unpacker optimizations

This commit is contained in:
Katherine Parry 2022-06-01 16:52:21 +00:00
parent 949f53695d
commit dd19e55b8f
6 changed files with 105 additions and 134 deletions

@ -1 +1 @@
Subproject commit 307c77b26e070ae85ffea665ad9b642b40e33c86
Subproject commit be67c99bd461742aa1c100bcc0732657faae2230

View file

@ -472,7 +472,7 @@ module fma2(
// Select the result
///////////////////////////////////////////////////////////////////////////////
resultselect resultselect(.XSgnM, .YSgnM, .ZExpM, .XManM, .YManM, .ZManM, .ZDenormM,
resultselect resultselect(.XSgnM, .YSgnM, .ZExpM, .XManM, .YManM, .ZManM, .ZDenormM, .ZZeroM,
.FrmM, .FmtM, .AddendStickyM, .KillProdM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, .RoundAdd,
.ZSgnEffM, .PSgnM, .ResultSgn, .CalcPlus1, .Invalid, .Overflow, .Underflow,
.ResultDenorm, .ResultExp, .ResultFrac, .FMAResM);
@ -1002,6 +1002,7 @@ module resultselect(
input logic XInfM, YInfM, ZInfM, // inputs are infinity
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
input logic ZDenormM, // is the original precision denormalized
input logic ZZeroM,
input logic ZSgnEffM, // the modified Z sign - depends on instruction
input logic PSgnM, // the product's sign
input logic ResultSgn, // the result's sign
@ -1027,7 +1028,7 @@ module resultselect(
end
assign OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}};
assign KillProdResult = {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
assign KillProdResult = {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
assign UnderflowResult = {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))};
assign InfResult = {InfSgn, {`NE{1'b1}}, (`NF)'(0)};
assign NormResult = {ResultSgn, ResultExp, ResultFrac};
@ -1046,7 +1047,7 @@ module resultselect(
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} :
{{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1{1'b1}}, (`NF1)'(0)};
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})} : {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})} : {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))} : {{`FLEN-`LEN1{1'b1}}, {ResultSgn, (`LEN1-1)'(0)} + {(`LEN1-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
assign InfResult = FmtM ? {InfSgn, {`NE{1'b1}}, (`NF)'(0)} : {{`FLEN-`LEN1{1'b1}}, InfSgn, {`NE1{1'b1}}, (`NF1)'(0)};
assign NormResult = FmtM ? {ResultSgn, ResultExp, ResultFrac} : {{`FLEN-`LEN1{1'b1}}, ResultSgn, ResultExp[`NE1-1:0], ResultFrac[`NF-1:`NF-`NF1]};
@ -1066,7 +1067,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}};
KillProdResult = {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
KillProdResult = {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
UnderflowResult = {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))};
InfResult = {InfSgn, {`NE{1'b1}}, (`NF)'(0)};
NormResult = {ResultSgn, ResultExp, ResultFrac};
@ -1082,7 +1083,7 @@ module resultselect(
end
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} :
{{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1{1'b1}}, (`NF1)'(0)};
KillProdResult = {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`LEN1{1'b1}}, {ResultSgn, (`LEN1-1)'(0)} + {(`LEN1-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`LEN1{1'b1}}, InfSgn, {`NE1{1'b1}}, (`NF1)'(0)};
NormResult = {{`FLEN-`LEN1{1'b1}}, ResultSgn, ResultExp[`NE1-1:0], ResultFrac[`NF-1:`NF-`NF1]};
@ -1099,7 +1100,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`LEN2{1'b1}}, ResultSgn, {`NE2-1{1'b1}}, 1'b0, {`NF2{1'b1}}} :
{{`FLEN-`LEN2{1'b1}}, ResultSgn, {`NE2{1'b1}}, (`NF2)'(0)};
