mirror of
https://github.com/openhwgroup/cvw.git
synced 2025-04-23 21:38:55 -04:00
unpacker optimizations
This commit is contained in:
parent
949f53695d
commit
dd19e55b8f
6 changed files with 105 additions and 134 deletions
|
@ -1 +1 @@
|
|||
Subproject commit 307c77b26e070ae85ffea665ad9b642b40e33c86
|
||||
Subproject commit be67c99bd461742aa1c100bcc0732657faae2230
|
|
@ -472,7 +472,7 @@ module fma2(
|
|||
// Select the result
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
resultselect resultselect(.XSgnM, .YSgnM, .ZExpM, .XManM, .YManM, .ZManM, .ZDenormM,
|
||||
resultselect resultselect(.XSgnM, .YSgnM, .ZExpM, .XManM, .YManM, .ZManM, .ZDenormM, .ZZeroM,
|
||||
.FrmM, .FmtM, .AddendStickyM, .KillProdM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, .RoundAdd,
|
||||
.ZSgnEffM, .PSgnM, .ResultSgn, .CalcPlus1, .Invalid, .Overflow, .Underflow,
|
||||
.ResultDenorm, .ResultExp, .ResultFrac, .FMAResM);
|
||||
|
@ -1002,6 +1002,7 @@ module resultselect(
|
|||
input logic XInfM, YInfM, ZInfM, // inputs are infinity
|
||||
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
||||
input logic ZDenormM, // is the original precision denormalized
|
||||
input logic ZZeroM,
|
||||
input logic ZSgnEffM, // the modified Z sign - depends on instruction
|
||||
input logic PSgnM, // the product's sign
|
||||
input logic ResultSgn, // the result's sign
|
||||
|
@ -1027,7 +1028,7 @@ module resultselect(
|
|||
end
|
||||
assign OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
|
||||
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}};
|
||||
assign KillProdResult = {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
|
||||
assign KillProdResult = {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
|
||||
assign UnderflowResult = {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))};
|
||||
assign InfResult = {InfSgn, {`NE{1'b1}}, (`NF)'(0)};
|
||||
assign NormResult = {ResultSgn, ResultExp, ResultFrac};
|
||||
|
@ -1046,7 +1047,7 @@ module resultselect(
|
|||
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
|
||||
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} :
|
||||
{{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1{1'b1}}, (`NF1)'(0)};
|
||||
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})} : {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
|
||||
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})} : {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
|
||||
assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))} : {{`FLEN-`LEN1{1'b1}}, {ResultSgn, (`LEN1-1)'(0)} + {(`LEN1-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
|
||||
assign InfResult = FmtM ? {InfSgn, {`NE{1'b1}}, (`NF)'(0)} : {{`FLEN-`LEN1{1'b1}}, InfSgn, {`NE1{1'b1}}, (`NF1)'(0)};
|
||||
assign NormResult = FmtM ? {ResultSgn, ResultExp, ResultFrac} : {{`FLEN-`LEN1{1'b1}}, ResultSgn, ResultExp[`NE1-1:0], ResultFrac[`NF-1:`NF-`NF1]};
|
||||
|
@ -1066,7 +1067,7 @@ module resultselect(
|
|||
|
||||
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
|
||||
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}};
|
||||
KillProdResult = {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
|
||||
KillProdResult = {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
|
||||
UnderflowResult = {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))};
|
||||
InfResult = {InfSgn, {`NE{1'b1}}, (`NF)'(0)};
|
||||
NormResult = {ResultSgn, ResultExp, ResultFrac};
|
||||
|
@ -1082,7 +1083,7 @@ module resultselect(
|
|||
end
|
||||
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} :
|
||||
{{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1{1'b1}}, (`NF1)'(0)};
|
||||
KillProdResult = {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
|
||||
KillProdResult = {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
|
||||
UnderflowResult = {{`FLEN-`LEN1{1'b1}}, {ResultSgn, (`LEN1-1)'(0)} + {(`LEN1-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
|
||||
InfResult = {{`FLEN-`LEN1{1'b1}}, InfSgn, {`NE1{1'b1}}, (`NF1)'(0)};
|
||||
NormResult = {{`FLEN-`LEN1{1'b1}}, ResultSgn, ResultExp[`NE1-1:0], ResultFrac[`NF-1:`NF-`NF1]};
|
||||
|
@ -1099,7 +1100,7 @@ module resultselect(
|
|||
|
||||
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`LEN2{1'b1}}, ResultSgn, {`NE2-1{1'b1}}, 1'b0, {`NF2{1'b1}}} :
|
||||
{{`FLEN-`LEN2{1'b1}}, ResultSgn, {`NE2{1'b1}}, (`NF2)'(0)};
|
||||
