET = 8p5
|
||||
|
||||
$(TARGET).elf.objdump: $(TARGET).elf
|
||||
riscv64-unknown-elf-objdump -D $(TARGET).elf > $(TARGET).elf.objdump
|
||||
|
||||
$(TARGET).elf: $(TARGET).S Makefile
|
||||
riscv64-unknown-elf-gcc -g -o $(TARGET) -march=rv32i_zicsr -mabi=ilp32 -mcmodel=medany \
|
||||
-nostartfiles -T../../link/link.ld $(TARGET).S -o $(TARGET).elf
|
||||
|
||||
# simulate in ImperasDV lockstep
|
||||
sim: $(TARGET).elf.objdump
|
||||
wsim rv32gc $(TARGET).elf --lockstepverbose
|
||||
|
||||
clean:
|
||||
rm -f $(TARGET).elf*
|
||||
|
||||
|
164
examples/exercises/8p6/8p6.S
Normal file
164
examples/exercises/8p6/8p6.S
Normal file
|
@ -0,0 +1,164 @@
|
|||
.section .text.init
|
||||
.globl rvtest_entry_point
|
||||
|
||||
rvtest_entry_point:
|
||||
|
||||
# set up trap trap_handler
|
||||
la t0, trap_handler # address of trap trap_handler
|
||||
csrw mtvec, t0 # mtvec = pointer to trap handler
|
||||
la t0, trapstack # address of trap stack
|
||||
csrw mscratch, t0 # mscratch = pointer to trap stack
|
||||
|
||||
li t0, 7
|
||||
li t1, 9
|
||||
mul t2, t0, t1 # try 7 * 9. It will trap and invoke trap handler
|
||||
|
||||
self_loop:
|
||||
j self_loop
|
||||
|
||||
|
||||
trap_handler:
|
||||
csrrw tp, mscratch, tp # swap tp and mscratch to put a trap stack pointer in tp
|
||||
|
||||
# save all registers on trap stack. We will need to index into them to find the arguments to emulate multiply
|
||||
sw x0, 0(tp) # x0 is 0, but we might want to use it
|
||||
sw x1, 4(tp)
|
||||
sw x2, 8(tp)
|
||||
sw x3, 12(tp)
|
||||
sw x4, 16(tp)
|
||||
sw x5, 20(tp)
|
||||
sw x6, 24(tp)
|
||||
sw x7, 28(tp)
|
||||
sw x8, 32(tp)
|
||||
sw x9, 36(tp)
|
||||
sw x10, 40(tp)
|
||||
sw x11, 44(tp)
|
||||
sw x12, 48(tp)
|
||||
sw x13, 52(tp)
|
||||
sw x14, 56(tp)
|
||||
sw x15, 60(tp)
|
||||
sw x16, 64(tp)
|
||||
sw x17, 68(tp)
|
||||
sw x18, 72(tp)
|
||||
sw x19, 76(tp)
|
||||
sw x20, 80(tp)
|
||||
sw x21, 84(tp)
|
||||
sw x22, 88(tp)
|
||||
sw x23, 92(tp)
|
||||
sw x24, 96(tp)
|
||||
sw x25, 100(tp)
|
||||
sw x26, 104(tp)
|
||||
sw x27, 108(tp)
|
||||
sw x28, 112(tp)
|
||||
sw x29, 116(tp)
|
||||
sw x30, 120(tp)
|
||||
sw x31, 124(tp)
|
||||
|
||||
csrr t0, mcause # check cause of trap
|
||||
li t1, 2 # cause 2 is illegal instruction
|
||||
bne t0, t1, exit # exit for any other trap than illegal instruction
|
||||
|
||||
# check if instruction is mul (op = 0110011, funct3 = 000, funct7 = 0000001)
|
||||
csrr t0, mtval # fetch instruction that caused trap
|
||||
andi t1, t0, 127 # get op field (instr[6:0])
|
||||
xori t1, t1, 0b0110011 # set to 0 if op is 0110011
|
||||
srli t2, t0, 12 # get funct3 field (instr[14:12])
|
||||
andi t2, t2, 7 # mask off other bits. Should be 0 if funct3 = 000
|
||||
srli t3, t0, 25 # get funct7 field (instr[31:25]). No need to mask
|
||||
xori t3, t3, 0b0000001 # set to 0 if funct7 = 0000001
|
||||
or t1, t1, t2 # nonzero if op or funct3 mismatch
|
||||
or t1, t1, t3 # nonzero if instruction is not mul
|
||||
bnez t1, exit # exit for any other instruction than mul
|
||||
|
||||
# emulate mul: fetch arguments
|
||||
srli t1, t0, 15 # extract rs1 from instr[19:15]
|
||||
andi t1, t1, 31 # mask off other bits
|
||||
slli t1, t1, 2 # multiply rs1 by 4 to make it a word index
|
||||
add t1, tp, t1 # find location of rs1 on trap stack
|
||||
lw t1, 0(t1) # read value of rs1
|
||||
srli t2, t0, 20 # extract rs2 from instr[24:20]
|
||||
andi t2, t2, 31 # mask off other bits
|
||||
slli t2, t2, 2 # multiply rs2 by 4 to make it a word index
|
||||
add t2, tp, t2 # find location of rs2 on trap stack
|
||||
lw t2, 0(t2) # read value of rs2
|
||||
|
||||
# emulate mul p = x * y: shift and add
|
||||
# x in t1, y in t2, p in t3
|
||||
// p = 0
|
||||
// while (y != 0)) { # iterate until all bits of y are consumed
|
||||
// if (y%2) p = p + x # add x to running total
|
||||
// y = y >> 1 # go on to next bit
|
||||
// x = x << 1 # shift x to double
|
||||
// }
|
||||
|
||||
li t3, 0 # p = 0
|
||||
mulloop:
|
||||
beqz t2, muldone # done if y == 0
|
||||
andi t4, t2, 1 # t4 = y % 2
|
||||
beqz t4, skipadd # don't increment p if y%2 == 0
|
||||
add t3, t3, t1 # otherwise p = p + x
|
||||
skipadd:
|
||||
srli t2, t2, 1 # y = y >> 1
|
||||
slli t1, t1, 1 # x = x << 1
|
||||
j mulloop # repeat until done
|
||||
muldone:
|
||||
|
||||
# find rd and put result there
|
||||
srli t1, t0, 7 # extract rd from instr[11:7]
|
||||
andi t1, t1, 31 # mask off other bits
|
||||
slli t1, t1, 2 # multiply rd by 4 to make it a word index
|
||||
add t1, tp, t1 # find location of rd on trap stack
|
||||
sw t3, 0(t1) # store result into rd storage on trap stack
|
||||
|
||||
# return to next instruction
|
||||
|
||||
csrr t0, mepc # read mepc
|
||||
addi t0, t0, 4 # mepc + 4
|
||||
csrw mepc, t0 # mepc = mpec + 4 (return to next instruction)
|
||||
# restore all of the registers from the trap stack (rd could be in any one)
|
||||
lw x1, 4(tp)
|
||||
lw x2, 8(tp)
|
||||
lw x3, 12(tp)
|
||||
lw x4, 16(tp)
|
||||
lw x5, 20(tp)
|
||||
lw x6, 24(tp)
|
||||
lw x7, 28(tp)
|
||||
lw x8, 32(tp)
|
||||
lw x9, 36(tp)
|
||||
lw x10, 40(tp)
|
||||
lw x11, 44(tp)
|
||||
lw x12, 48(tp)
|
||||
lw x13, 52(tp)
|
||||
lw x14, 56(tp)
|
||||
lw x15, 60(tp)
|
||||
lw x16, 64(tp)
|
||||
lw x17, 68(tp)
|
||||
lw x18, 72(tp)
|
||||
lw x19, 76(tp)
|
||||
lw x20, 80(tp)
|
||||
lw x21, 84(tp)
|
||||
lw x22, 88(tp)
|
||||
lw x23, 92(tp)
|
||||
lw x24, 96(tp)
|
||||
lw x25, 100(tp)
|
||||
lw x26, 104(tp)
|
||||
lw x27, 108(tp)
|
||||
lw x28, 112(tp)
|
||||
lw x29, 116(tp)
|
||||
lw x30, 120(tp)
|
||||
lw x31, 124(tp)
|
||||
csrrw tp, mscratch, tp # restore tp and trap stack pointer
|
||||
mret
|
||||
|
||||
exit:
|
||||
la t1, tohost
|
||||
li t0, 3 # 1 for success, 3 for failure
|
||||
sw t0, 0(t1) # send fail code
|
||||
j self_loop # wait
|
||||
|
||||
.section .tohost
|
||||
tohost: # write to HTIF
|
||||
.dword 0
|
||||
|
||||
trapstack:
|
||||
.fill 32, 4 # room to save registers
|
17
examples/exercises/8p6/Makefile
Normal file
17
examples/exercises/8p6/Makefile
Normal file
|
@ -0,0 +1,17 @@
|
|||
TARGET = 8p6
|
||||
|
||||
$(TARGET).elf.objdump: $(TARGET).elf
|
||||
riscv64-unknown-elf-objdump -D $(TARGET).elf > $(TARGET).elf.objdump
|
||||
|
||||
$(TARGET).elf: $(TARGET).S Makefile
|
||||
riscv64-unknown-elf-gcc -g -o $(TARGET) -march=rv32im_zicsr -mabi=ilp32 -mcmodel=medany \
|
||||
-nostartfiles -T../../link/link.ld $(TARGET).S -o $(TARGET).elf