KillProdResult = {{`FLEN-`LEN2{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE2-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`NF2]} + (RoundAdd[`NF-`NF2+`LEN2-2:`NF-`NF2]&{`LEN2-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`LEN2{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE2-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`NF2]} + (RoundAdd[`NF-`NF2+`LEN2-2:`NF-`NF2]&{`LEN2-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`LEN2{1'b1}}, {ResultSgn, (`LEN2-1)'(0)} + {(`LEN2-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`LEN2{1'b1}}, InfSgn, {`NE2{1'b1}}, (`NF2)'(0)};
NormResult = {{`FLEN-`LEN2{1'b1}}, ResultSgn, ResultExp[`NE2-1:0], ResultFrac[`NF-1:`NF-`NF2]};
@ -1137,7 +1138,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}};
KillProdResult = {ResultSgn, {ZExpM[`Q_NE-1:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
KillProdResult = {ResultSgn, {ZExpM[`Q_NE-1:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
UnderflowResult = {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))};
InfResult = {InfSgn, {`NE{1'b1}}, (`NF)'(0)};
NormResult = {ResultSgn, ResultExp, ResultFrac};
@ -1153,7 +1154,7 @@ module resultselect(
end
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`D_LEN{1'b1}}, ResultSgn, {`D_NE-1{1'b1}}, 1'b0, {`D_NF{1'b1}}} :
{{`FLEN-`D_LEN{1'b1}}, ResultSgn, {`D_NE{1'b1}}, (`D_NF)'(0)};
KillProdResult = {{`FLEN-`D_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`D_NE-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`D_NF]} + (RoundAdd[`NF-`D_NF+`D_LEN-2:`NF-`D_NF]&{`D_LEN-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`D_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`D_NE-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`D_NF]} + (RoundAdd[`NF-`D_NF+`D_LEN-2:`NF-`D_NF]&{`D_LEN-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`D_LEN{1'b1}}, {ResultSgn, (`D_LEN-1)'(0)} + {(`D_LEN-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`D_LEN{1'b1}}, InfSgn, {`D_NE{1'b1}}, (`D_NF)'(0)};
NormResult = {{`FLEN-`D_LEN{1'b1}}, ResultSgn, ResultExp[`D_NE-1:0], ResultFrac[`NF-1:`NF-`D_NF]};
@ -1170,7 +1171,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`S_LEN{1'b1}}, ResultSgn, {`S_NE-1{1'b1}}, 1'b0, {`S_NF{1'b1}}} :
{{`FLEN-`S_LEN{1'b1}}, ResultSgn, {`S_NE{1'b1}}, (`S_NF)'(0)};
KillProdResult = {{`FLEN-`S_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`S_NE-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`S_NF]} + (RoundAdd[`NF-`S_NF+`S_LEN-2:`NF-`S_NF]&{`S_LEN-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`S_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`S_NE-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`S_NF]} + (RoundAdd[`NF-`S_NF+`S_LEN-2:`NF-`S_NF]&{`S_LEN-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`S_LEN{1'b1}}, {ResultSgn, (`S_LEN-1)'(0)} + {(`S_LEN-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`S_LEN{1'b1}}, InfSgn, {`S_NE{1'b1}}, (`S_NF)'(0)};
NormResult = {{`FLEN-`S_LEN{1'b1}}, ResultSgn, ResultExp[`S_NE-1:0], ResultFrac[`NF-1:`NF-`S_NF]};
@ -1188,7 +1189,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`H_LEN{1'b1}}, ResultSgn, {`H_NE-1{1'b1}}, 1'b0, {`H_NF{1'b1}}} :
{{`FLEN-`H_LEN{1'b1}}, ResultSgn, {`H_NE{1'b1}}, (`H_NF)'(0)};
KillProdResult = {{`FLEN-`H_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`H_NE-2:1],ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`H_NF]} + (RoundAdd[`NF-`H_NF+`H_LEN-2:`NF-`H_NF]&{`H_LEN-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`H_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`H_NE-2:1],ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`H_NF]} + (RoundAdd[`NF-`H_NF+`H_LEN-2:`NF-`H_NF]&{`H_LEN-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`H_LEN{1'b1}}, {ResultSgn, (`H_LEN-1)'(0)} + {(`H_LEN-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`H_LEN{1'b1}}, InfSgn, {`H_NE{1'b1}}, (`H_NF)'(0)};
NormResult = {{`FLEN-`H_LEN{1'b1}}, ResultSgn, ResultExp[`H_NE-1:0], ResultFrac[`NF-1:`NF-`H_NF]};

View file

@ -95,7 +95,7 @@ module fpu (