KillProdResult = {{`FLEN-`LEN2{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE2-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`NF2]} + (RoundAdd[`NF-`NF2+`LEN2-2:`NF-`NF2]&{`LEN2-1{AddendStickyM}})};
|
||||
KillProdResult = {{`FLEN-`LEN2{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE2-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`NF2]} + (RoundAdd[`NF-`NF2+`LEN2-2:`NF-`NF2]&{`LEN2-1{AddendStickyM}})};
|
||||
UnderflowResult = {{`FLEN-`LEN2{1'b1}}, {ResultSgn, (`LEN2-1)'(0)} + {(`LEN2-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
|
||||
InfResult = {{`FLEN-`LEN2{1'b1}}, InfSgn, {`NE2{1'b1}}, (`NF2)'(0)};
|
||||
NormResult = {{`FLEN-`LEN2{1'b1}}, ResultSgn, ResultExp[`NE2-1:0], ResultFrac[`NF-1:`NF-`NF2]};
|
||||
|
@ -1137,7 +1138,7 @@ module resultselect(
|
|||
|
||||
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
|
||||
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}};
|
||||
KillProdResult = {ResultSgn, {ZExpM[`Q_NE-1:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
|
||||
KillProdResult = {ResultSgn, {ZExpM[`Q_NE-1:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
|
||||
UnderflowResult = {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))};
|
||||
InfResult = {InfSgn, {`NE{1'b1}}, (`NF)'(0)};
|
||||
NormResult = {ResultSgn, ResultExp, ResultFrac};
|
||||
|
@ -1153,7 +1154,7 @@ module resultselect(
|
|||
end
|
||||
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`D_LEN{1'b1}}, ResultSgn, {`D_NE-1{1'b1}}, 1'b0, {`D_NF{1'b1}}} :
|
||||
{{`FLEN-`D_LEN{1'b1}}, ResultSgn, {`D_NE{1'b1}}, (`D_NF)'(0)};
|
||||
KillProdResult = {{`FLEN-`D_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`D_NE-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`D_NF]} + (RoundAdd[`NF-`D_NF+`D_LEN-2:`NF-`D_NF]&{`D_LEN-1{AddendStickyM}})};
|
||||
KillProdResult = {{`FLEN-`D_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`D_NE-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`D_NF]} + (RoundAdd[`NF-`D_NF+`D_LEN-2:`NF-`D_NF]&{`D_LEN-1{AddendStickyM}})};
|
||||
UnderflowResult = {{`FLEN-`D_LEN{1'b1}}, {ResultSgn, (`D_LEN-1)'(0)} + {(`D_LEN-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
|
||||
InfResult = {{`FLEN-`D_LEN{1'b1}}, InfSgn, {`D_NE{1'b1}}, (`D_NF)'(0)};
|
||||
NormResult = {{`FLEN-`D_LEN{1'b1}}, ResultSgn, ResultExp[`D_NE-1:0], ResultFrac[`NF-1:`NF-`D_NF]};
|
||||
|
@ -1170,7 +1171,7 @@ module resultselect(
|
|||
|
||||
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`S_LEN{1'b1}}, ResultSgn, {`S_NE-1{1'b1}}, 1'b0, {`S_NF{1'b1}}} :
|
||||
{{`FLEN-`S_LEN{1'b1}}, ResultSgn, {`S_NE{1'b1}}, (`S_NF)'(0)};
|
||||
KillProdResult = {{`FLEN-`S_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`S_NE-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`S_NF]} + (RoundAdd[`NF-`S_NF+`S_LEN-2:`NF-`S_NF]&{`S_LEN-1{AddendStickyM}})};
|
||||
KillProdResult = {{`FLEN-`S_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`S_NE-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`S_NF]} + (RoundAdd[`NF-`S_NF+`S_LEN-2:`NF-`S_NF]&{`S_LEN-1{AddendStickyM}})};
|
||||
UnderflowResult = {{`FLEN-`S_LEN{1'b1}}, {ResultSgn, (`S_LEN-1)'(0)} + {(`S_LEN-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
|
||||
InfResult = {{`FLEN-`S_LEN{1'b1}}, InfSgn, {`S_NE{1'b1}}, (`S_NF)'(0)};
|
||||
NormResult = {{`FLEN-`S_LEN{1'b1}}, ResultSgn, ResultExp[`S_NE-1:0], ResultFrac[`NF-1:`NF-`S_NF]};
|
||||
|
@ -1188,7 +1189,7 @@ module resultselect(
|
|||
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`H_LEN{1'b1}}, ResultSgn, {`H_NE-1{1'b1}}, 1'b0, {`H_NF{1'b1}}} :
|
||||
{{`FLEN-`H_LEN{1'b1}}, ResultSgn, {`H_NE{1'b1}}, (`H_NF)'(0)};
|
||||
|
||||
KillProdResult = {{`FLEN-`H_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`H_NE-2:1],ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`H_NF]} + (RoundAdd[`NF-`H_NF+`H_LEN-2:`NF-`H_NF]&{`H_LEN-1{AddendStickyM}})};
|
||||
KillProdResult = {{`FLEN-`H_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`H_NE-2:1],ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`H_NF]} + (RoundAdd[`NF-`H_NF+`H_LEN-2:`NF-`H_NF]&{`H_LEN-1{AddendStickyM}})};
|
||||
UnderflowResult = {{`FLEN-`H_LEN{1'b1}}, {ResultSgn, (`H_LEN-1)'(0)} + {(`H_LEN-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
|
||||
InfResult = {{`FLEN-`H_LEN{1'b1}}, InfSgn, {`H_NE{1'b1}}, (`H_NF)'(0)};
|
||||
NormResult = {{`FLEN-`H_LEN{1'b1}}, ResultSgn, ResultExp[`H_NE-1:0], ResultFrac[`NF-1:`NF-`H_NF]};