|
||||
|
||||
# simulate with Spike
|
||||
sim: $(TARGET).elf.objdump
|
||||
spike --isa=rv32i_zicsr -d $(TARGET).elf
|
||||
|
||||
clean:
|
||||
rm -f $(TARGET).elf*
|
||||
|
||||
|
134
examples/exercises/8p7/8p7.S
Normal file
134
examples/exercises/8p7/8p7.S
Normal file
|
@ -0,0 +1,134 @@
|
|||
.section .text.init
|
||||
.globl rvtest_entry_point
|
||||
|
||||
rvtest_entry_point:
|
||||
|
||||
# set up trap trap_handler
|
||||
la t0, trap_handler # address of trap trap_handler
|
||||
csrw mtvec, t0 # mtvec = pointer to trap handler
|
||||
la t0, trapstack # address of trap stack
|
||||
csrw mscratch, t0 # mscratch = pointer to trap stack
|
||||
|
||||
la t0, destination # get address to make a load
|
||||
lw t0, 3(t0) # misaligned load will invoke trap handler
|
||||
# should return 0x23456789 in t0
|
||||
|
||||
self_loop:
|
||||
j self_loop
|
||||
|
||||
|
||||
trap_handler:
|
||||
csrrw tp, mscratch, tp # swap tp and mscratch to put a trap stack pointer in tp
|
||||
|
||||
# save all registers on trap stack. We will need to index into them to find the arguments to emulate multiply
|
||||
sw x0, 0(tp) # x0 is 0, but we might want to use it
|
||||
sw x1, 4(tp)
|
||||
sw x2, 8(tp)
|
||||
sw x3, 12(tp)
|
||||
sw x4, 16(tp)
|
||||
sw x5, 20(tp)
|
||||
sw x6, 24(tp)
|
||||
sw x7, 28(tp)
|
||||
sw x8, 32(tp)
|
||||
sw x9, 36(tp)
|
||||
sw x10, 40(tp)
|
||||
sw x11, 44(tp)
|
||||
sw x12, 48(tp)
|
||||
sw x13, 52(tp)
|
||||
sw x14, 56(tp)
|
||||
sw x15, 60(tp)
|
||||
sw x16, 64(tp)
|
||||
sw x17, 68(tp)
|
||||
sw x18, 72(tp)
|
||||
sw x19, 76(tp)
|
||||
sw x20, 80(tp)
|
||||
sw x21, 84(tp)
|
||||
sw x22, 88(tp)
|
||||
sw x23, 92(tp)
|
||||
sw x24, 96(tp)
|
||||
sw x25, 100(tp)
|
||||
sw x26, 104(tp)
|
||||
sw x27, 108(tp)
|
||||
sw x28, 112(tp)
|
||||
sw x29, 116(tp)
|
||||
sw x30, 120(tp)
|
||||
sw x31, 124(tp)
|
||||
|
||||
csrr t0, mcause # check cause of trap
|
||||
li t1, 4 # cause 4 is misaligned load
|
||||
bne t0, t1, trap_return # return for any other cause
|
||||
|
||||
# check if instruction is lw (op=0000011, funct3 = 010)
|
||||
csrr t0, mepc # address of faulting instruction
|
||||
lw t3, 0(t0) # fetch the instruction. It must have been a load.
|
||||
srli t1, t3, 12 # get funct3 field (instr[14:12])
|
||||
andi t1, t1, 7 # mask off other bits.
|
||||
xori t1, t1, 0b010 # should produce 0 if funct3 = 010
|
||||
bnez t1, trap_return # return if any other kind of load
|
||||
|
||||
# emulate lw by performing four byte loads
|
||||
csrr t0, mtval # address of load instruction
|
||||
lbu t1, 0(t0) # read zeroth byte
|
||||
lbu t2, 1(t0) # read the first byte
|
||||
slli t2, t2, 8 # shift into position
|
||||
or t1, t1, t2 # merge with zeroth byte
|
||||
lbu t2, 2(t0) # read the second byte
|
||||
slli t2, t2, 16 # shift into position
|
||||
or t1, t1, t2 # merge with previous two bytes
|
||||
lbu t2, 3(t0) # read the third byte
|
||||
slli t2, t2, 24 # shift into position
|
||||
or t2, t1, t2 # merge with previous three bytes
|
||||
|
||||
# find rd and put result there
|
||||
srli t1, t3, 7 # extract rd from instr[11:7]
|
||||
andi t1, t1, 31 # mask off other bits
|
||||
slli t1, t1, 2 # multiply rd by 4 to make it a word index
|
||||
add t1, tp, t1 # find location of rd on trap stack
|
||||
sw t2, 0(t1) # store result into rd storage on trap stack
|
||||
|
||||
# return to next instruction
|
||||
|
||||
trap_return:
|
||||
csrr t0, mepc # read mepc
|
||||
addi t0, t0, 4 # mepc + 4
|
||||
csrw mepc, t0 # mepc = mpec + 4 (return to next instruction)
|
||||
# restore all of the registers from the trap stack (rd could be in any one)
|
||||
lw x1, 4(tp)
|
||||
lw x2, 8(tp)
|
||||
lw x3, 12(tp)
|
||||
lw x4, 16(tp)
|
||||
lw x5, 20(tp)
|
||||
lw x6, 24(tp)
|
||||
lw x7, 28(tp)
|
||||
lw x8, 32(tp)
|
||||
lw x9, 36(tp)
|
||||
lw x10, 40(tp)
|
||||
lw x11, 44(tp)
|
||||
lw x12, 48(tp)
|
||||
lw x13, 52(tp)
|
||||
lw x14, 56(tp)
|
||||
lw x15, 60(tp)
|
||||
lw x16, 64(tp)
|
||||
lw x17, 68(tp)
|
||||
lw x18, 72(tp)
|
||||
lw x19, 76(tp)
|
||||
lw x20, 80(tp)
|
||||
lw x21, 84(tp)
|
||||
lw x22, 88(tp)
|
||||
lw x23, 92(tp)
|
||||
lw x24, 96(tp)
|
||||
lw x25, 100(tp)
|
||||
lw x26, 104(tp)
|
||||
lw x27, 108(tp)
|
||||
lw x28, 112(tp)
|
||||
lw x29, 116(tp)
|
||||
lw x30, 120(tp)
|
||||
lw x31, 124(tp)
|
||||
csrrw tp, mscratch, tp # restore tp and trap stack pointer
|
||||
mret
|
||||
|
||||
destination:
|
||||
.dword 0x0123456789ABCDEF # fill destination with some stuff
|
||||
|
||||
trapstack:
|
||||
.fill 32, 4 # room to save registers
|
17
examples/exercises/8p7/Makefile
Normal file
17
examples/exercises/8p7/Makefile
Normal file
|
@ -0,0 +1,17 @@
|
|||
TARGET = 8p7
|
||||
|
||||
$(TARGET).elf.objdump: $(TARGET).elf
|
||||
riscv64-unknown-elf-objdump -D $(TARGET).elf > $(TARGET).elf.objdump
|
||||
|
||||
$(TARGET).elf: $(TARGET).S Makefile
|
||||
riscv64-unknown-elf-gcc -g -o $(TARGET) -march=rv32im_zicsr -mabi=ilp32 -mcmodel=medany \
|
||||
-nostartfiles -T../../link/link.ld $(TARGET).S -o $(TARGET).elf
|
||||
|
||||
# simulate with Spike
|
||||
sim: $(TARGET).elf.objdump
|
||||
spike --isa=rv32i_zicsr -d $(TARGET).elf
|
||||
|
||||
clean:
|
||||
rm -f $(TARGET).elf*
|
||||
|
||||
|
56
examples/exercises/8p8/8p8.S
Normal file
56
examples/exercises/8p8/8p8.S
Normal file
|
@ -0,0 +1,56 @@
|
|||
.section .text.init
|
||||
.globl rvtest_entry_point
|
||||
|
||||
rvtest_entry_point:
|
||||
|
||||
# set up trap trap_handler
|
||||
la t0, trap_handler # address of trap trap_handler
|
||||
csrw mtvec, t0 # mtvec = pointer to trap handler
|
||||
la t0, trapstack # address of trap stack
|
||||
csrw mscratch, t0 # mscratch = pointer to trap stack
|
||||
sw zero, 12(t0) # size of buffer
|
||||
|
||||
wait:
|
||||
nop
|
||||
j wait # wait for uart communication
|
||||
|
||||
|
||||
self_loop:
|
||||
j self_loop
|
||||
|
||||
|
||||
trap_handler:
|
||||
csrrw tp, mscratch, tp # swap tp and mscratch to put a trap stack pointer in tp
|
||||
|
||||
# save some registers on trap stack. ß
|
||||
sw t0, 0(tp)
|
||||
sw t1, 4(tp)
|
||||
sw t2, 8(tp)
|
||||
|
||||
lw t0, 12(tp) # get current length of buffer
|
||||
li t1, 0x10000000 # UART base address
|
||||
lbu t1, 0(t1) # fetch next character
|
||||
add t2, tp, t0 # address in buffer
|
||||
sb t1, 0(t2) # store character in buffer
|
||||
li t2, 79 # maximum buffer length
|
||||
beq t0, t2, skip # is buffer full?