logic XNaNQ, YNaNQ; // is the input a NaN - divide
logic XSNaNE, YSNaNE, ZSNaNE; // is the input a signaling NaN - execute stage
logic XSNaNM, YSNaNM, ZSNaNM; // is the input a signaling NaN - memory stage
logic XDenormE, YDenormE, ZDenormE; // is the input denormalized
logic XDenormE, ZDenormE; // is the input denormalized
logic XZeroE, YZeroE, ZZeroE; // is the input zero - execute stage
logic XZeroM, YZeroM, ZZeroM; // is the input zero - memory stage
logic XZeroQ, YZeroQ; // is the input zero - divide
@ -176,7 +176,7 @@ module fpu (
// - does some classifications (SNaN, NaN, Denorm, Norm, Zero, Infifnity)
unpack unpack (.X(FSrcXE), .Y(FSrcYE), .Z(FSrcZE), .FmtE,
.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
.XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE, .XDenormE, .YDenormE, .ZDenormE,
.XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE, .XDenormE, .ZDenormE,
.XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE, .XExpMaxE);
// FMA

View file

@ -8,26 +8,29 @@ module unpack (
output logic [`NF:0] XManE, YManE, ZManE, // mantissas of XYZ (converted to largest supported precision)
output logic XNaNE, YNaNE, ZNaNE, // is XYZ a NaN
output logic XSNaNE, YSNaNE, ZSNaNE, // is XYZ a signaling NaN
output logic XDenormE, YDenormE, ZDenormE, // is XYZ denormalized
output logic XDenormE, ZDenormE, // is XYZ denormalized
output logic XZeroE, YZeroE, ZZeroE, // is XYZ zero
output logic XInfE, YInfE, ZInfE, // is XYZ infinity
output logic XExpMaxE // does X have the maximum exponent (NaN or Inf)
);
logic [`NF-1:0] XFracE, YFracE, ZFracE; //Fraction of XYZ
logic XExpNonzero, YExpNonzero, ZExpNonzero; // is the exponent of XYZ non-zero
logic XExpNonZero, YExpNonZero, ZExpNonZero; // is the exponent of XYZ non-zero
logic XFracZero, YFracZero, ZFracZero; // is the fraction zero
logic YExpMaxE, ZExpMaxE; // is the exponent all 1s
unpackinput unpackinputX (.In(X), .FmtE, .Sgn(XSgnE), .Exp(XExpE), .Man(XManE),
.NaN(XNaNE), .SNaN(XSNaNE), .Denorm(XDenormE),
.Zero(XZeroE), .Inf(XInfE), .ExpMax(XExpMaxE));
.NaN(XNaNE), .SNaN(XSNaNE), .ExpNonZero(XExpNonZero),
.Zero(XZeroE), .Inf(XInfE), .ExpMax(XExpMaxE), .FracZero(XFracZero));
unpackinput unpackinputY (.In(Y), .FmtE, .Sgn(YSgnE), .Exp(YExpE), .Man(YManE),
.NaN(YNaNE), .SNaN(YSNaNE), .Denorm(YDenormE),
.Zero(YZeroE), .Inf(YInfE), .ExpMax(YExpMaxE));
.NaN(YNaNE), .SNaN(YSNaNE), .ExpNonZero(YExpNonZero),
.Zero(YZeroE), .Inf(YInfE), .ExpMax(YExpMaxE), .FracZero(YFracZero));
unpackinput unpackinputZ (.In(Z), .FmtE, .Sgn(ZSgnE), .Exp(ZExpE), .Man(ZManE),
.NaN(ZNaNE), .SNaN(ZSNaNE), .Denorm(ZDenormE),
.Zero(ZZeroE), .Inf(ZInfE), .ExpMax(ZExpMaxE));
.NaN(ZNaNE), .SNaN(ZSNaNE), .ExpNonZero(ZExpNonZero),
.Zero(ZZeroE), .Inf(ZInfE), .ExpMax(ZExpMaxE), .FracZero(ZFracZero));
// is the input denormalized
assign XDenormE = ~XExpNonZero & ~XFracZero;
assign ZDenormE = ~ZExpNonZero & ~ZFracZero;
endmodule

View file

@ -8,25 +8,24 @@ module unpackinput (
output logic [`NF:0] Man, // mantissas of XYZ (converted to largest supported precision)
output logic NaN, // is XYZ a NaN
output logic SNaN, // is XYZ a signaling NaN
output logic Denorm, // is XYZ denormalized
output logic Zero, // is XYZ zero
output logic Inf, // is XYZ infinity
output logic ExpNonZero, // is the exponent not zero
output logic FracZero, // is the fraction zero
output logic ExpMax // does In have the maximum exponent (NaN or Inf)
);
logic [`NF-1:0] Frac; //Fraction of XYZ
logic ExpNonZero; // is the exponent of XYZ non-zero
logic FracZero; // is the fraction zero
logic ExpZero;
logic BadNaNBox;
if (`FPSIZES == 1) begin // if there is only one floating point format supported
assign BadNaNBox = 0;
assign Sgn = In[`FLEN-1]; // sign bit
assign Frac = In[`NF-1:0]; // fraction (no assumed 1)
assign FracZero = ~|Frac; // is the fraction zero?