|
||||
|
|
|
@ -95,7 +95,7 @@ module fpu (
|
|||
logic XNaNQ, YNaNQ; // is the input a NaN - divide
|
||||
logic XSNaNE, YSNaNE, ZSNaNE; // is the input a signaling NaN - execute stage
|
||||
logic XSNaNM, YSNaNM, ZSNaNM; // is the input a signaling NaN - memory stage
|
||||
logic XDenormE, YDenormE, ZDenormE; // is the input denormalized
|
||||
logic XDenormE, ZDenormE; // is the input denormalized
|
||||
logic XZeroE, YZeroE, ZZeroE; // is the input zero - execute stage
|
||||
logic XZeroM, YZeroM, ZZeroM; // is the input zero - memory stage
|
||||
logic XZeroQ, YZeroQ; // is the input zero - divide
|
||||
|
@ -176,7 +176,7 @@ module fpu (
|
|||
// - does some classifications (SNaN, NaN, Denorm, Norm, Zero, Infifnity)
|
||||
unpack unpack (.X(FSrcXE), .Y(FSrcYE), .Z(FSrcZE), .FmtE,
|
||||
.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
|
||||
.XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE, .XDenormE, .YDenormE, .ZDenormE,
|
||||
.XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE, .XDenormE, .ZDenormE,
|
||||
.XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE, .XExpMaxE);
|
||||
|
||||
// FMA
|
||||
|
|
|
@ -8,26 +8,29 @@ module unpack (
|
|||
output logic [`NF:0] XManE, YManE, ZManE, // mantissas of XYZ (converted to largest supported precision)
|
||||
output logic XNaNE, YNaNE, ZNaNE, // is XYZ a NaN
|
||||
output logic XSNaNE, YSNaNE, ZSNaNE, // is XYZ a signaling NaN
|
||||
output logic XDenormE, YDenormE, ZDenormE, // is XYZ denormalized
|
||||
output logic XDenormE, ZDenormE, // is XYZ denormalized
|
||||
output logic XZeroE, YZeroE, ZZeroE, // is XYZ zero
|
||||
output logic XInfE, YInfE, ZInfE, // is XYZ infinity
|
||||
output logic XExpMaxE // does X have the maximum exponent (NaN or Inf)
|
||||
);
|
||||
|
||||
logic [`NF-1:0] XFracE, YFracE, ZFracE; //Fraction of XYZ
|
||||
logic XExpNonzero, YExpNonzero, ZExpNonzero; // is the exponent of XYZ non-zero
|
||||
logic XExpNonZero, YExpNonZero, ZExpNonZero; // is the exponent of XYZ non-zero
|
||||
logic XFracZero, YFracZero, ZFracZero; // is the fraction zero
|
||||
logic YExpMaxE, ZExpMaxE; // is the exponent all 1s
|
||||
|
||||
unpackinput unpackinputX (.In(X), .FmtE, .Sgn(XSgnE), .Exp(XExpE), .Man(XManE),
|
||||
.NaN(XNaNE), .SNaN(XSNaNE), .Denorm(XDenormE),
|
||||
.Zero(XZeroE), .Inf(XInfE), .ExpMax(XExpMaxE));
|
||||
.NaN(XNaNE), .SNaN(XSNaNE), .ExpNonZero(XExpNonZero),
|
||||
.Zero(XZeroE), .Inf(XInfE), .ExpMax(XExpMaxE), .FracZero(XFracZero));
|
||||
|
||||
unpackinput unpackinputY (.In(Y), .FmtE, .Sgn(YSgnE), .Exp(YExpE), .Man(YManE),
|
||||
.NaN(YNaNE), .SNaN(YSNaNE), .Denorm(YDenormE),
|
||||
.Zero(YZeroE), .Inf(YInfE), .ExpMax(YExpMaxE));
|
||||
.NaN(YNaNE), .SNaN(YSNaNE), .ExpNonZero(YExpNonZero),
|
||||
.Zero(YZeroE), .Inf(YInfE), .ExpMax(YExpMaxE), .FracZero(YFracZero));
|
||||
|
||||
unpackinput unpackinputZ (.In(Z), .FmtE, .Sgn(ZSgnE), .Exp(ZExpE), .Man(ZManE),
|
||||
.NaN(ZNaNE), .SNaN(ZSNaNE), .Denorm(ZDenormE),
|
||||
.Zero(ZZeroE), .Inf(ZInfE), .ExpMax(ZExpMaxE));
|
||||
.NaN(ZNaNE), .SNaN(ZSNaNE), .ExpNonZero(ZExpNonZero),
|
||||
.Zero(ZZeroE), .Inf(ZInfE), .ExpMax(ZExpMaxE), .FracZero(ZFracZero));
|
||||
// is the input denormalized
|
||||
assign XDenormE = ~XExpNonZero & ~XFracZero;
|
||||
assign ZDenormE = ~ZExpNonZero & ~ZFracZero;
|
||||
endmodule
|
|
@ -8,25 +8,24 @@ module unpackinput (
|
|||
output logic [`NF:0] Man, // mantissas of XYZ (converted to largest supported precision)
|
||||
output logic NaN, // is XYZ a NaN
|
||||
output logic SNaN, // is XYZ a signaling NaN
|
||||
output logic Denorm, // is XYZ denormalized
|
||||
output logic Zero, // is XYZ zero
|
||||
output logic Inf, // is XYZ infinity
|
||||
output logic ExpNonZero, // is the exponent not zero
|
||||
output logic FracZero, // is the fraction zero
|
||||
output logic ExpMax // does In have the maximum exponent (NaN or Inf)
|
||||
);
|
||||
|
||||
logic [`NF-1:0] Frac; //Fraction of XYZ
|
||||
logic ExpNonZero; // is the exponent of XYZ non-zero
|
||||
logic FracZero; // is the fraction zero
|
||||
logic ExpZero;
|
||||
logic BadNaNBox;
|
||||
|
||||
if (`FPSIZES == 1) begin // if there is only one floating point format supported
|
||||
assign BadNaNBox = 0;
|
||||
assign Sgn = In[`FLEN-1]; // sign bit
|
||||
assign Frac = In[`NF-1:0]; // fraction (no assumed 1)
|
||||
assign FracZero = ~|Frac; // is the fraction zero?