|
||||
addi t0, t0, 1 # increase buffer pointer
|
||||
skip:
|
||||
sw t0, 12(tp) # update buffer length
|
||||
|
||||
trap_return: # return to next instruction
|
||||
csrr t0, mepc # read mepc
|
||||
addi t0, t0, 4 # mepc + 4
|
||||
csrw mepc, t0 # mepc = mpec + 4 (return to next instruction)
|
||||
# restore all of the registers from the trap stack (rd could be in any one)
|
||||
lw t0, 0(tp)
|
||||
lw t1, 4(tp)
|
||||
lw t2, 8(tp)
|
||||
csrrw tp, mscratch, tp # restore tp and trap stack pointer
|
||||
mret
|
||||
|
||||
buffer:
|
||||
.fill 80, 1 # room for buffer
|
||||
|
||||
trapstack:
|
||||
.fill 34, 4 # room to save registers and buffer length
|
17
examples/exercises/8p8/Makefile
Normal file
17
examples/exercises/8p8/Makefile
Normal file
|
@ -0,0 +1,17 @@
|
|||
TARGET = 8p8
|
||||
|
||||
$(TARGET).elf.objdump: $(TARGET).elf
|
||||
riscv64-unknown-elf-objdump -D $(TARGET).elf > $(TARGET).elf.objdump
|
||||
|
||||
$(TARGET).elf: $(TARGET).S Makefile
|
||||
riscv64-unknown-elf-gcc -g -o $(TARGET) -march=rv32im_zicsr -mabi=ilp32 -mcmodel=medany \
|
||||
-nostartfiles -T../../link/link.ld $(TARGET).S -o $(TARGET).elf
|
||||
|
||||
# simulate in Spike
|
||||
sim: $(TARGET).elf.objdump
|
||||
spike --isa=rv32i_zicsr -d $(TARGET).elf
|
||||
|
||||
clean:
|
||||
rm -f $(TARGET).elf*
|
||||
|
||||
|
61
examples/exercises/8p9/8p9.S
Normal file
61
examples/exercises/8p9/8p9.S
Normal file
|
@ -0,0 +1,61 @@
|
|||
.section .text.init
|
||||
.globl rvtest_entry_point
|
||||
|
||||
# register to write for GPIO output pins
|
||||
.equ GPIO_OUTPUT_VAL, 0x1006000C
|
||||
.equ CLINT_MTIMECMP, 0x02004000
|
||||
.equ PERIOD, 500
|
||||
|
||||
# register use:
|
||||
# s0: address of GPIO_OUTPUT_VAL
|
||||
# s1: adress of CLINT_MTIME_CMP
|
||||
# s2: PERIOD
|
||||
|
||||
rvtest_entry_point:
|
||||
|
||||
# initialize LED to off
|
||||
li s0, GPIO_OUTPUT_VAL
|
||||
sw zero, 0(s0) # LEDs off
|
||||
|
||||
# configure timer interrupt
|
||||
li s2, PERIOD
|
||||
csrr t0, time # read lower 32 bits of timer
|
||||
csrr t1, timeh # read upper 32 bits of timer
|
||||
add t0, t0, s2 # increment by PERIOD
|
||||
li s1, CLINT_MTIMECMP # set timer for next toggle
|
||||
sw t0, 0(s1) # CLINT_MTIMECMP = time + PERIOD
|
||||
sw zero, 4(s1) # upper word = 0 (this is only because program is just starting)
|
||||
# csrci mstatus, 8 # clear mstatus.MIE so interrupts are globally disabled
|
||||
li t0, 128 # 1 in mie.MTIE
|
||||
csrw mie, t0 # enable timer interrupts
|
||||
li s3, 4 # loop counter
|
||||
|
||||
/*
|
||||
# enter user mode
|
||||
li t0, 0b11 # 3
|
||||
slli t0, t0, 11 # 11 in bits 12:11
|
||||
csrc mstatus, t0 # mstatus.MPP = 00 (for user mode)
|
||||
la t0, user_start #
|
||||
csrw mepc, t0 # where to go when entering user mode
|
||||
mret
|
||||
*/
|
||||
|
||||
#user_start: # loop with wfi
|
||||
wait_loop:
|
||||
csrr t0, time # check time before timer fires
|
||||
wfi # wait until timer interrupt fires.
|
||||
csrr t0, time # check time again after timer fires for debugging
|
||||
# interrupts are globally disabled, so when the timer fires,
|
||||
# wfi will advance here rather than going to an interrupt handler
|
||||
lw t0, 0(s0) # read GPIO_OUTPUT_VAL
|
||||
xori t0, t0, 1 # toggle least significant bits
|
||||
sw t0, 0(s0) # update GPIO_OUTPUT_VAL to turn LED off->on or on->off
|
||||
lw t0, 0(s1) # read CLINT_MTIME_CMP
|
||||
add t0, t0, s2 # add PERIOD
|
||||
sw t0, 0(s1) # CLINT_MTIME_CMP = CLINT_MTIME_CMP + PERIOD
|
||||
addi s3, s3, -1 # decrement loop counter
|
||||
bnez s3, wait_loop # repeat
|
||||
|
||||
self_loop:
|
||||
j self_loop
|
||||
|
17
examples/exercises/8p9/Makefile
Normal file
17
examples/exercises/8p9/Makefile
Normal file
|
@ -0,0 +1,17 @@
|
|||
TARGET = 8p9
|
||||
|
||||
$(TARGET).elf.objdump: $(TARGET).elf
|
||||
riscv64-unknown-elf-objdump -D $(TARGET).elf > $(TARGET).elf.objdump
|
||||
|
||||
$(TARGET).elf: $(TARGET).S Makefile
|
||||
riscv64-unknown-elf-gcc -g -o $(TARGET) -march=rv32im_zicsr -mabi=ilp32 -mcmodel=medany \
|
||||
-nostartfiles -T../../link/link.ld $(TARGET).S -o $(TARGET).elf
|
||||
|
||||
# simulate in ImperasDV lockstep
|
||||
sim: $(TARGET).elf.objdump
|
||||
wsim rv32gc 8p9.elf --lockstepverbose > log
|
||||
|
||||
clean:
|
||||
rm -f $(TARGET).elf*
|
||||
|
||||
|
|
@ -14,5 +14,5 @@ proc GetLineNum {fname target} {
|
|||
}
|
||||
close $f
|
||||
return -code error \
|
||||
"target string not found"
|
||||
[append "target string not found " $target " not found by GetLineNum.do for coverage exclusion in " $fname]
|
||||
}
|
||||
|
|
|
@ -347,11 +347,6 @@ coverage exclude -scope /dut/core/ifu/immu/immu/pmp/pmpchecker -linerange [GetLi
|
|||
coverage exclude -scope /dut/core/ifu/immu/immu/pmp/pmpchecker -linerange [GetLineNum ${SRC}/mmu/pmpchecker.sv "exclusion-tag: immu-pmpcboz"]
|
||||
coverage exclude -scope /dut/core/ifu/immu/immu/pmp/pmpchecker -linerange [GetLineNum ${SRC}/mmu/pmpchecker.sv "exclusion-tag: immu-pmpcboaccess"]
|
||||
|
||||
# IMMU PMP only makes 4-byte accesses
|
||||
coverage exclude -scope /dut/core/ifu/immu/immu/pmp/pmpchecker -linerange [GetLineNum ${SRC}/mmu/pmpchecker.sv "SizeBytesMinus1 = 3'd0"] -item bs 1
|
||||
coverage exclude -scope /dut/core/ifu/immu/immu/pmp/pmpchecker -linerange [GetLineNum ${SRC}/mmu/pmpchecker.sv "SizeBytesMinus1 = 3'd1"] -item bs 1
|
||||
coverage exclude -scope /dut/core/ifu/immu/immu/pmp/pmpchecker -linerange [GetLineNum ${SRC}/mmu/pmpchecker.sv "SizeBytesMinus1 = 3'd7"] -item bs 1
|
||||
|
||||
# No irom
|
||||
set line [GetLineNum ${SRC}/ifu/ifu.sv "~ITLBMissF & ~CacheableF & ~SelIROM"]
|
||||
coverage exclude -scope /dut/core/ifu -linerange $line-$line -item c 1 -feccondrow 6
|
||||
|
|
|
@ -95,6 +95,7 @@ typedef struct packed {
|
|||
|
||||
// Legal number of PMP entries are 0, 16, or 64
|
||||
int PMP_ENTRIES;
|
||||
int PMP_G; // grain
|
||||
|
||||
// Address space
|
||||
logic [63:0] RESET_VECTOR;
|
||||
|
|
|
@ -40,31 +40,22 @@ module pmpadrdec import cvw::*; #(parameter cvw_t P) (
|
|||
input logic PAgePMPAdrIn,
|
||||
output logic PAgePMPAdrOut,
|
||||
output logic Match,
|
||||
output logic [P.PA_BITS-1:0] PMPTop,
|
||||
output logic L, X, W, R
|
||||
);
|
||||
|
||||
// define PMP addressing mode codes
|
||||
localparam TOR = 2'b01;
|
||||
localparam NA4 = 2'b10;
|
||||
localparam NAPOT = 2'b11;
|
||||
|
||||
logic TORMatch, NAMatch;
|
||||
logic PAltPMPAdr;
|
||||
logic [P.PA_BITS-1:0] CurrentAdrFull;
|
||||
logic [1:0] AdrMode;
|
||||
logic [P.PA_BITS-1:0] PMPTop1, PMPTopTOR, PMPTopNaturallyAligned;
|
||||
|
||||
assign AdrMode = PMPCfg[4:3];
|
||||
|
||||
// The two lsb of the physical address don't matter for this checking.