assign ExpNonZero = |Exp; // is the exponent non-zero
assign Denorm = ~ExpNonZero & ~FracZero; // is the input (in its original format) denormalized
assign Exp = {In[`FLEN-2:`NF+1], In[`NF]|Denorm}; // exponent. Denormalized numbers have effective biased exponent of 1
assign ExpMax = &Exp; // is the exponent all 1's
assign ExpNonZero = |In[`FLEN-2:`NF]; // is the exponent non-zero
assign Exp = {In[`FLEN-2:`NF+1], In[`NF]|~ExpNonZero}; // exponent. Denormalized numbers have effective biased exponent of 1
assign ExpMax = &In[`FLEN-2:`NF]; // is the exponent all 1's
end else if (`FPSIZES == 2) begin // if there are 2 floating point formats supported
//***need better names for these constants
// largest format | smaller format
@ -47,25 +46,16 @@ module unpackinput (
// quad and half
// double and half
logic [`LEN1-1:0] Len1; // Remove NaN boxing or NaN, if not properly NaN boxed
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN
assign Len1 = &In[`FLEN-1:`LEN1] ? In[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
assign BadNaNBox = ~(FmtE|(&In[`FLEN-1:`LEN1])); // Check NaN boxing
// choose sign bit depending on format - 1=larger precsion 0=smaller precision
assign Sgn = FmtE ? In[`FLEN-1] : Len1[`LEN1-1];
assign Sgn = FmtE ? In[`FLEN-1] : In[`LEN1-1];
// extract the fraction, add trailing zeroes to the mantissa if nessisary
assign Frac = FmtE ? In[`NF-1:0] : {Len1[`NF1-1:0], (`NF-`NF1)'(0)};
assign Frac = FmtE ? In[`NF-1:0] : {In[`NF1-1:0], (`NF-`NF1)'(0)};
// is the fraction zero
assign FracZero = ~|Frac;
// is the exponent non-zero
assign ExpNonZero = FmtE ? |In[`FLEN-2:`NF] : |Len1[`LEN1-2:`NF1];
// is the input (in it's original format) denormalized
assign Denorm = ~ExpNonZero & ~FracZero;
assign ExpNonZero = FmtE ? |In[`FLEN-2:`NF] : |In[`LEN1-2:`NF1];
// example double to single conversion:
// 1023 = 0011 1111 1111
@ -77,12 +67,10 @@ module unpackinput (
// extract the exponent, converting the smaller exponent into the larger precision if nessisary
// - if the original precision had a denormal number convert the exponent value 1
assign Exp = FmtE ? {In[`FLEN-2:`NF+1], In[`NF]|Denorm} : {Len1[`LEN1-2], {`NE-`NE1{~Len1[`LEN1-2]}}, Len1[`LEN1-3:`NF1+1], Len1[`NF1]|Denorm};
assign Exp = FmtE ? {In[`FLEN-2:`NF+1], In[`NF]|~ExpNonZero} : {In[`LEN1-2], {`NE-`NE1{~In[`LEN1-2]}}, In[`LEN1-3:`NF1+1], In[`NF1]|~ExpNonZero};
// is the exponent all 1's
assign ExpMax = FmtE ? &In[`FLEN-2:`NF] : &Len1[`LEN1-2:`NF1];
assign ExpMax = FmtE ? &In[`FLEN-2:`NF] : &In[`LEN1-2:`NF1];
end else if (`FPSIZES == 3) begin // three floating point precsions supported
@ -104,22 +92,21 @@ module unpackinput (
// quad and double and half
// quad and single and half
logic [`LEN1-1:0] Len1; // Remove NaN boxing or NaN, if not properly NaN boxed for larger percision
logic [`LEN2-1:0] Len2; // Remove NaN boxing or NaN, if not properly NaN boxed for smallest precision
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for larger precision
assign Len1 = &In[`FLEN-1:`LEN1] ? In[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for smaller precision
assign Len2 = &In[`FLEN-1:`LEN2] ? In[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
// Check NaN boxing
always_comb
case (FmtE)
`FMT: BadNaNBox = 0;
`FMT1: BadNaNBox = ~&In[`FLEN-1:`LEN1];
`FMT2: BadNaNBox = ~&In[`FLEN-1:`LEN2];