|
||||
assign ExpNonZero = |Exp; // is the exponent non-zero
|
||||
assign Denorm = ~ExpNonZero & ~FracZero; // is the input (in its original format) denormalized
|
||||
assign Exp = {In[`FLEN-2:`NF+1], In[`NF]|Denorm}; // exponent. Denormalized numbers have effective biased exponent of 1
|
||||
assign ExpMax = &Exp; // is the exponent all 1's
|
||||
assign ExpNonZero = |In[`FLEN-2:`NF]; // is the exponent non-zero
|
||||
assign Exp = {In[`FLEN-2:`NF+1], In[`NF]|~ExpNonZero}; // exponent. Denormalized numbers have effective biased exponent of 1
|
||||
assign ExpMax = &In[`FLEN-2:`NF]; // is the exponent all 1's
|
||||
end else if (`FPSIZES == 2) begin // if there are 2 floating point formats supported
|
||||
//***need better names for these constants
|
||||
// largest format | smaller format
|
||||
|
@ -47,25 +46,16 @@ module unpackinput (
|
|||
// quad and half
|
||||
// double and half
|
||||
|
||||
logic [`LEN1-1:0] Len1; // Remove NaN boxing or NaN, if not properly NaN boxed
|
||||
|
||||
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN
|
||||
assign Len1 = &In[`FLEN-1:`LEN1] ? In[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
|
||||
assign BadNaNBox = ~(FmtE|(&In[`FLEN-1:`LEN1])); // Check NaN boxing
|
||||
|
||||
// choose sign bit depending on format - 1=larger precsion 0=smaller precision
|
||||
assign Sgn = FmtE ? In[`FLEN-1] : Len1[`LEN1-1];
|
||||
assign Sgn = FmtE ? In[`FLEN-1] : In[`LEN1-1];
|
||||
|
||||
// extract the fraction, add trailing zeroes to the mantissa if nessisary
|
||||
assign Frac = FmtE ? In[`NF-1:0] : {Len1[`NF1-1:0], (`NF-`NF1)'(0)};
|
||||
assign Frac = FmtE ? In[`NF-1:0] : {In[`NF1-1:0], (`NF-`NF1)'(0)};
|
||||
|
||||
// is the fraction zero
|
||||
assign FracZero = ~|Frac;
|
||||
|
||||
// is the exponent non-zero
|
||||
assign ExpNonZero = FmtE ? |In[`FLEN-2:`NF] : |Len1[`LEN1-2:`NF1];
|
||||
|
||||
// is the input (in it's original format) denormalized
|
||||
assign Denorm = ~ExpNonZero & ~FracZero;
|
||||
assign ExpNonZero = FmtE ? |In[`FLEN-2:`NF] : |In[`LEN1-2:`NF1];
|
||||
|
||||
// example double to single conversion:
|
||||
// 1023 = 0011 1111 1111
|
||||
|
@ -77,12 +67,10 @@ module unpackinput (
|
|||
|
||||
// extract the exponent, converting the smaller exponent into the larger precision if nessisary
|
||||
// - if the original precision had a denormal number convert the exponent value 1
|
||||
assign Exp = FmtE ? {In[`FLEN-2:`NF+1], In[`NF]|Denorm} : {Len1[`LEN1-2], {`NE-`NE1{~Len1[`LEN1-2]}}, Len1[`LEN1-3:`NF1+1], Len1[`NF1]|Denorm};
|
||||
assign Exp = FmtE ? {In[`FLEN-2:`NF+1], In[`NF]|~ExpNonZero} : {In[`LEN1-2], {`NE-`NE1{~In[`LEN1-2]}}, In[`LEN1-3:`NF1+1], In[`NF1]|~ExpNonZero};
|
||||
|
||||
|
||||
|
||||
// is the exponent all 1's
|
||||
assign ExpMax = FmtE ? &In[`FLEN-2:`NF] : &Len1[`LEN1-2:`NF1];
|
||||
assign ExpMax = FmtE ? &In[`FLEN-2:`NF] : &In[`LEN1-2:`NF1];
|
||||
|
||||
|
||||
end else if (`FPSIZES == 3) begin // three floating point precsions supported
|
||||
|
@ -104,22 +92,21 @@ module unpackinput (
|
|||
// quad and double and half
|
||||
// quad and single and half
|
||||
|
||||
logic [`LEN1-1:0] Len1; // Remove NaN boxing or NaN, if not properly NaN boxed for larger percision
|
||||
logic [`LEN2-1:0] Len2; // Remove NaN boxing or NaN, if not properly NaN boxed for smallest precision
|
||||
|
||||
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for larger precision
|
||||
assign Len1 = &In[`FLEN-1:`LEN1] ? In[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
|
||||
|
||||
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for smaller precision
|
||||
assign Len2 = &In[`FLEN-1:`LEN2] ? In[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
|
||||
|
||||
// Check NaN boxing
|
||||
always_comb
|
||||
case (FmtE)
|
||||
`FMT: BadNaNBox = 0;
|
||||
`FMT1: BadNaNBox = ~&In[`FLEN-1:`LEN1];
|
||||
`FMT2: BadNaNBox = ~&In[`FLEN-1:`LEN2];
|
||||
default: BadNaNBox = 0;
|
||||
endcase
|
||||
|
||||
// extract the sign bit
|
||||
always_comb