|
||||
// The following code includes them, but hardwires the PMP checker lsbs to 00
|
||||
// and masks them later. Logic synthesis should optimize away these bottom bits.
|
||||
|
||||
// Top-of-range (TOR)
|
||||
// Append two implicit trailing 0's to PMPAdr value
|
||||
assign CurrentAdrFull = {PMPAdr, 2'b00};
|
||||
assign PAltPMPAdr = {1'b0, PhysicalAddress} < {1'b0, CurrentAdrFull}; // unsigned comparison
|
||||
assign PAltPMPAdr = {1'b0, PhysicalAddress} < {1'b0, PMPAdr, 2'b00}; // unsigned comparison
|
||||
assign PAgePMPAdrOut = ~PAltPMPAdr;
|
||||
assign TORMatch = PAgePMPAdrIn & PAltPMPAdr; // exclusion-tag: PAgePMPAdrIn
|
||||
|
||||
|
@ -80,15 +71,8 @@ module pmpadrdec import cvw::*; #(parameter cvw_t P) (
|
|||
|
||||
// finally pick the appropriate match for the access type
|
||||
assign Match = (AdrMode == TOR) ? TORMatch :
|
||||
(AdrMode == NA4 | AdrMode == NAPOT) ? NAMatch :
|
||||
1'b0;
|
||||
|
||||
// Report top of region for first matching region
|
||||
// PMP should match but fail if the size is too big (8-byte accesses spanning to TOR or NA4 region)
|
||||
assign PMPTopTOR = {PMPAdr-1, 2'b11}; // TOR goes to (pmpaddr << 2) - 1
|
||||
assign PMPTopNaturallyAligned = {PMPAdr,2'b00} | NAMask; // top of the pmp region for NA4 and NAPOT. All 1s in the lower bits. Used to check the address doesn't pass the top
|
||||
assign PMPTop1 = (AdrMode == TOR) ? PMPTopTOR : PMPTopNaturallyAligned;
|
||||
assign PMPTop = FirstMatch ? PMPTop1 : '0; // AND portion of distributed AND-OR mux (OR portion in pmpchhecker)
|
||||
(AdrMode[1]) ? NAMatch : // NA4 or NAPOT
|
||||
1'b0; // OFF never matches
|
||||
|
||||
assign L = PMPCfg[7];
|
||||
assign X = PMPCfg[2];
|
||||
|
|
|
@ -41,7 +41,7 @@ module pmpchecker import cvw::*; #(parameter cvw_t P) (
|
|||
// keyword, the compiler warns us that it's interpreting the signal as a var,
|
||||
// which we might not intend.
|
||||
input var logic [7:0] PMPCFG_ARRAY_REGW[P.PMP_ENTRIES-1:0],
|
||||
input var logic [P.PA_BITS-3:0] PMPADDR_ARRAY_REGW [P.PMP_ENTRIES-1:0],
|
||||
input var logic [P.PA_BITS-3:0] PMPADDR_ARRAY_REGW[P.PMP_ENTRIES-1:0],
|
||||
input logic ExecuteAccessF, WriteAccessM, ReadAccessM,
|
||||
input logic [1:0] Size,
|
||||
input logic [3:0] CMOpM,
|
||||
|
@ -56,12 +56,10 @@ module pmpchecker import cvw::*; #(parameter cvw_t P) (
|
|||
logic [P.PMP_ENTRIES-1:0] FirstMatch; // onehot encoding for the first pmpaddr to match the current address.
|
||||
logic [P.PMP_ENTRIES-1:0] L, X, W, R; // PMP matches and has flag set
|
||||
logic [P.PMP_ENTRIES-1:0] PAgePMPAdr; // for TOR PMP matching, PhysicalAddress > PMPAdr[i]
|
||||
logic [P.PA_BITS-1:0] PMPTop[P.PMP_ENTRIES-1:0]; // Upper end of each region, for checking that the access is fully within the region
|
||||
logic PMPCMOAccessFault, PMPCBOMAccessFault, PMPCBOZAccessFault;
|
||||
logic [2:0] SizeBytesMinus1;
|
||||
logic MatchingR, MatchingW, MatchingX, MatchingL;
|
||||
logic [P.PA_BITS-1:0] MatchingPMPTop, PhysicalAddressTop;
|
||||
logic TooBig;
|
||||
|
||||
|
||||
if (P.PMP_ENTRIES > 0) begin: pmp // prevent complaints about array of no elements when PMP_ENTRIES = 0
|
||||
pmpadrdec #(P) pmpadrdecs[P.PMP_ENTRIES-1:0](
|
||||
|
@ -72,31 +70,16 @@ module pmpchecker import cvw::*; #(parameter cvw_t P) (
|
|||
.FirstMatch,
|
||||
.PAgePMPAdrIn({PAgePMPAdr[P.PMP_ENTRIES-2:0], 1'b1}),
|
||||
.PAgePMPAdrOut(PAgePMPAdr),
|
||||
.Match, .PMPTop, .L, .X, .W, .R);
|
||||
.Match, .L, .X, .W, .R);
|
||||
end
|
||||
|
||||
priorityonehot #(P.PMP_ENTRIES) pmppriority(.a(Match), .y(FirstMatch)); // combine the match signal from all the address decoders to find the first one that matches.
|
||||
|
||||
// Distributed AND-OR mux to select the first matching results
|
||||
// If the access does not match all bytes of the PMP region, it is too big and the matches are disabled
|
||||
assign MatchingR = |(R & FirstMatch) & ~TooBig;
|
||||
assign MatchingW = |(W & FirstMatch) & ~TooBig;
|
||||
assign MatchingX = |(X & FirstMatch) & ~TooBig;
|
||||
assign MatchingR = |(R & FirstMatch);
|
||||
assign MatchingW = |(W & FirstMatch);
|
||||
assign MatchingX = |(X & FirstMatch);
|
||||
assign MatchingL = |(L & FirstMatch);
|
||||
or_rows #(P.PMP_ENTRIES, P.PA_BITS) PTEOr(PMPTop, MatchingPMPTop);
|
||||
|
||||
// Matching PMP entry must match all bytes of an access, or the access fails (Priv Spec 3.7.1.3)
|
||||
// First find the size of the access in terms of the offset to the most significant byte
|
||||
always_comb
|
||||
case (Size)
|
||||
2'b00: SizeBytesMinus1 = 3'd0;
|
||||
2'b01: SizeBytesMinus1 = 3'd1;
|
||||
2'b10: SizeBytesMinus1 = 3'd3;
|
||||
2'b11: SizeBytesMinus1 = 3'd7;
|
||||
endcase
|
||||
// Then find the top of the access and see if it is beyond the top of the region
|
||||
assign PhysicalAddressTop = PhysicalAddress + {{P.PA_BITS-3{1'b0}}, SizeBytesMinus1}; // top of the access range
|
||||
assign TooBig = PhysicalAddressTop > MatchingPMPTop; // check if the access goes beyond the top of the PMP region
|
||||
|
||||
// Only enforce PMP checking for effective S and U modes (accounting for mstatus.MPRV) or in Machine mode when L bit is set in selected region
|
||||
assign EnforcePMP = (EffectivePrivilegeModeW != P.M_MODE) | MatchingL;
|
||||
|
|
|
@ -46,14 +46,15 @@ module csrm import cvw::*; #(parameter cvw_t P) (
|
|||
output logic [15:0] MEDELEG_REGW,
|
||||
output logic [11:0] MIDELEG_REGW,
|
||||
/* verilator lint_off UNDRIVEN */ // PMP registers are only used when PMP_ENTRIES > 0
|
||||
output var logic [P.PA_BITS-3:0] PMPADDR_ARRAY_REGW[P.PMP_ENTRIES-1:0],
|
||||
output var logic [7:0] PMPCFG_ARRAY_REGW[P.PMP_ENTRIES-1:0],
|
||||
output var logic [P.PA_BITS-3:0] PMPADDR_ARRAY_REGW [P.PMP_ENTRIES-1:0],
|
||||
/* verilator lint_on UNDRIVEN */
|
||||
output logic WriteMSTATUSM, WriteMSTATUSHM,
|
||||
output logic IllegalCSRMAccessM, IllegalCSRMWriteReadonlyM,
|
||||
output logic [63:0] MENVCFG_REGW
|
||||
);
|
||||
|
||||
logic [P.PA_BITS-3:0] PMPADDR_ARRAY_PREGRAIN_REGW[P.PMP_ENTRIES-1:0];
|
||||
logic [P.XLEN-1:0] MISA_REGW, MHARTID_REGW;
|
||||
logic [P.XLEN-1:0] MSCRATCH_REGW, MTVAL_REGW, MCAUSE_REGW;
|
||||
logic [P.XLEN-1:0] MENVCFGH_REGW;
|
||||
|