default: BadNaNBox = 0;
endcase
// extract the sign bit
always_comb
case (FmtE)
`FMT: Sgn = In[`FLEN-1];
`FMT1: Sgn = Len1[`LEN1-1];
`FMT2: Sgn = Len2[`LEN2-1];
`FMT1: Sgn = In[`LEN1-1];
`FMT2: Sgn = In[`LEN2-1];
default: Sgn = 0;
endcase
@ -127,27 +114,20 @@ module unpackinput (
always_comb
case (FmtE)
`FMT: Frac = In[`NF-1:0];
`FMT1: Frac = {Len1[`NF1-1:0], (`NF-`NF1)'(0)};
`FMT2: Frac = {Len2[`NF2-1:0], (`NF-`NF2)'(0)};
`FMT1: Frac = {In[`NF1-1:0], (`NF-`NF1)'(0)};
`FMT2: Frac = {In[`NF2-1:0], (`NF-`NF2)'(0)};
default: Frac = 0;
endcase
// is the fraction zero
assign FracZero = ~|Frac;
// is the exponent non-zero
always_comb
case (FmtE)
`FMT: ExpNonZero = |In[`FLEN-2:`NF]; // if input is largest precision (`FLEN - ie quad or double)
`FMT1: ExpNonZero = |Len1[`LEN1-2:`NF1]; // if input is larger precsion (`LEN1 - double or single)
`FMT2: ExpNonZero = |Len2[`LEN2-2:`NF2]; // if input is smallest precsion (`LEN2 - single or half)
`FMT1: ExpNonZero = |In[`LEN1-2:`NF1]; // if input is larger precsion (`LEN1 - double or single)
`FMT2: ExpNonZero = |In[`LEN2-2:`NF2]; // if input is smallest precsion (`LEN2 - single or half)
default: ExpNonZero = 0;
endcase
// is the input (in it's original format) denormalized
assign Denorm = ~ExpNonZero & ~FracZero;
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
@ -159,9 +139,9 @@ module unpackinput (
// convert the larger precision's exponent to use the largest precision's bias
always_comb
case (FmtE)
`FMT: Exp = {In[`FLEN-2:`NF+1], In[`NF]|Denorm};
`FMT1: Exp = {Len1[`LEN1-2], {`NE-`NE1{~Len1[`LEN1-2]}}, Len1[`LEN1-3:`NF1+1], Len1[`NF1]|Denorm};
`FMT2: Exp = {Len2[`LEN2-2], {`NE-`NE2{~Len2[`LEN2-2]}}, Len2[`LEN2-3:`NF2+1], Len2[`NF2]|Denorm};
`FMT: Exp = {In[`FLEN-2:`NF+1], In[`NF]|~ExpNonZero};
`FMT1: Exp = {In[`LEN1-2], {`NE-`NE1{~In[`LEN1-2]}}, In[`LEN1-3:`NF1+1], In[`NF1]|~ExpNonZero};
`FMT2: Exp = {In[`LEN2-2], {`NE-`NE2{~In[`LEN2-2]}}, In[`LEN2-3:`NF2+1], In[`NF2]|~ExpNonZero};
default: Exp = 0;
endcase
@ -169,8 +149,8 @@ module unpackinput (
always_comb
case (FmtE)
`FMT: ExpMax = &In[`FLEN-2:`NF];
`FMT1: ExpMax = &Len1[`LEN1-2:`NF1];
`FMT2: ExpMax = &Len2[`LEN2-2:`NF2];
`FMT1: ExpMax = &In[`LEN1-2:`NF1];
`FMT2: ExpMax = &In[`LEN2-2:`NF2];
default: ExpMax = 0;
endcase
@ -184,27 +164,22 @@ module unpackinput (
// `Q_BIAS | `D_BIAS | `S_BIAS | `H_BIAS exponent's bias value
// `Q_FMT | `D_FMT | `S_FMT | `H_FMT precision's format value - Q=11 D=01 S=00 H=10
logic [`D_LEN-1:0] Len1; // Remove NaN boxing or NaN, if not properly NaN boxed for double percision
logic [`S_LEN-1:0] Len2; // Remove NaN boxing or NaN, if not properly NaN boxed for single percision
logic [`H_LEN-1:0] Len3; // Remove NaN boxing or NaN, if not properly NaN boxed for half percision
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for double precision
assign Len1 = &In[`Q_LEN-1:`D_LEN] ? In[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for single precision
assign Len2 = &In[`Q_LEN-1:`S_LEN] ? In[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for half precision
assign Len3 = &In[`Q_LEN-1:`H_LEN] ? In[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
// Check NaN boxing
always_comb
case (FmtE)
2'b11: BadNaNBox = 0;
2'b01: BadNaNBox = ~&In[`Q_LEN-1:`D_LEN];
2'b00: BadNaNBox = ~&In[`Q_LEN-1:`S_LEN];
2'b10: BadNaNBox = ~&In[`Q_LEN-1:`H_LEN];