|
||||
case (FmtE)
|
||||
`FMT: Sgn = In[`FLEN-1];
|
||||
`FMT1: Sgn = Len1[`LEN1-1];
|
||||
`FMT2: Sgn = Len2[`LEN2-1];
|
||||
`FMT1: Sgn = In[`LEN1-1];
|
||||
`FMT2: Sgn = In[`LEN2-1];
|
||||
default: Sgn = 0;
|
||||
endcase
|
||||
|
||||
|
@ -127,27 +114,20 @@ module unpackinput (
|
|||
always_comb
|
||||
case (FmtE)
|
||||
`FMT: Frac = In[`NF-1:0];
|
||||
`FMT1: Frac = {Len1[`NF1-1:0], (`NF-`NF1)'(0)};
|
||||
`FMT2: Frac = {Len2[`NF2-1:0], (`NF-`NF2)'(0)};
|
||||
`FMT1: Frac = {In[`NF1-1:0], (`NF-`NF1)'(0)};
|
||||
`FMT2: Frac = {In[`NF2-1:0], (`NF-`NF2)'(0)};
|
||||
default: Frac = 0;
|
||||
endcase
|
||||
|
||||
// is the fraction zero
|
||||
assign FracZero = ~|Frac;
|
||||
|
||||
|
||||
// is the exponent non-zero
|
||||
always_comb
|
||||
case (FmtE)
|
||||
`FMT: ExpNonZero = |In[`FLEN-2:`NF]; // if input is largest precision (`FLEN - ie quad or double)
|
||||
`FMT1: ExpNonZero = |Len1[`LEN1-2:`NF1]; // if input is larger precsion (`LEN1 - double or single)
|
||||
`FMT2: ExpNonZero = |Len2[`LEN2-2:`NF2]; // if input is smallest precsion (`LEN2 - single or half)
|
||||
`FMT1: ExpNonZero = |In[`LEN1-2:`NF1]; // if input is larger precsion (`LEN1 - double or single)
|
||||
`FMT2: ExpNonZero = |In[`LEN2-2:`NF2]; // if input is smallest precsion (`LEN2 - single or half)
|
||||
default: ExpNonZero = 0;
|
||||
endcase
|
||||
|
||||
// is the input (in it's original format) denormalized
|
||||
assign Denorm = ~ExpNonZero & ~FracZero;
|
||||
|
||||
// example double to single conversion:
|
||||
// 1023 = 0011 1111 1111
|
||||
// 127 = 0000 0111 1111 (subtract this)
|
||||
|
@ -159,9 +139,9 @@ module unpackinput (
|
|||
// convert the larger precision's exponent to use the largest precision's bias
|
||||
always_comb
|
||||
case (FmtE)
|
||||
`FMT: Exp = {In[`FLEN-2:`NF+1], In[`NF]|Denorm};
|
||||
`FMT1: Exp = {Len1[`LEN1-2], {`NE-`NE1{~Len1[`LEN1-2]}}, Len1[`LEN1-3:`NF1+1], Len1[`NF1]|Denorm};
|
||||
`FMT2: Exp = {Len2[`LEN2-2], {`NE-`NE2{~Len2[`LEN2-2]}}, Len2[`LEN2-3:`NF2+1], Len2[`NF2]|Denorm};
|
||||
`FMT: Exp = {In[`FLEN-2:`NF+1], In[`NF]|~ExpNonZero};
|
||||
`FMT1: Exp = {In[`LEN1-2], {`NE-`NE1{~In[`LEN1-2]}}, In[`LEN1-3:`NF1+1], In[`NF1]|~ExpNonZero};
|
||||
`FMT2: Exp = {In[`LEN2-2], {`NE-`NE2{~In[`LEN2-2]}}, In[`LEN2-3:`NF2+1], In[`NF2]|~ExpNonZero};
|
||||
default: Exp = 0;
|
||||
endcase
|
||||
|
||||
|
@ -169,8 +149,8 @@ module unpackinput (
|
|||
always_comb
|
||||
case (FmtE)
|
||||
`FMT: ExpMax = &In[`FLEN-2:`NF];
|
||||
`FMT1: ExpMax = &Len1[`LEN1-2:`NF1];
|
||||
`FMT2: ExpMax = &Len2[`LEN2-2:`NF2];
|
||||
`FMT1: ExpMax = &In[`LEN1-2:`NF1];
|
||||
`FMT2: ExpMax = &In[`LEN2-2:`NF2];
|
||||
default: ExpMax = 0;
|
||||
endcase
|
||||
|
||||
|
@ -184,27 +164,22 @@ module unpackinput (
|
|||
// `Q_BIAS | `D_BIAS | `S_BIAS | `H_BIAS exponent's bias value
|
||||
// `Q_FMT | `D_FMT | `S_FMT | `H_FMT precision's format value - Q=11 D=01 S=00 H=10
|
||||
|
||||
|
||||
logic [`D_LEN-1:0] Len1; // Remove NaN boxing or NaN, if not properly NaN boxed for double percision
|
||||
logic [`S_LEN-1:0] Len2; // Remove NaN boxing or NaN, if not properly NaN boxed for single percision
|
||||
logic [`H_LEN-1:0] Len3; // Remove NaN boxing or NaN, if not properly NaN boxed for half percision
|
||||
|
||||
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for double precision
|
||||
assign Len1 = &In[`Q_LEN-1:`D_LEN] ? In[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
|
||||
|
||||
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for single precision
|
||||
assign Len2 = &In[`Q_LEN-1:`S_LEN] ? In[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
|
||||
|
||||
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for half precision
|
||||
assign Len3 = &In[`Q_LEN-1:`H_LEN] ? In[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
|
||||
// Check NaN boxing
|
||||
always_comb
|
||||
case (FmtE)
|
||||
2'b11: BadNaNBox = 0;
|
||||
2'b01: BadNaNBox = ~&In[`Q_LEN-1:`D_LEN];
|
||||
2'b00: BadNaNBox = ~&In[`Q_LEN-1:`S_LEN];