@ -103,6 +104,7 @@ module csrm import cvw::*; #(parameter cvw_t P) (
|
|||
// when compressed instructions are supported, there can't be misaligned instructions
|
||||
localparam MEDELEG_MASK = P.ZCA_SUPPORTED ? 16'hB3FE : 16'hB3FF;
|
||||
localparam MIDELEG_MASK = 12'h222; // we choose to not make machine interrupts delegable
|
||||
localparam Gm1 = P.PMP_G > 0 ? P.PMP_G - 1 : 0; // max(G-1, 0)
|
||||
|
||||
// There are PMP_ENTRIES = 0, 16, or 64 PMPADDR registers, each of which has its own flop
|
||||
genvar i;
|
||||
|
@ -112,8 +114,9 @@ module csrm import cvw::*; #(parameter cvw_t P) (
|
|||
logic [7:0] CSRPMPWriteValM[P.PMP_ENTRIES-1:0];
|
||||
logic [7:0] CSRPMPLegalizedWriteValM[P.PMP_ENTRIES-1:0];
|
||||
logic [1:0] CSRPMPWRLegalizedWriteValM[P.PMP_ENTRIES-1:0];
|
||||
logic [1:0] CSRPMPALegalizedWriteValM[P.PMP_ENTRIES-1:0];
|
||||
logic [P.PMP_ENTRIES-1:0] ADDRLocked, CFGLocked;
|
||||
for(i=0; i<P.PMP_ENTRIES; i++) begin
|
||||
for(i=0; i<P.PMP_ENTRIES; i++) begin:pmp
|
||||
// when the lock bit is set, don't allow writes to the PMPCFG or PMPADDR
|
||||
// also, when the lock bit of the next entry is set and the next entry is TOR, don't allow writes to this entry PMPADDR
|
||||
assign CFGLocked[i] = PMPCFG_ARRAY_REGW[i][7];
|
||||
|
@ -123,7 +126,8 @@ module csrm import cvw::*; #(parameter cvw_t P) (
|
|||
assign ADDRLocked[i] = PMPCFG_ARRAY_REGW[i][7] | (PMPCFG_ARRAY_REGW[i+1][7] & PMPCFG_ARRAY_REGW[i+1][4:3] == 2'b01);
|
||||
|
||||
assign WritePMPADDRM[i] = (CSRMWriteM & (CSRAdrM == (PMPADDR0+i))) & ~ADDRLocked[i];
|
||||
flopenr #(P.PA_BITS-2) PMPADDRreg(clk, reset, WritePMPADDRM[i], CSRWriteValM[P.PA_BITS-3:0], PMPADDR_ARRAY_REGW[i]);
|
||||
// PMPADDR_ARRAY_PREGRAIN_REGW flip-flops hold all the bits even though all but G-1 lsbs can be controlled by PMP mode and granularity
|
||||
flopenr #(P.PA_BITS-2) PMPADDRreg(clk, reset, WritePMPADDRM[i], CSRWriteValM[P.PA_BITS-3:0], PMPADDR_ARRAY_PREGRAIN_REGW[i]);
|
||||
if (P.XLEN==64) begin
|
||||
assign WritePMPCFGM[i] = (CSRMWriteM & (CSRAdrM == (PMPCFG0+2*(i/8)))) & ~CFGLocked[i];
|
||||
assign CSRPMPWriteValM[i] = CSRWriteValM[(i%8)*8+7:(i%8)*8];
|
||||
|
@ -132,8 +136,9 @@ module csrm import cvw::*; #(parameter cvw_t P) (
|
|||
assign CSRPMPWriteValM[i] = CSRWriteValM[(i%4)*8+7:(i%4)*8];
|
||||
end
|
||||
|
||||
assign CSRPMPALegalizedWriteValM[i] = ((P.PMP_G > 0) & (CSRPMPWriteValM[i][4:3] == 2'b10)) ? PMPCFG_ARRAY_REGW[i][4:3] : CSRPMPWriteValM[i][4:3]; // WARL A field keeps its old value when attempting to write unselectable NA4 mode
|
||||
assign CSRPMPWRLegalizedWriteValM[i] = {(CSRPMPWriteValM[i][1] & CSRPMPWriteValM[i][0]), CSRPMPWriteValM[i][0]}; // legalize WR fields (reserved 10 written as 00)
|
||||
assign CSRPMPLegalizedWriteValM[i] = {CSRPMPWriteValM[i][7], 2'b00, CSRPMPWriteValM[i][4:2], CSRPMPWRLegalizedWriteValM[i]};
|
||||
assign CSRPMPLegalizedWriteValM[i] = {CSRPMPWriteValM[i][7], 2'b00, CSRPMPALegalizedWriteValM[i], CSRPMPWriteValM[i][2], CSRPMPWRLegalizedWriteValM[i]};
|
||||
flopenr #(8) PMPCFGreg(clk, reset, WritePMPCFGM[i], CSRPMPLegalizedWriteValM[i], PMPCFG_ARRAY_REGW[i]);
|
||||
end
|
||||
end
|
||||
|
@ -214,6 +219,15 @@ module csrm import cvw::*; #(parameter cvw_t P) (
|
|||
assign MENVCFGH_REGW = '0;
|
||||
end
|
||||
|
||||
// Grain alignment for PMPADDR read values.
|
||||
for(i=0; i<P.PMP_ENTRIES; i++)
|
||||
always_comb begin
|
||||
logic [P.XLEN-1:0] pmpaddr;
|
||||
pmpaddr = {{(P.XLEN-(P.PA_BITS-2)){1'b0}}, PMPADDR_ARRAY_PREGRAIN_REGW[i]}; // raw value in PMP registers
|
||||
if (PMPCFG_ARRAY_REGW[i][4]) PMPADDR_ARRAY_REGW[i] = {pmpaddr[P.PA_BITS-3:Gm1], {Gm1 {1'b1}}}; // in NAPOT/NA4, bottom G-1 bits read as all 1s (but no bits affected for NA4)
|
||||
else PMPADDR_ARRAY_REGW[i] = {pmpaddr[P.PA_BITS-3:P.PMP_G], {P.PMP_G{1'b0}}}; // in TOR/OFF, bottom G bits read as 0s
|
||||
end
|
||||
|
||||
// Read machine mode CSRs
|
||||
// verilator lint_off WIDTH
|
||||
logic [5:0] entry;
|
||||
|
@ -221,8 +235,8 @@ module csrm import cvw::*; #(parameter cvw_t P) (
|
|||
entry = '0;
|
||||
CSRMReadValM = '0;
|
||||
IllegalCSRMAccessM = !(P.S_SUPPORTED) & (CSRAdrM == MEDELEG | CSRAdrM == MIDELEG); // trap on DELEG register access when no S or N-mode
|
||||
if ($unsigned(CSRAdrM) >= PMPADDR0 & $unsigned(CSRAdrM) < PMPADDR0 + P.PMP_ENTRIES) // reading a PMP entry
|
||||
CSRMReadValM = {{(P.XLEN-(P.PA_BITS-2)){1'b0}}, PMPADDR_ARRAY_REGW[CSRAdrM - PMPADDR0]};
|
||||
if ($unsigned(CSRAdrM) >= PMPADDR0 & $unsigned(CSRAdrM) < PMPADDR0 + P.PMP_ENTRIES)
|
||||
CSRMReadValM = {{(P.XLEN-(P.PA_BITS-2)){1'b0}}, PMPADDR_ARRAY_REGW[CSRAdrM - PMPADDR0]}; // read PMPADDR entry with lsbs aligned to grain based on NAPOT vs. TOR
|
||||
else if ($unsigned(CSRAdrM) >= PMPCFG0 & $unsigned(CSRAdrM) < PMPCFG0 + P.PMP_ENTRIES/4 & (P.XLEN==32 | CSRAdrM[0] == 0)) begin
|
||||
// only odd-numbered PMPCFG entries exist in RV64
|
||||
if (P.XLEN==64) begin
|
||||
|
|
162
src/uncore/trickbox_apb.sv
Normal file
162
src/uncore/trickbox_apb.sv
Normal file
|
@ -0,0 +1,162 @@
|
|||
///////////////////////////////////////////
|
||||
// trickbox_apb.sv
|
||||
//
|
||||
// Written: David_Harris@hmc.edu 20 May 2025
|
||||
// Modified:
|
||||
//
|
||||
// Purpose: Trickbox, superset of CLINT
|
||||
// https://docs.google.com/document/d/1erHBVchBtwmgZ0bCNjb88spYfN7CpRbhmSNFH6cO8CY/edit?tab=t.0
|
||||
//
|
||||
// Documentation: RISC-V System on Chip Design
|
||||
//
|
||||
// A component of the CORE-V-WALLY configurable RISC-V project.
|
||||
// https://github.com/openhwgroup/cvw
|
||||
//
|
||||
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
|
||||
//
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
|
||||
//
|
||||
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
|
||||
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
|
||||
// may obtain a copy of the License at
|
||||
//
|
||||
// https://solderpad.org/licenses/SHL-2.1/
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, any work distributed under the
|
||||
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
|
||||
// either express or implied. See the License for the specific language governing permissions
|
||||
// and limitations under the License.