endcase
// extract sign bit
always_comb
case (FmtE)
2'b11: Sgn = In[`Q_LEN-1];
2'b01: Sgn = Len1[`D_LEN-1];
2'b00: Sgn = Len2[`S_LEN-1];
2'b10: Sgn = Len3[`H_LEN-1];
2'b01: Sgn = In[`D_LEN-1];
2'b00: Sgn = In[`S_LEN-1];
2'b10: Sgn = In[`H_LEN-1];
endcase
@ -212,26 +187,20 @@ module unpackinput (
always_comb
case (FmtE)
2'b11: Frac = In[`Q_NF-1:0];
2'b01: Frac = {Len1[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
2'b00: Frac = {Len2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
2'b10: Frac = {Len3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
2'b01: Frac = {In[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
2'b00: Frac = {In[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
2'b10: Frac = {In[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
endcase
// is the fraction zero
assign FracZero = ~|Frac;
// is the exponent non-zero
always_comb
case (FmtE)
2'b11: ExpNonZero = |In[`Q_LEN-2:`Q_NF];
2'b01: ExpNonZero = |Len1[`D_LEN-2:`D_NF];
2'b00: ExpNonZero = |Len2[`S_LEN-2:`S_NF];
2'b10: ExpNonZero = |Len3[`H_LEN-2:`H_NF];
2'b01: ExpNonZero = |In[`D_LEN-2:`D_NF];
2'b00: ExpNonZero = |In[`S_LEN-2:`S_NF];
2'b10: ExpNonZero = |In[`H_LEN-2:`H_NF];
endcase
// is the input (in it's original format) denormalized
assign Denorm = ~ExpNonZero & ~FracZero;
// example double to single conversion:
// 1023 = 0011 1111 1111
@ -244,10 +213,10 @@ module unpackinput (
// convert the double precsion exponent into quad precsion
always_comb
case (FmtE)
2'b11: Exp = {In[`Q_LEN-2:`Q_NF+1], In[`Q_NF]|Denorm};
2'b01: Exp = {Len1[`D_LEN-2], {`Q_NE-`D_NE{~Len1[`D_LEN-2]}}, Len1[`D_LEN-3:`D_NF+1], Len1[`D_NF]|Denorm};
2'b00: Exp = {Len2[`S_LEN-2], {`Q_NE-`S_NE{~Len2[`S_LEN-2]}}, Len2[`S_LEN-3:`S_NF+1], Len2[`S_NF]|Denorm};
2'b10: Exp = {Len3[`H_LEN-2], {`Q_NE-`H_NE{~Len3[`H_LEN-2]}}, Len3[`H_LEN-3:`H_NF+1], Len3[`H_NF]|Denorm};
2'b11: Exp = {In[`Q_LEN-2:`Q_NF+1], In[`Q_NF]|~ExpNonZero};
2'b01: Exp = {In[`D_LEN-2], {`Q_NE-`D_NE{~In[`D_LEN-2]}}, In[`D_LEN-3:`D_NF+1], In[`D_NF]|~ExpNonZero};
2'b00: Exp = {In[`S_LEN-2], {`Q_NE-`S_NE{~In[`S_LEN-2]}}, In[`S_LEN-3:`S_NF+1], In[`S_NF]|~ExpNonZero};
2'b10: Exp = {In[`H_LEN-2], {`Q_NE-`H_NE{~In[`H_LEN-2]}}, In[`H_LEN-3:`H_NF+1], In[`H_NF]|~ExpNonZero};
endcase
@ -255,19 +224,18 @@ module unpackinput (
always_comb
case (FmtE)
2'b11: ExpMax = &In[`Q_LEN-2:`Q_NF];
2'b01: ExpMax = &Len1[`D_LEN-2:`D_NF];
2'b00: ExpMax = &Len2[`S_LEN-2:`S_NF];
2'b10: ExpMax = &Len3[`H_LEN-2:`H_NF];
2'b01: ExpMax = &In[`D_LEN-2:`D_NF];
2'b00: ExpMax = &In[`S_LEN-2:`S_NF];
2'b10: ExpMax = &In[`H_LEN-2:`H_NF];
endcase
end
// Output logic
assign ExpZero = ~ExpNonZero; // is the exponent all 0's?
assign FracZero = ~|Frac; // is the fraction zero?
assign Man = {ExpNonZero, Frac}; // add the assumed one (or zero if denormal or zero) to create the significand
// *** - force to be a NaN if it isn't properly Nan Boxed
assign NaN = ExpMax & ~FracZero; // is the input a NaN?
assign SNaN = NaN&~Frac[`NF-1]; // is the input a singnaling NaN?
assign NaN = (ExpMax & ~FracZero)|BadNaNBox; // is the input a NaN?
assign SNaN = NaN&~Frac[`NF-1]&~BadNaNBox; // is the input a singnaling NaN?
assign Inf = ExpMax & FracZero; // is the input infinity?
assign Zero = ExpZero & FracZero; // is the input zero?
assign Zero = ~ExpNonZero & FracZero; // is the input zero?