|
||||
2'b10: BadNaNBox = ~&In[`Q_LEN-1:`H_LEN];
|
||||
endcase
|
||||
|
||||
// extract sign bit
|
||||
always_comb
|
||||
case (FmtE)
|
||||
2'b11: Sgn = In[`Q_LEN-1];
|
||||
2'b01: Sgn = Len1[`D_LEN-1];
|
||||
2'b00: Sgn = Len2[`S_LEN-1];
|
||||
2'b10: Sgn = Len3[`H_LEN-1];
|
||||
2'b01: Sgn = In[`D_LEN-1];
|
||||
2'b00: Sgn = In[`S_LEN-1];
|
||||
2'b10: Sgn = In[`H_LEN-1];
|
||||
endcase
|
||||
|
||||
|
||||
|
@ -212,26 +187,20 @@ module unpackinput (
|
|||
always_comb
|
||||
case (FmtE)
|
||||
2'b11: Frac = In[`Q_NF-1:0];
|
||||
2'b01: Frac = {Len1[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
|
||||
2'b00: Frac = {Len2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
|
||||
2'b10: Frac = {Len3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
|
||||
2'b01: Frac = {In[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
|
||||
2'b00: Frac = {In[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
|
||||
2'b10: Frac = {In[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
|
||||
endcase
|
||||
|
||||
// is the fraction zero
|
||||
assign FracZero = ~|Frac;
|
||||
|
||||
// is the exponent non-zero
|
||||
always_comb
|
||||
case (FmtE)
|
||||
2'b11: ExpNonZero = |In[`Q_LEN-2:`Q_NF];
|
||||
2'b01: ExpNonZero = |Len1[`D_LEN-2:`D_NF];
|
||||
2'b00: ExpNonZero = |Len2[`S_LEN-2:`S_NF];
|
||||
2'b10: ExpNonZero = |Len3[`H_LEN-2:`H_NF];
|
||||
2'b01: ExpNonZero = |In[`D_LEN-2:`D_NF];
|
||||
2'b00: ExpNonZero = |In[`S_LEN-2:`S_NF];
|
||||
2'b10: ExpNonZero = |In[`H_LEN-2:`H_NF];
|
||||
endcase
|
||||
|
||||
// is the input (in it's original format) denormalized
|
||||
assign Denorm = ~ExpNonZero & ~FracZero;
|
||||
|
||||
|
||||
// example double to single conversion:
|
||||
// 1023 = 0011 1111 1111
|
||||
|
@ -244,10 +213,10 @@ module unpackinput (
|
|||
// convert the double precsion exponent into quad precsion
|
||||
always_comb
|
||||
case (FmtE)
|
||||
2'b11: Exp = {In[`Q_LEN-2:`Q_NF+1], In[`Q_NF]|Denorm};
|
||||
2'b01: Exp = {Len1[`D_LEN-2], {`Q_NE-`D_NE{~Len1[`D_LEN-2]}}, Len1[`D_LEN-3:`D_NF+1], Len1[`D_NF]|Denorm};
|
||||
2'b00: Exp = {Len2[`S_LEN-2], {`Q_NE-`S_NE{~Len2[`S_LEN-2]}}, Len2[`S_LEN-3:`S_NF+1], Len2[`S_NF]|Denorm};
|
||||
2'b10: Exp = {Len3[`H_LEN-2], {`Q_NE-`H_NE{~Len3[`H_LEN-2]}}, Len3[`H_LEN-3:`H_NF+1], Len3[`H_NF]|Denorm};
|
||||
2'b11: Exp = {In[`Q_LEN-2:`Q_NF+1], In[`Q_NF]|~ExpNonZero};
|
||||
2'b01: Exp = {In[`D_LEN-2], {`Q_NE-`D_NE{~In[`D_LEN-2]}}, In[`D_LEN-3:`D_NF+1], In[`D_NF]|~ExpNonZero};
|
||||
2'b00: Exp = {In[`S_LEN-2], {`Q_NE-`S_NE{~In[`S_LEN-2]}}, In[`S_LEN-3:`S_NF+1], In[`S_NF]|~ExpNonZero};
|
||||
2'b10: Exp = {In[`H_LEN-2], {`Q_NE-`H_NE{~In[`H_LEN-2]}}, In[`H_LEN-3:`H_NF+1], In[`H_NF]|~ExpNonZero};
|
||||
endcase
|
||||
|
||||
|
||||
|
@ -255,19 +224,18 @@ module unpackinput (
|
|||
always_comb
|
||||
case (FmtE)
|
||||
2'b11: ExpMax = &In[`Q_LEN-2:`Q_NF];
|
||||
2'b01: ExpMax = &Len1[`D_LEN-2:`D_NF];
|
||||
2'b00: ExpMax = &Len2[`S_LEN-2:`S_NF];
|
||||
2'b10: ExpMax = &Len3[`H_LEN-2:`H_NF];
|
||||
2'b01: ExpMax = &In[`D_LEN-2:`D_NF];
|
||||
2'b00: ExpMax = &In[`S_LEN-2:`S_NF];
|
||||
2'b10: ExpMax = &In[`H_LEN-2:`H_NF];
|
||||
endcase
|
||||
|
||||
end
|
||||
|
||||
// Output logic
|
||||
assign ExpZero = ~ExpNonZero; // is the exponent all 0's?
|
||||
assign FracZero = ~|Frac; // is the fraction zero?
|
||||
assign Man = {ExpNonZero, Frac}; // add the assumed one (or zero if denormal or zero) to create the significand
|
||||
// *** - force to be a NaN if it isn't properly Nan Boxed
|
||||
assign NaN = ExpMax & ~FracZero; // is the input a NaN?
|
||||
assign SNaN = NaN&~Frac[`NF-1]; // is the input a singnaling NaN?
|
||||
assign NaN = (ExpMax & ~FracZero)|BadNaNBox; // is the input a NaN?
|
||||
assign SNaN = NaN&~Frac[`NF-1]&~BadNaNBox; // is the input a singnaling NaN?
|
||||
assign Inf = ExpMax & FracZero; // is the input infinity?
|
||||
assign Zero = ExpZero & FracZero; // is the input zero?
|
||||
assign Zero = ~ExpNonZero & FracZero; // is the input zero?
|
||||
endmodule
|
|
@ -79,7 +79,6 @@ module testbenchfp;
|
|||
logic [`NF:0] FmaRuXMan, FmaRuYMan, FmaRuZMan;
|
||||
logic [`NF:0] FmaRdXMan, FmaRdYMan, FmaRdZMan;
|
||||
logic [`NF:0] FmaRnmXMan, FmaRnmYMan, FmaRnmZMan;
|
||||
logic XNorm; // is X normal
|
||||
logic XNaN, YNaN, ZNaN; // is the input NaN
|
||||
logic FmaRneXNaN, FmaRneYNaN, FmaRneZNaN;
|
||||
logic FmaRzXNaN, FmaRzYNaN, FmaRzZNaN;
|
||||
|
@ -92,12 +91,12 @@ module testbenchfp;
|
|||
logic FmaRuXSNaN, FmaRuYSNaN, FmaRuZSNaN;
|
||||
logic FmaRdXSNaN, FmaRdYSNaN, FmaRdZSNaN;
|
||||
logic FmaRnmXSNaN, FmaRnmYSNaN, FmaRnmZSNaN;
|
||||
logic XDenorm, YDenorm, ZDenorm; // is the input denormalized
|
||||
logic FmaRneXDenorm, FmaRneYDenorm, FmaRneZDenorm;
|
||||
logic FmaRzXDenorm, FmaRzYDenorm, FmaRzZDenorm;
|
||||
logic FmaRuXDenorm, FmaRuYDenorm, FmaRuZDenorm;
|
||||
logic FmaRdXDenorm, FmaRdYDenorm, FmaRdZDenorm;
|
||||
logic FmaRnmXDenorm, FmaRnmYDenorm, FmaRnmZDenorm;
|
||||
logic XDenorm, ZDenorm; // is the input denormalized
|
||||
logic FmaRneXDenorm, FmaRneZDenorm;
|
||||
logic FmaRzXDenorm, FmaRzZDenorm;
|
||||
logic FmaRuXDenorm, FmaRuZDenorm;
|
||||
logic FmaRdXDenorm, FmaRdZDenorm;
|
||||
logic FmaRnmXDenorm, FmaRnmZDenorm;
|
||||
logic XInf, YInf, ZInf; // is the input infinity
|
||||
logic FmaRneXInf, FmaRneYInf, FmaRneZInf;
|
||||
logic FmaRzXInf, FmaRzYInf, FmaRzZInf;
|
||||
|
@ -683,7 +682,7 @@ module testbenchfp;
|
|||
.XManE(FmaRneXMan), .YManE(FmaRneYMan), .ZManE(FmaRneZMan),
|
||||
.XNaNE(FmaRneXNaN), .YNaNE(FmaRneYNaN), .ZNaNE(FmaRneZNaN),
|
||||
.XSNaNE(FmaRneXSNaN), .YSNaNE(FmaRneYSNaN), .ZSNaNE(FmaRneZSNaN),
|
||||
.XDenormE(FmaRneXDenorm), .YDenormE(FmaRneYDenorm), .ZDenormE(FmaRneZDenorm),
|
||||
.XDenormE(FmaRneXDenorm), .ZDenormE(FmaRneZDenorm),
|
||||
.XZeroE(FmaRneXZero), .YZeroE(FmaRneYZero), .ZZeroE(FmaRneZZero),
|
||||
.XInfE(FmaRneXInf), .YInfE(FmaRneYInf), .ZInfE(FmaRneZInf), .FmaModFmt, .FmaFmt(FmaFmtVal),
|
||||
.X(FmaRneX), .Y(FmaRneY), .Z(FmaRneZ));
|
||||
|
@ -693,7 +692,7 @@ module testbenchfp;
|
|||
.XManE(FmaRzXMan), .YManE(FmaRzYMan), .ZManE(FmaRzZMan),
|
||||
.XNaNE(FmaRzXNaN), .YNaNE(FmaRzYNaN), .ZNaNE(FmaRzZNaN),
|
||||
.XSNaNE(FmaRzXSNaN), .YSNaNE(FmaRzYSNaN), .ZSNaNE(FmaRzZSNaN),
|
||||
.XDenormE(FmaRzXDenorm), .YDenormE(FmaRzYDenorm), .ZDenormE(FmaRzZDenorm),
|
||||
.XDenormE(FmaRzXDenorm), .ZDenormE(FmaRzZDenorm),
|
||||
.XZeroE(FmaRzXZero), .YZeroE(FmaRzYZero), .ZZeroE(FmaRzZZero),
|
||||
.XInfE(FmaRzXInf), .YInfE(FmaRzYInf), .ZInfE(FmaRzZInf), .FmaFmt(FmaFmtVal),
|
||||
.X(FmaRzX), .Y(FmaRzY), .Z(FmaRzZ));
|
||||
|
@ -703,7 +702,7 @@ module testbenchfp;
|
|||
.XManE(FmaRuXMan), .YManE(FmaRuYMan), .ZManE(FmaRuZMan),
|
||||
.XNaNE(FmaRuXNaN), .YNaNE(FmaRuYNaN), .ZNaNE(FmaRuZNaN),
|
||||
.XSNaNE(FmaRuXSNaN), .YSNaNE(FmaRuYSNaN), .ZSNaNE(FmaRuZSNaN),
|
||||
.XDenormE(FmaRuXDenorm), .YDenormE(FmaRuYDenorm), .ZDenormE(FmaRuZDenorm),
|
||||
.XDenormE(FmaRuXDenorm), .ZDenormE(FmaRuZDenorm),
|
||||
.XZeroE(FmaRuXZero), .YZeroE(FmaRuYZero), .ZZeroE(FmaRuZZero),
|
||||
.XInfE(FmaRuXInf), .YInfE(FmaRuYInf), .ZInfE(FmaRuZInf), .FmaFmt(FmaFmtVal),
|
||||
.X(FmaRuX), .Y(FmaRuY), .Z(FmaRuZ));
|
||||
|
@ -713,7 +712,7 @@ module testbenchfp;
|
|||
.XManE(FmaRdXMan), .YManE(FmaRdYMan), .ZManE(FmaRdZMan),
|
||||
.XNaNE(FmaRdXNaN), .YNaNE(FmaRdYNaN), .ZNaNE(FmaRdZNaN),
|
||||
.XSNaNE(FmaRdXSNaN), .YSNaNE(FmaRdYSNaN), .ZSNaNE(FmaRdZSNaN),
|
||||
.XDenormE(FmaRdXDenorm), .YDenormE(FmaRdYDenorm), .ZDenormE(FmaRdZDenorm),
|
||||
.XDenormE(FmaRdXDenorm), .ZDenormE(FmaRdZDenorm),
|
||||
.XZeroE(FmaRdXZero), .YZeroE(FmaRdYZero), .ZZeroE(FmaRdZZero),
|
||||
.XInfE(FmaRdXInf), .YInfE(FmaRdYInf), .ZInfE(FmaRdZInf), .FmaFmt(FmaFmtVal),
|
||||
.X(FmaRdX), .Y(FmaRdY), .Z(FmaRdZ));
|
||||
|
@ -723,7 +722,7 @@ module testbenchfp;
|
|||
.XManE(FmaRnmXMan), .YManE(FmaRnmYMan), .ZManE(FmaRnmZMan),
|
||||
.XNaNE(FmaRnmXNaN), .YNaNE(FmaRnmYNaN), .ZNaNE(FmaRnmZNaN),
|
||||
.XSNaNE(FmaRnmXSNaN), .YSNaNE(FmaRnmYSNaN), .ZSNaNE(FmaRnmZSNaN),
|
||||
.XDenormE(FmaRnmXDenorm), .YDenormE(FmaRnmYDenorm), .ZDenormE(FmaRnmZDenorm),
|
||||
.XDenormE(FmaRnmXDenorm), .ZDenormE(FmaRnmZDenorm),
|
||||
.XZeroE(FmaRnmXZero), .YZeroE(FmaRnmYZero), .ZZeroE(FmaRnmZZero),
|
||||
.XInfE(FmaRnmXInf), .YInfE(FmaRnmYInf), .ZInfE(FmaRnmZInf), .FmaFmt(FmaFmtVal),
|
||||
.X(FmaRnmX), .Y(FmaRnmY), .Z(FmaRnmZ));
|
||||
|
@ -733,9 +732,9 @@ module testbenchfp;
|
|||
.XManE(XMan), .YManE(YMan), .ZManE(ZMan),
|
||||
.XNaNE(XNaN), .YNaNE(YNaN), .ZNaNE(ZNaN),
|
||||
.XSNaNE(XSNaN), .YSNaNE(YSNaN), .ZSNaNE(ZSNaN),
|
||||
.XDenormE(XDenorm), .YDenormE(YDenorm), .ZDenormE(ZDenorm),
|
||||
.XDenormE(XDenorm), .ZDenormE(ZDenorm),
|
||||
.XZeroE(XZero), .YZeroE(YZero), .ZZeroE(ZZero),
|
||||
.XInfE(XInf), .YInfE(YInf), .ZInfE(ZInf),.XNormE(XNorm), .XExpMaxE(XExpMax),
|
||||
.XInfE(XInf), .YInfE(YInf), .ZInfE(ZInf), .XExpMaxE(XExpMax),
|
||||
.X, .Y, .Z);
|
||||
|
||||
|
||||
|
@ -1294,13 +1293,13 @@ module readfmavectors (
|
|||
output logic [`NF:0] XManE, YManE, ZManE, // mantissas of XYZ (converted to largest supported precision)
|
||||
output logic XNaNE, YNaNE, ZNaNE, // is XYZ a NaN
|
||||
output logic XSNaNE, YSNaNE, ZSNaNE, // is XYZ a signaling NaN
|
||||
output logic XDenormE, YDenormE, ZDenormE, // is XYZ denormalized
|
||||
output logic XDenormE, ZDenormE, // is XYZ denormalized
|
||||
output logic XZeroE, YZeroE, ZZeroE, // is XYZ zero
|
||||
output logic XInfE, YInfE, ZInfE, // is XYZ infinity
|
||||
output logic [`FLEN-1:0] X, Y, Z // inputs
|
||||
);
|
||||
|
||||
logic XNormE, XExpMaxE; // signals the unpacker outputs but isn't used in FMA
|
||||
logic XExpMaxE; // signals the unpacker outputs but isn't used in FMA
|
||||
// apply test vectors on rising edge of clk
|
||||
// Format of vectors Inputs(1/2/3)_AnsFlg
|
||||
always @(posedge clk) begin
|
||||
|
@ -1335,7 +1334,7 @@ module readfmavectors (
|
|||
end
|
||||
|
||||
unpack unpack(.X, .Y, .Z, .FmtE(FmaModFmt), .XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XDenormE,
|
||||
.XManE, .YManE, .ZManE, .XNormE, .XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE,
|
||||
.XManE, .YManE, .ZManE, .XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE,
|
||||
.XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE,
|
||||
.XExpMaxE, .ZDenormE);
|
||||
endmodule
|
||||
|
@ -1373,10 +1372,10 @@ module readvectors (
|
|||
output logic [`NF:0] XManE, YManE, ZManE, // mantissas of XYZ (converted to largest supported precision)
|
||||
output logic XNaNE, YNaNE, ZNaNE, // is XYZ a NaN
|
||||
output logic XSNaNE, YSNaNE, ZSNaNE, // is XYZ a signaling NaN
|
||||
output logic XDenormE, YDenormE, ZDenormE, // is XYZ denormalized
|
||||
output logic XDenormE, ZDenormE, // is XYZ denormalized
|
||||
output logic XZeroE, YZeroE, ZZeroE, // is XYZ zero
|
||||
output logic XInfE, YInfE, ZInfE, // is XYZ infinity
|
||||
output logic XNormE, XExpMaxE,
|
||||
output logic XExpMaxE,
|
||||
output logic [`FLEN-1:0] X, Y, Z
|
||||
);
|
||||
|
||||
|
@ -1660,7 +1659,7 @@ module readvectors (
|
|||
end
|
||||
|
||||
unpack unpack(.X, .Y, .Z, .FmtE(ModFmt), .XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE,
|
||||
.XManE, .YManE, .ZManE, .XNormE, .XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE,
|
||||
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE,
|
||||
.XManE, .YManE, .ZManE, .XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE,
|
||||
.XDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE,
|
||||
.XExpMaxE);
|
||||
endmodule
|
Loading…
Add table
Add a link
Reference in a new issue