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
module trickbox_apb import cvw::*; #(parameter XLEN = 64, NUM_HARTS = 1) (
|
||||
input logic PCLK, PRESETn,
|
||||
input logic PSEL,
|
||||
input logic [15:0] PADDR,
|
||||
input logic [XLEN-1:0] PWDATA,
|
||||
input logic [XLEN/8-1:0] PSTRB,
|
||||
input logic PWRITE,
|
||||
input logic PENABLE,
|
||||
output logic [XLEN-1:0] PRDATA,
|
||||
output logic PREADY,
|
||||
input logic [63:0] MTIME_IN,
|
||||
input logic [NUM_HARTS-1:0] MTIP_IN, MSIP_IN, SSIP_IN, MEIP_IN, SEIP_IN,
|
||||
input var logic [XLEN-1:0] HGEIP_IN[NUM_HARTS-1:0],
|
||||
output logic [63:0] MTIME_OUT,
|
||||
output logic [NUM_HARTS-1:0] MTIP_OUT, MSIP_OUT, SSIP_OUT, MEIP_OUT, SEIP_OUT,
|
||||
output var logic [XLEN-1:0] HGEIP_OUT[NUM_HARTS-1:0],
|
||||
output logic [XLEN-1:0] TOHOST_OUT
|
||||
);
|
||||
|
||||
// register map
|
||||
localparam CLINT_MSIP = 16'h0000;
|
||||
localparam CLINT_MTIMECMP = 16'h4000;
|
||||
localparam CLINT_MTIME = 16'hBFF8;
|
||||
|
||||
logic [63:0] MTIMECMP[NUM_HARTS-1:0];
|
||||
logic [7:0] TRICKEN;
|
||||
logic [63:0] MTIME;
|
||||
logic [NUM_HARTS-1:0] MTIP, MSIP, SSIP, MEIP, SEIP;
|
||||
logic [XLEN-1:0] TOHOST;
|
||||
logic [XLEN-1:0] HGEIP[NUM_HARTS-1:0];
|
||||
logic [15:0] entry;
|
||||
logic [9:0] hart; // which hart is being accessed
|
||||
logic memwrite;
|
||||
logic [63:0] RD;
|
||||
genvar i;
|
||||
|
||||
assign memwrite = PWRITE & PENABLE & PSEL; // only write in access phase
|
||||
assign PREADY = 1'b1; // CLINT never takes >1 cycle to respond
|
||||
assign hart = PADDR[12:3]; // middle bits of address allow control of up to 1024 harts
|
||||
|
||||
// read circuitry
|
||||
// 64-bit accesses, then reduce to 32-bit for RV32
|
||||
always_ff @(posedge PCLK) begin
|
||||
case (PADDR[15:13])
|
||||
3'b000: RD <= {63'b0, MSIP[hart]}; // *** memory map
|
||||
3'b001: RD <= {63'b0, SSIP[hart]};
|
||||
3'b010: RD <= MTIMECMP[hart];
|
||||
3'b011: RD <= {63'b0, MEIP[hart]};
|
||||
3'b100: RD <= {63'b0, SEIP[hart]};
|
||||
3'b101: case (hart)
|
||||
10'b0000000000: RD <= TOHOST;
|
||||
10'b0000000001: RD <= '0; // Reading COM1 has no effect; busy bit not yet implemented. Later add busy bit
|
||||
10'b0000000010: RD <= {56'b0, TRICKEN};
|
||||
10'b1111111111: RD <= MTIME;
|
||||
default: RD <= '0;
|
||||
endcase
|
||||
3'b110: RD <= HGEIP[hart];
|
||||
default: RD <= '0;
|
||||
endcase
|
||||
end
|
||||
|
||||
// word aligned reads
|
||||
if (XLEN == 64) assign PRDATA = RD;
|
||||
else assign PRDATA = RD[PADDR[2]*32 +: 32]; // 32-bit register access to upper or lower half
|
||||
|
||||
// write circuitry
|
||||
always_ff @(posedge PCLK)
|
||||
if (~PRESETn) begin
|
||||
MSIP <= '0;
|
||||
SSIP <= '0;
|
||||
MEIP <= '0;
|
||||
SEIP <= '0;
|
||||
TOHOST <= '0;
|
||||
TRICKEN <= '0;
|
||||
end else if (memwrite) begin
|
||||
case (PADDR[15:13])
|
||||
3'b000: MSIP[hart] <= PWDATA[0];
|
||||
3'b001: SSIP[hart] <= PWDATA[0];
|
||||
3'b011: MEIP[hart] <= PWDATA[0];
|
||||
3'b100: SEIP[hart] <= PWDATA[0];
|
||||
3'b101: case (hart)
|
||||
10'b0000000000: TOHOST <= PWDATA;
|
||||
10'b0000000001: $display("%c", PWDATA[7:0]); // COM1 prints to simulation console. Eventually allow it to be redirected to a UART, and provide a busy bit.
|
||||
10'b0000000010: TRICKEN <= PWDATA[7:0];
|
||||
endcase
|
||||
endcase
|
||||
end
|
||||
// generate loop write circuits for MTIMECMP and HGEIP
|
||||
for (i=0; i<NUM_HARTS; i++)
|
||||
always_ff @(posedge PCLK)
|
||||
if (~PRESETn) begin
|
||||
MTIMECMP[i] <= 64'hFFFFFFFFFFFFFFFF; // Spec says MTIMECMP is not reset, but we reset to maximum value to prevent spurious timer interrupts
|
||||
HGEIP[i] <= 0;
|
||||
end else if (memwrite & (hart == i)) begin
|
||||
if (PADDR[15:13] == 3'b010) begin
|
||||
if (XLEN == 64) MTIMECMP[hart] <= PWDATA; // 64-bit write
|
||||
else MTIMECMP[hart][PADDR[2]*32 +: 32] <= PWDATA; // 32-bit write
|
||||
end else if (PADDR[15:13] == 3'b110) begin
|
||||
HGEIP[hart] <= PWDATA;
|
||||
end
|
||||
end
|
||||
|
||||
// mtime register
|
||||
always_ff @(posedge PCLK)
|
||||
if (~PRESETn) begin
|
||||
MTIME <= '0;
|
||||
end else if (memwrite & (PADDR[15:13] == 3'b101 && hart == 10'b1111111111)) begin
|
||||
if (XLEN == 64) MTIME <= PWDATA; // 64-bit write
|
||||
else MTIME <= MTIME[PADDR[2]*32 +: 32]; // 32-bit write
|
||||
end else MTIME <= MTIME + 1;
|
||||
|
||||
// timer interrupt when MTIME >= MTIMECMP (unsigned)
|
||||
for (i=0;i<NUM_HARTS;i++)
|
||||
assign MTIP[i] = ({1'b0, MTIME} >= {1'b0, MTIMECMP[i]});
|
||||
|
||||
// TRICKEN controls whether outputs come from TrickBox or are daisy-chained from elsewhere
|
||||
always_comb begin
|
||||
MSIP_OUT = TRICKEN[0] ? MSIP : MSIP_IN;
|
||||
SSIP_OUT = TRICKEN[1] ? SSIP : SSIP_IN;
|
||||
MEIP_OUT = TRICKEN[2] ? MEIP : MEIP_IN;
|
||||
SEIP_OUT = TRICKEN[3] ? SEIP : SEIP_IN;
|
||||
MTIP_OUT = TRICKEN[4] ? MTIP : MTIP_IN;
|
||||
MTIME_OUT = TRICKEN[5] ? MTIME : MTIME_IN;
|
||||
TOHOST_OUT = TRICKEN[7] ? TOHOST : '0;
|
||||
// NO COM1
|
||||
end
|
||||
|
||||
for (i=0; i<NUM_HARTS;i++)
|
||||
assign HGEIP_OUT[i] = TRICKEN[6] ? HGEIP[i] : HGEIP_IN[i];
|
||||
|
||||
endmodule
|
||||
|
|
@ -22,13 +22,17 @@
|
|||
module riscvassertions import cvw::*; #(parameter cvw_t P);
|
||||
initial begin
|
||||
assert (P.PMP_ENTRIES == 0 | P.PMP_ENTRIES==16 | P.PMP_ENTRIES==64) else $fatal(1, "Illegal number of PMP entries: PMP_ENTRIES must be 0, 16, or 64");
|
||||
assert (P.S_SUPPORTED | P.VIRTMEM_SUPPORTED == 0) else $fatal(1, "Virtual memory requires S mode support");
|
||||
assert (P.PMP_G > 0 | P.XLEN == 32 | P.PMP_ENTRIES == 0) else $fatal(1, "RV64 requires PMP_G at least 1 to avoid checking for 8-byte accesses to 4-byte region");
|
||||
assert ((P.PMP_G >= $clog2(P.DCACHE_LINELENINBITS/8)-2) | !P.ZICCLSM_SUPPORTED | P.PMP_ENTRIES == 0) else $fatal(1, "Systems that support misaligned data with PMP must have grain size of at least one cache line so accesses that span grains will also cause spills");
|
||||
assert ((P.PMP_G >= $clog2(P.ICACHE_LINELENINBITS/8)-2) | !P.ZCA_SUPPORTED | (P.PMP_ENTRIES == 0) | !P.ICACHE_SUPPORTED) else $fatal(1, "Systems that support compressed instructions with PMP must have grain size of at least one cache line so fetches that span grains will also cause spills");
|
||||
assert (P.PMP_G < P.PA_BITS-2 | P.PMP_ENTRIES == 0) else $fatal(1, "PMP granularity must be less than the number of physical address bits");
|
||||