endmodule

View file

@ -79,7 +79,6 @@ module testbenchfp;
logic [`NF:0] FmaRuXMan, FmaRuYMan, FmaRuZMan;
logic [`NF:0] FmaRdXMan, FmaRdYMan, FmaRdZMan;
logic [`NF:0] FmaRnmXMan, FmaRnmYMan, FmaRnmZMan;
logic XNorm; // is X normal
logic XNaN, YNaN, ZNaN; // is the input NaN
logic FmaRneXNaN, FmaRneYNaN, FmaRneZNaN;
logic FmaRzXNaN, FmaRzYNaN, FmaRzZNaN;
@ -92,12 +91,12 @@ module testbenchfp;
logic FmaRuXSNaN, FmaRuYSNaN, FmaRuZSNaN;
logic FmaRdXSNaN, FmaRdYSNaN, FmaRdZSNaN;
logic FmaRnmXSNaN, FmaRnmYSNaN, FmaRnmZSNaN;
logic XDenorm, YDenorm, ZDenorm; // is the input denormalized
logic FmaRneXDenorm, FmaRneYDenorm, FmaRneZDenorm;
logic FmaRzXDenorm, FmaRzYDenorm, FmaRzZDenorm;
logic FmaRuXDenorm, FmaRuYDenorm, FmaRuZDenorm;
logic FmaRdXDenorm, FmaRdYDenorm, FmaRdZDenorm;
logic FmaRnmXDenorm, FmaRnmYDenorm, FmaRnmZDenorm;
logic XDenorm, ZDenorm; // is the input denormalized
logic FmaRneXDenorm, FmaRneZDenorm;
logic FmaRzXDenorm, FmaRzZDenorm;
logic FmaRuXDenorm, FmaRuZDenorm;
logic FmaRdXDenorm, FmaRdZDenorm;
logic FmaRnmXDenorm, FmaRnmZDenorm;
logic XInf, YInf, ZInf; // is the input infinity
logic FmaRneXInf, FmaRneYInf, FmaRneZInf;
logic FmaRzXInf, FmaRzYInf, FmaRzZInf;
@ -683,7 +682,7 @@ module testbenchfp;
.XManE(FmaRneXMan), .YManE(FmaRneYMan), .ZManE(FmaRneZMan),
.XNaNE(FmaRneXNaN), .YNaNE(FmaRneYNaN), .ZNaNE(FmaRneZNaN),
.XSNaNE(FmaRneXSNaN), .YSNaNE(FmaRneYSNaN), .ZSNaNE(FmaRneZSNaN),
.XDenormE(FmaRneXDenorm), .YDenormE(FmaRneYDenorm), .ZDenormE(FmaRneZDenorm),
.XDenormE(FmaRneXDenorm), .ZDenormE(FmaRneZDenorm),
.XZeroE(FmaRneXZero), .YZeroE(FmaRneYZero), .ZZeroE(FmaRneZZero),
.XInfE(FmaRneXInf), .YInfE(FmaRneYInf), .ZInfE(FmaRneZInf), .FmaModFmt, .FmaFmt(FmaFmtVal),
.X(FmaRneX), .Y(FmaRneY), .Z(FmaRneZ));
@ -693,7 +692,7 @@ module testbenchfp;
.XManE(FmaRzXMan), .YManE(FmaRzYMan), .ZManE(FmaRzZMan),
.XNaNE(FmaRzXNaN), .YNaNE(FmaRzYNaN), .ZNaNE(FmaRzZNaN),
.XSNaNE(FmaRzXSNaN), .YSNaNE(FmaRzYSNaN), .ZSNaNE(FmaRzZSNaN),
.XDenormE(FmaRzXDenorm), .YDenormE(FmaRzYDenorm), .ZDenormE(FmaRzZDenorm),
.XDenormE(FmaRzXDenorm), .ZDenormE(FmaRzZDenorm),
.XZeroE(FmaRzXZero), .YZeroE(FmaRzYZero), .ZZeroE(FmaRzZZero),
.XInfE(FmaRzXInf), .YInfE(FmaRzYInf), .ZInfE(FmaRzZInf), .FmaFmt(FmaFmtVal),
.X(FmaRzX), .Y(FmaRzY), .Z(FmaRzZ));
@ -703,7 +702,7 @@ module testbenchfp;
.XManE(FmaRuXMan), .YManE(FmaRuYMan), .ZManE(FmaRuZMan),
.XNaNE(FmaRuXNaN), .YNaNE(FmaRuYNaN), .ZNaNE(FmaRuZNaN),
.XSNaNE(FmaRuXSNaN), .YSNaNE(FmaRuYSNaN), .ZSNaNE(FmaRuZSNaN),
.XDenormE(FmaRuXDenorm), .YDenormE(FmaRuYDenorm), .ZDenormE(FmaRuZDenorm),
.XDenormE(FmaRuXDenorm), .ZDenormE(FmaRuZDenorm),
.XZeroE(FmaRuXZero), .YZeroE(FmaRuYZero), .ZZeroE(FmaRuZZero),
.XInfE(FmaRuXInf), .YInfE(FmaRuYInf), .ZInfE(FmaRuZInf), .FmaFmt(FmaFmtVal),
.X(FmaRuX), .Y(FmaRuY), .Z(FmaRuZ));
@ -713,7 +712,7 @@ module testbenchfp;
.XManE(FmaRdXMan), .YManE(FmaRdYMan), .ZManE(FmaRdZMan),
.XNaNE(FmaRdXNaN), .YNaNE(FmaRdYNaN), .ZNaNE(FmaRdZNaN),
.XSNaNE(FmaRdXSNaN), .YSNaNE(FmaRdYSNaN), .ZSNaNE(FmaRdZSNaN),
.XDenormE(FmaRdXDenorm), .YDenormE(FmaRdYDenorm), .ZDenormE(FmaRdZDenorm),
.XDenormE(FmaRdXDenorm), .ZDenormE(FmaRdZDenorm),
.XZeroE(FmaRdXZero), .YZeroE(FmaRdYZero), .ZZeroE(FmaRdZZero),
.XInfE(FmaRdXInf), .YInfE(FmaRdYInf), .ZInfE(FmaRdZInf), .FmaFmt(FmaFmtVal),
.X(FmaRdX), .Y(FmaRdY), .Z(FmaRdZ));
@ -723,7 +722,7 @@ module testbenchfp;
.XManE(FmaRnmXMan), .YManE(FmaRnmYMan), .ZManE(FmaRnmZMan),
.XNaNE(FmaRnmXNaN), .YNaNE(FmaRnmYNaN), .ZNaNE(FmaRnmZNaN),
.XSNaNE(FmaRnmXSNaN), .YSNaNE(FmaRnmYSNaN), .ZSNaNE(FmaRnmZSNaN),
.XDenormE(FmaRnmXDenorm), .YDenormE(FmaRnmYDenorm), .ZDenormE(FmaRnmZDenorm),
.XDenormE(FmaRnmXDenorm), .ZDenormE(FmaRnmZDenorm),
.XZeroE(FmaRnmXZero), .YZeroE(FmaRnmYZero), .ZZeroE(FmaRnmZZero),
.XInfE(FmaRnmXInf), .YInfE(FmaRnmYInf), .ZInfE(FmaRnmZInf), .FmaFmt(FmaFmtVal),
.X(FmaRnmX), .Y(FmaRnmY), .Z(FmaRnmZ));
@ -733,9 +732,9 @@ module testbenchfp;
.XManE(XMan), .YManE(YMan), .ZManE(ZMan),
.XNaNE(XNaN), .YNaNE(YNaN), .ZNaNE(ZNaN),
.XSNaNE(XSNaN), .YSNaNE(YSNaN), .ZSNaNE(ZSNaN),
.XDenormE(XDenorm), .YDenormE(YDenorm), .ZDenormE(ZDenorm),
.XDenormE(XDenorm), .ZDenormE(ZDenorm),
.XZeroE(XZero), .YZeroE(YZero), .ZZeroE(ZZero),
.XInfE(XInf), .YInfE(YInf), .ZInfE(ZInf),.XNormE(XNorm), .XExpMaxE(XExpMax),
.XInfE(XInf), .YInfE(YInf), .ZInfE(ZInf), .XExpMaxE(XExpMax),
.X, .Y, .Z);
@ -1294,13 +1293,13 @@ module readfmavectors (
output logic [`NF:0] XManE, YManE, ZManE, // mantissas of XYZ (converted to largest supported precision)
output logic XNaNE, YNaNE, ZNaNE, // is XYZ a NaN
output logic XSNaNE, YSNaNE, ZSNaNE, // is XYZ a signaling NaN
output logic XDenormE, YDenormE, ZDenormE, // is XYZ denormalized
output logic XDenormE, ZDenormE, // is XYZ denormalized
output logic XZeroE, YZeroE, ZZeroE, // is XYZ zero
output logic XInfE, YInfE, ZInfE, // is XYZ infinity
output logic [`FLEN-1:0] X, Y, Z // inputs
);
logic XNormE, XExpMaxE; // signals the unpacker outputs but isn't used in FMA
logic XExpMaxE; // signals the unpacker outputs but isn't used in FMA
// apply test vectors on rising edge of clk
// Format of vectors Inputs(1/2/3)_AnsFlg
always @(posedge clk) begin
@ -1335,7 +1334,7 @@ module readfmavectors (
end
unpack unpack(.X, .Y, .Z, .FmtE(FmaModFmt), .XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XDenormE,
.XManE, .YManE, .ZManE, .XNormE, .XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE,
.XManE, .YManE, .ZManE, .XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE,
.XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE,
.XExpMaxE, .ZDenormE);
endmodule
@ -1373,10 +1372,10 @@ module readvectors (
output logic [`NF:0] XManE, YManE, ZManE, // mantissas of XYZ (converted to largest supported precision)
output logic XNaNE, YNaNE, ZNaNE, // is XYZ a NaN
output logic XSNaNE, YSNaNE, ZSNaNE, // is XYZ a signaling NaN
output logic XDenormE, YDenormE, ZDenormE, // is XYZ denormalized
output logic XDenormE, ZDenormE, // is XYZ denormalized
output logic XZeroE, YZeroE, ZZeroE, // is XYZ zero
output logic XInfE, YInfE, ZInfE, // is XYZ infinity
output logic XNormE, XExpMaxE,
output logic XExpMaxE,
output logic [`FLEN-1:0] X, Y, Z
);
@ -1660,7 +1659,7 @@ module readvectors (
end
unpack unpack(.X, .Y, .Z, .FmtE(ModFmt), .XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE,
.XManE, .YManE, .ZManE, .XNormE, .XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE,
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE,
.XManE, .YManE, .ZManE, .XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE,
.XDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE,
.XExpMaxE);
endmodule