assert (P.IDIV_BITSPERCYCLE == 1 | P.IDIV_BITSPERCYCLE==2 | P.IDIV_BITSPERCYCLE==4) else $fatal(1, "Illegal number of divider bits/cycle: IDIV_BITSPERCYCLE must be 1, 2, or 4");
|
||||
assert (P.F_SUPPORTED | ~P.D_SUPPORTED) else $fatal(1, "Can't support double fp (D) without supporting float (F)");
|
||||
assert (P.D_SUPPORTED | ~P.Q_SUPPORTED) else $fatal(1, "Can't support quad fp (Q) without supporting double (D)");
|
||||
assert (P.F_SUPPORTED | ~P.ZFH_SUPPORTED) else $fatal(1, "Can't support half-precision fp (ZFH) without supporting float (F)");
|
||||
assert (P.DCACHE_SUPPORTED | ~P.F_SUPPORTED | P.FLEN <= P.XLEN) else $fatal(1, "Data cache required to support FLEN > XLEN because AHB/DTIM bus width is XLEN");
|
||||
assert (P.F_SUPPORTED | !P.D_SUPPORTED) else $fatal(1, "Can't support double fp (D) without supporting float (F)");
|
||||
assert (P.D_SUPPORTED | !P.Q_SUPPORTED) else $fatal(1, "Can't support quad fp (Q) without supporting double (D)");
|
||||
assert (P.F_SUPPORTED | !P.ZFH_SUPPORTED) else $fatal(1, "Can't support half-precision fp (ZFH) without supporting float (F)");
|
||||
assert (P.DCACHE_SUPPORTED | !P.F_SUPPORTED | P.FLEN <= P.XLEN) else $fatal(1, "Data cache required to support FLEN > XLEN because AHB/DTIM bus width is XLEN");
|
||||
assert (P.I_SUPPORTED ^ P.E_SUPPORTED) else $fatal(1, "Exactly one of I and E must be supported");
|
||||
assert (P.S_SUPPORTED | P.VIRTMEM_SUPPORTED == 0) else $fatal(1, "Virtual memory requires S mode support");
|
||||
assert (P.DCACHE_WAYSIZEINBYTES <= 4096 | (!P.DCACHE_SUPPORTED) | P.VIRTMEM_SUPPORTED == 0) else $fatal(1, "DCACHE_WAYSIZEINBYTES cannot exceed 4 KiB when caches and virtual memory is enabled (to prevent aliasing)");
|
||||
assert (P.DCACHE_LINELENINBITS >= 128 | (!P.DCACHE_SUPPORTED)) else $fatal(1, "DCACHE_LINELENINBITS must be at least 128 when caches are enabled");
|
||||
assert (P.DCACHE_LINELENINBITS < P.DCACHE_WAYSIZEINBYTES*8) else $fatal(1, "DCACHE_LINELENINBITS must be smaller than way size");
|
||||
|
|
|
@ -280,7 +280,7 @@ module wallyTracer import cvw::*; #(parameter cvw_t P) (rvviTrace rvvi);
|
|||
|
||||
// PMPADDR CSRs 3B0 to 3EF
|
||||
for(genvar pmpAddrID = 0; pmpAddrID < P.PMP_ENTRIES; pmpAddrID++) begin
|
||||
`CONNECT_CSR(PMPADDR``pmpAddrID, 12'h3B0 + pmpAddrID, testbench.dut.core.priv.priv.csr.csrm.PMPADDR_ARRAY_REGW[pmpAddrID]);
|
||||
`CONNECT_CSR(PMPADDR``pmpAddrID, 12'h3B0 + pmpAddrID, testbench.dut.core.priv.priv.csr.csrm.PMPADDR_ARRAY_REGW[pmpAddrID]); // aligned to grain
|
||||
end
|
||||
end
|
||||
|
||||
|
|
|
@ -153,25 +153,25 @@ string arch32pmp[] = '{
|
|||
`RISCVARCHTEST,
|
||||
"rv32i_m/pmp32/src/pmp-CFG-reg.S",
|
||||
"rv32i_m/pmp32/src/pmp-CSR-access.S",
|
||||
"rv32i_m/pmp32/src/pmp-NA4-R-priority-level-2.S",
|
||||
"rv32i_m/pmp32/src/pmp-NA4-R-priority.S",
|
||||
"rv32i_m/pmp32/src/pmp-NA4-R.S",
|
||||
"rv32i_m/pmp32/src/pmp-NA4-RW-priority-level-2.S",
|
||||
"rv32i_m/pmp32/src/pmp-NA4-RW-priority.S",
|
||||
"rv32i_m/pmp32/src/pmp-NA4-RW.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NA4-R-priority-level-2.S", *** restore when BLOCKED is removed after tests work with G > 0
|
||||
//"rv32i_m/pmp32/src/pmp-NA4-R-priority.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NA4-R.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NA4-RW-priority-level-2.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NA4-RW-priority.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NA4-RW.S",
|
||||
"rv32i_m/pmp32/src/pmp-NA4-RWX.S",
|
||||
"rv32i_m/pmp32/src/pmp-NA4-RX-priority-level-2.S",
|
||||
"rv32i_m/pmp32/src/pmp-NA4-RX-priority.S",
|
||||
"rv32i_m/pmp32/src/pmp-NA4-RX.S",
|
||||
"rv32i_m/pmp32/src/pmp-NA4-X-priority-level-2.S",
|
||||
"rv32i_m/pmp32/src/pmp-NA4-X-priority.S",
|
||||
"rv32i_m/pmp32/src/pmp-NA4-X.S",
|
||||
"rv32i_m/pmp32/src/pmp-NAPOT-R-priority-level-2.S",
|
||||
"rv32i_m/pmp32/src/pmp-NAPOT-R-priority.S",
|
||||
"rv32i_m/pmp32/src/pmp-NAPOT-R.S",
|
||||
"rv32i_m/pmp32/src/pmp-NAPOT-RW-priority-level-2.S",
|
||||
"rv32i_m/pmp32/src/pmp-NAPOT-RW-priority.S",
|
||||
"rv32i_m/pmp32/src/pmp-NAPOT-RW.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NA4-RX-priority-level-2.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NA4-RX-priority.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NA4-RX.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NA4-X-priority-level-2.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NA4-X-priority.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NA4-X.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NAPOT-R-priority-level-2.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NAPOT-R-priority.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NAPOT-R.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NAPOT-RW-priority-level-2.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NAPOT-RW-priority.S",
|
||||
//"rv32i_m/pmp32/src/pmp-NAPOT-RW.S",
|
||||
"rv32i_m/pmp32/src/pmp-NAPOT-RWX.S",
|
||||
"rv32i_m/pmp32/src/pmp-NAPOT-RX-priority-level-2.S",
|
||||
"rv32i_m/pmp32/src/pmp-NAPOT-RX-priority.S",
|
||||
|
@ -197,10 +197,10 @@ string arch32pmp[] = '{
|
|||
string arch64pmp[] = '{
|
||||
`RISCVARCHTEST,
|
||||
"rv64i_m/pmp/src/pmp64-CSR-ALL-MODES.S",
|
||||
"rv64i_m/pmp/src/pmp64-NA4-M.S",
|
||||
"rv64i_m/pmp/src/pmp64-NA4-S.S",
|
||||
"rv64i_m/pmp/src/pmp64-NA4-U.S",
|
||||
"rv64i_m/pmp/src/pmp64-NAPOT-M.S",
|
||||
//"rv64i_m/pmp/src/pmp64-NA4-M.S", *** restore when PMP tests work with G > 0
|
||||
//"rv64i_m/pmp/src/pmp64-NA4-S.S",
|
||||
//"rv64i_m/pmp/src/pmp64-NA4-U.S",
|
||||
//"rv64i_m/pmp/src/pmp64-NAPOT-M.S",
|
||||
"rv64i_m/pmp/src/pmp64-NAPOT-S.S",
|
||||
"rv64i_m/pmp/src/pmp64-NAPOT-U.S",
|
||||
"rv64i_m/pmp/src/pmp64-TOR-M.S",
|
||||
|
@ -213,8 +213,8 @@ string arch32vm_sv32[] = '{
|
|||
"rv32i_m/vm_sv32/src/mstatus_tvm_test.S",
|
||||
"rv32i_m/vm_sv32/src/pmp_check_on_pa_S_mode.S",
|
||||
"rv32i_m/vm_sv32/src/pmp_check_on_pa_U_mode.S",
|
||||
"rv32i_m/vm_sv32/src/pmp_check_on_pte_S_mode.S",
|
||||
"rv32i_m/vm_sv32/src/pmp_check_on_pte_U_mode.S",
|
||||
//"rv32i_m/vm_sv32/src/pmp_check_on_pte_S_mode.S", *** restore when PMP tests work with G > 0
|
||||
//"rv32i_m/vm_sv32/src/pmp_check_on_pte_U_mode.S",
|
||||
"rv32i_m/vm_sv32/src/satp_access_tests.S",
|
||||
"rv32i_m/vm_sv32/src/vm_A_and_D_S_mode.S",
|
||||
"rv32i_m/vm_sv32/src/vm_A_and_D_U_mode.S",
|
||||
|
|
|
@ -39,6 +39,11 @@ rvtest_entry_point:
|
|||
csrw mtvec, t0 # Initialize MTVEC to trap_handler
|
||||
csrw mideleg, zero # Don't delegate interrupts
|
||||
csrw medeleg, zero # Don't delegate exceptions
|
||||
# The following three lines are needed to initalize the timer for Spike to run correctly,
|
||||
# but are not necessary for Wally to run lockstep.
|
||||
# Unfortunately, they throw off the program addresses for tests/coverage/pmp.S,
|
||||
# causing it to fail. Ideally, pmp.S would become more robust or be replaced by
|
||||
# functional coverage tests, and these three lines will be restored.
|
||||
# li t0, -1 # set mtimecmp to biggest number so it doesnt interrupt again
|
||||
# li t1, 0x02004000 # MTIMECMP in CLINT
|
||||
# sd t0, 0(t1)
|
||||
|
|
|
@ -32,6 +32,11 @@ main:
|
|||
bseti t0, zero, 14 # turn on FPU
|
||||
csrs mstatus, t0
|
||||
|
||||
# fsqrt with Y = 0 to check divby0 flags
|
||||
fcvt.s.w f0, zero
|
||||
fli.s f1, 1
|
||||
fsqrt.s f2, f1
|
||||
|
||||
#Pull denormalized FP number from memory and pass it to fclass.S for coverage
|
||||
la t0, TestData1
|
||||
flw ft0, 0(t0)
|
||||
|
|
|
@ -17,7 +17,7 @@ main:
|
|||
// Configuration
|
||||
|
||||
# | Reg | pmpaddr | pmpcfg | L | A | X | W | R | Comments
|
||||
# |0 | 0x2000003f | 0x83 | 1 | 00 | 0 | 1 | 1 | 0
|
||||
# |0 | 0x20000040 | 0x83 | 1 | 00 | 0 | 1 | 1 | 0
|
||||
# |1 | 0x2000007f | 0x8b | 1 | 01 | 0 | 1 | 1 | 1
|
||||
# |2 | 0x200000be | 0x93 | 1 | 10 | 0 | 1 | 1 | 2
|
||||
# |3 | 0x2000011e | 0x9b | 1 | 11 | 0 | 1 | 1 | 3
|
||||
|
@ -34,7 +34,10 @@ main:
|
|||
# |14 | 0x200003be | 0x10 | 0 | 10 | 0 | 0 | 0 | 14
|
||||
# |15 | 0x2000041e | 0x18 | 0 | 11 | 0 | 0 | 0 | 15
|
||||
# configure the pmp address of register 0 in mode 0
|
||||
li t5, 536870975
|
||||
# changed from 2000003F to 20000040 5/22/25 david_harris@hmc.edu
|
||||
# to prevent access fault to trap handler when grain size is large
|
||||
# may result in lower coverage.
|
||||
li t5, 0x20000040
|
||||
csrw pmpaddr0, t5
|
||||
|
||||
# configure the pmp address of register 1 in mode 1
|
||||
|
@ -101,6 +104,7 @@ csrw pmpaddr15, t5
|
|||
# write pmpcfg0, output 0x191109019b938b83
|
||||
li t4, 1806234828062034819
|
||||
csrw pmpcfg0, t4
|
||||
csrr t5, pmpcfg0
|
||||
|
||||
# write pmpcfg2, output 0x181008001c140c04
|
||||
li t4, 1733894653101739012
|
||||
|
@ -923,6 +927,7 @@ li t4, 1806234828062034819
|
|||
csrw pmpcfg2, t4
|
||||
|
||||
|
||||
|
||||
// Testing
|
||||
|
||||
// END Configuration and Testing Starting at Register: 8
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
},
|
||||
"memory": {
|
||||
"pmp": {
|
||||
"grain": 0,
|
||||
"grain": 4,
|
||||
"count": 16
|
||||
},
|
||||
"misaligned": {
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
},
|
||||
"memory": {
|
||||
"pmp": {
|
||||
"grain": 0,
|
||||
"grain": 4,
|
||||
"count": 16
|
||||
},
|
||||
"misaligned": {
|
||||
|
|
|
@ -143,6 +143,12 @@ class spike(pluginTemplate):
|
|||
#TODO: The following assumes you are using the riscv-gcc toolchain. If
|
||||
# not please change appropriately
|
||||
self.compile_cmd = self.compile_cmd+' -mabi='+('lp64 ' if 64 in ispec['supported_xlen'] else ('ilp32e ' if "E" in ispec["ISA"] else 'ilp32 '))
|
||||
if 'pmp-grain' in ispec['PMP']:
|
||||
# if the PMP granularity is specified in the isa yaml, then we use that value
|
||||
# convert from G to bytes: g = 2^(G+2) bytes
|
||||
self.granularity = pow(2, ispec['PMP']['pmp-grain']+2)
|
||||
else:
|
||||
self.granularity = 4 # default granularity is 4 bytes
|
||||
|
||||
def runTests(self, testList):
|
||||
|
||||
|
@ -198,7 +204,7 @@ class spike(pluginTemplate):
|
|||
reference_output = re.sub("/src/","/references/", re.sub(".S",".reference_output", test))
|
||||
simcmd = f'cut -c-{8:g} {reference_output} > {sig_file}' #use cut to remove comments when copying
|
||||
else:
|
||||
simcmd = self.dut_exe + f' {"--misaligned" if self.xlen == "64" else ""} --isa={self.isa} +signature={sig_file} +signature-granularity=4 {elf}'
|
||||
simcmd = self.dut_exe + f' {"--misaligned" if self.xlen == "64" else ""} --isa={self.isa} --pmpgranularity={self.granularity} +signature={sig_file} +signature-granularity=4 {elf}'
|
||||
else:
|
||||
simcmd = 'echo "NO RUN"'
|
||||
|
||||
|
|
|
@ -28,7 +28,7 @@ hart0:
|
|||
- Unchanged
|
||||
PMP:
|
||||
implemented: True
|
||||
pmp-grain: 0
|
||||
pmp-grain: 4
|
||||
pmp-count: 16
|
||||
pmp-writable: 12
|
||||
|
||||
|
|
|
@ -30,6 +30,6 @@ hart0:
|
|||
- Unchanged
|
||||
PMP:
|
||||
implemented: True
|
||||
pmp-grain: 0
|
||||
pmp-grain: 4
|
||||
pmp-count: 16
|
||||
pmp-writable: 12
|
||||
|
|
|
@ -73,7 +73,7 @@ test_cases:
|
|||
|
||||
# write pmpcfg regs with the information in the table above. this should also write the value of these registers to the output.
|
||||
.4byte 0x0, 0x0009001F, write_pmpcfg_0 # write pmpcfg0, output 0x0009001F
|
||||
.4byte 0x1, 0x0018900C, write_pmpcfg_1 # write pmpcfg1, output 0x0018900C
|
||||
.4byte 0x1, 0x0018900C, write_pmpcfg_1 # write pmpcfg1, output 0x0018980C because NA4 reads as NAPOT with G > 0
|
||||
# pmpcfg2 is zeroed out, so it doesn't need a write
|
||||
.4byte 0x3, 0x1F000000, write_pmpcfg_3 # write pmpcfg3, output 0x1F000000
|
||||
|
||||
|
@ -117,8 +117,8 @@ test_cases:
|
|||
.4byte 0x80100010, 0x600DAA, read32_test # read correct value out
|
||||
|
||||
# test read and write fault on region with no access
|
||||
.4byte 0x80100208, 0x600D15, write32_test # Write fault on no-access range (PMP6)
|
||||
.4byte 0x80100208, 0x600D15, read32_test # read fault on no-access range (PMP6)
|
||||
.4byte 0x80100208, 0x600D17, write32_test # Write fault on no-access range (PMP4)
|
||||
.4byte 0x80100208, 0x600D17, read32_test # read fault on no-access range (PMP4)
|
||||
|
||||
# test jalr to region with X=0 causes access fault
|
||||
.4byte 0x80100020, 0xbad, executable_test # execute fault on no-execute range (PMP2)
|
||||
|
|
|
@ -71,7 +71,7 @@ test_cases:
|
|||
.8byte 0xF, 0x2FFFFFFF, write_pmpaddr_15 # | 15 | 0x2FFFFFFF | 1F | 0 | NAPOT | 1 | 1 | 1 | Main mem 80000000-FFFFFFFF RWX|
|
||||
|
||||
# write pmpcfg regs with the information in the table above. this should also write the value of these registers to the output.
|
||||
.8byte 0x0, 0x0018900C0009001F, write_pmpcfg_0 # write pmpcfg0, output 0x0018900C0009001F
|
||||
.8byte 0x0, 0x0018900C0009001F, write_pmpcfg_0 # write pmpcfg0, output 0x0018980C0009001F because NA4 writes as NAPOT
|
||||
.8byte 0x2, 0x1F00000000000000, write_pmpcfg_2 # write pmpcfg2, output 0x1F00000000000000
|
||||
|
||||
# write known values to memory where W=0. This should be possible since we're in machine mode.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue