This commit is contained in:
DTowersM 2022-05-31 20:13:41 +00:00
commit f7491e8445
32 changed files with 838 additions and 3830 deletions

2
.gitignore vendored
View file

@ -104,3 +104,5 @@ pipelined/config/rv64ic_noPriv
pipelined/config/rv64ic_orig
synthDC/Summary.csv
pipelined/srt/exptestgen
pipelined/srt/testgen
pipelined/srt/qst2

@ -1 +1 @@
Subproject commit 307c77b26e070ae85ffea665ad9b642b40e33c86
Subproject commit be67c99bd461742aa1c100bcc0732657faae2230

View file

@ -32,7 +32,7 @@ vlib work
# start and run simulation
# remove +acc flag for faster sim during regressions if there is no need to access internal signals
# $num = the added words after the call
vlog +incdir+../config/$1 +incdir+../config/shared ../testbench/testbench-fp.sv ../src/fpu/*.sv -suppress 2583,7063,8607,2697
vlog +incdir+../config/$1 +incdir+../config/shared ../testbench/testbench-fp.sv ../src/fpu/*.sv ../src/generic/*.sv -suppress 2583,7063,8607,2697
vsim -voptargs=+acc work.testbenchfp -G TEST=$2

View file

@ -7,4 +7,4 @@
# sqrt - test square root
# all - test everything
vsim -c -do "do fp.do rv64fp fma"
vsim -c -do "do fp.do rv64fp cvtfp"

View file

@ -48,7 +48,11 @@ if {$2 eq "buildroot" || $2 eq "buildroot-checkpoint"} {
} elseif {$2 eq "buildroot-no-trace"} {
vlog -lint -work work_${1}_${2} +incdir+../config/$1 +incdir+../config/shared ../testbench/testbench-linux.sv ../testbench/common/*.sv ../src/*/*.sv ../src/*/*/*.sv -suppress 2583
# start and run simulation
<<<<<<< HEAD
vopt +acc work_${1}_${2}.testbench -work work_${1}_${2} -G RISCV_DIR=$3 -G INSTR_LIMIT=0 -G INSTR_WAVEON=0 -G CHECKPOINT=0 -G NO_IE_MTIME_CHECKPOINT=1 -G DEBUG_TRACE=0 -o testbenchopt
=======
vopt +acc work_${1}_${2}.testbench -work work_${1}_${2} -G RISCV_DIR=$3 -G INSTR_LIMIT=0 -G INSTR_WAVEON=0 -G CHECKPOINT=0 -G NO_IE_MTIME_CHECKPOINT=1 -o testbenchopt
>>>>>>> parent of 9eb374b6... Changed NO_IE_MTIME_CHECKPOINT so it uses the new parameter name
vsim -lib work_${1}_${2} testbenchopt -suppress 8852,12070,3084,3829
#-- Run the Simulation

View file

@ -1,758 +0,0 @@
// The following module make up the basic building blocks that
// are used by the cla64, cla_sub64, and cla52.
module INVBLOCK ( GIN, GOUT );
input GIN;
output GOUT;
assign GOUT = ~ GIN;
endmodule // INVBLOCK
module XXOR1 ( A, B, GIN, SUM );
input A;
input B;
input GIN;
output SUM;
assign SUM = ( ~ (A ^ B)) ^ GIN;
endmodule // XXOR1
module BLOCK0 ( A, B, POUT, GOUT );
input A;
input B;
output POUT;
output GOUT;
assign POUT = ~ (A | B);
assign GOUT = ~ (A & B);
endmodule // BLOCK0
module BLOCK1 ( PIN1, PIN2, GIN1, GIN2, POUT, GOUT );
input PIN1;
input PIN2;
input GIN1;
input GIN2;
output POUT;
output GOUT;
assign POUT = ~ (PIN1 | PIN2);
assign GOUT = ~ (GIN2 & (PIN2 | GIN1));
endmodule // BLOCK1
module BLOCK2 ( PIN1, PIN2, GIN1, GIN2, POUT, GOUT );
input PIN1;
input PIN2;
input GIN1;
input GIN2;
output POUT;
output GOUT;
assign POUT = ~ (PIN1 & PIN2);
assign GOUT = ~ (GIN2 | (PIN2 & GIN1));
endmodule // BLOCK2
module BLOCK1A ( PIN2, GIN1, GIN2, GOUT );
input PIN2;
input GIN1;
input GIN2;
output GOUT;
assign GOUT = ~ (GIN2 & (PIN2 | GIN1));
endmodule // BLOCK1A
module BLOCK2A ( PIN2, GIN1, GIN2, GOUT );
input PIN2;
input GIN1;
input GIN2;
output GOUT;
assign GOUT = ~ (GIN2 | (PIN2 & GIN1));
endmodule
//***KEP all 0:63, 0:64 ect changed - changed due to lint warning
module PRESTAGE_64 ( A, B, CIN, POUT, GOUT );
input [63:0] A;
input [63:0] B;
input CIN;
output [63:0] POUT;
output [64:0] GOUT;
BLOCK0 U10 (A[0] , B[0] , POUT[0] , GOUT[1] );
BLOCK0 U11 (A[1] , B[1] , POUT[1] , GOUT[2] );
BLOCK0 U12 (A[2] , B[2] , POUT[2] , GOUT[3] );
BLOCK0 U13 (A[3] , B[3] , POUT[3] , GOUT[4] );
BLOCK0 U14 (A[4] , B[4] , POUT[4] , GOUT[5] );
BLOCK0 U15 (A[5] , B[5] , POUT[5] , GOUT[6] );
BLOCK0 U16 (A[6] , B[6] , POUT[6] , GOUT[7] );
BLOCK0 U17 (A[7] , B[7] , POUT[7] , GOUT[8] );
BLOCK0 U18 (A[8] , B[8] , POUT[8] , GOUT[9] );
BLOCK0 U19 (A[9] , B[9] , POUT[9] , GOUT[10] );
BLOCK0 U110 (A[10] , B[10] , POUT[10] , GOUT[11] );
BLOCK0 U111 (A[11] , B[11] , POUT[11] , GOUT[12] );
BLOCK0 U112 (A[12] , B[12] , POUT[12] , GOUT[13] );
BLOCK0 U113 (A[13] , B[13] , POUT[13] , GOUT[14] );
BLOCK0 U114 (A[14] , B[14] , POUT[14] , GOUT[15] );
BLOCK0 U115 (A[15] , B[15] , POUT[15] , GOUT[16] );
BLOCK0 U116 (A[16] , B[16] , POUT[16] , GOUT[17] );
BLOCK0 U117 (A[17] , B[17] , POUT[17] , GOUT[18] );
BLOCK0 U118 (A[18] , B[18] , POUT[18] , GOUT[19] );
BLOCK0 U119 (A[19] , B[19] , POUT[19] , GOUT[20] );
BLOCK0 U120 (A[20] , B[20] , POUT[20] , GOUT[21] );
BLOCK0 U121 (A[21] , B[21] , POUT[21] , GOUT[22] );
BLOCK0 U122 (A[22] , B[22] , POUT[22] , GOUT[23] );
BLOCK0 U123 (A[23] , B[23] , POUT[23] , GOUT[24] );
BLOCK0 U124 (A[24] , B[24] , POUT[24] , GOUT[25] );
BLOCK0 U125 (A[25] , B[25] , POUT[25] , GOUT[26] );
BLOCK0 U126 (A[26] , B[26] , POUT[26] , GOUT[27] );
BLOCK0 U127 (A[27] , B[27] , POUT[27] , GOUT[28] );
BLOCK0 U128 (A[28] , B[28] , POUT[28] , GOUT[29] );
BLOCK0 U129 (A[29] , B[29] , POUT[29] , GOUT[30] );
BLOCK0 U130 (A[30] , B[30] , POUT[30] , GOUT[31] );
BLOCK0 U131 (A[31] , B[31] , POUT[31] , GOUT[32] );
BLOCK0 U132 (A[32] , B[32] , POUT[32] , GOUT[33] );
BLOCK0 U133 (A[33] , B[33] , POUT[33] , GOUT[34] );
BLOCK0 U134 (A[34] , B[34] , POUT[34] , GOUT[35] );
BLOCK0 U135 (A[35] , B[35] , POUT[35] , GOUT[36] );
BLOCK0 U136 (A[36] , B[36] , POUT[36] , GOUT[37] );
BLOCK0 U137 (A[37] , B[37] , POUT[37] , GOUT[38] );
BLOCK0 U138 (A[38] , B[38] , POUT[38] , GOUT[39] );
BLOCK0 U139 (A[39] , B[39] , POUT[39] , GOUT[40] );
BLOCK0 U140 (A[40] , B[40] , POUT[40] , GOUT[41] );
BLOCK0 U141 (A[41] , B[41] , POUT[41] , GOUT[42] );
BLOCK0 U142 (A[42] , B[42] , POUT[42] , GOUT[43] );
BLOCK0 U143 (A[43] , B[43] , POUT[43] , GOUT[44] );
BLOCK0 U144 (A[44] , B[44] , POUT[44] , GOUT[45] );
BLOCK0 U145 (A[45] , B[45] , POUT[45] , GOUT[46] );
BLOCK0 U146 (A[46] , B[46] , POUT[46] , GOUT[47] );
BLOCK0 U147 (A[47] , B[47] , POUT[47] , GOUT[48] );
BLOCK0 U148 (A[48] , B[48] , POUT[48] , GOUT[49] );
BLOCK0 U149 (A[49] , B[49] , POUT[49] , GOUT[50] );
BLOCK0 U150 (A[50] , B[50] , POUT[50] , GOUT[51] );
BLOCK0 U151 (A[51] , B[51] , POUT[51] , GOUT[52] );
BLOCK0 U152 (A[52] , B[52] , POUT[52] , GOUT[53] );
BLOCK0 U153 (A[53] , B[53] , POUT[53] , GOUT[54] );
BLOCK0 U154 (A[54] , B[54] , POUT[54] , GOUT[55] );
BLOCK0 U155 (A[55] , B[55] , POUT[55] , GOUT[56] );
BLOCK0 U156 (A[56] , B[56] , POUT[56] , GOUT[57] );
BLOCK0 U157 (A[57] , B[57] , POUT[57] , GOUT[58] );
BLOCK0 U158 (A[58] , B[58] , POUT[58] , GOUT[59] );
BLOCK0 U159 (A[59] , B[59] , POUT[59] , GOUT[60] );
BLOCK0 U160 (A[60] , B[60] , POUT[60] , GOUT[61] );
BLOCK0 U161 (A[61] , B[61] , POUT[61] , GOUT[62] );
BLOCK0 U162 (A[62] , B[62] , POUT[62] , GOUT[63] );
BLOCK0 U163 (A[63] , B[63] , POUT[63] , GOUT[64] );
INVBLOCK U2 (CIN , GOUT[0] );
endmodule // PRESTAGE_64
module DBLC_0_64 ( PIN, GIN, POUT, GOUT );
input [63:0] PIN;
input [64:0] GIN;
output [62:0] POUT;
output [64:0] GOUT;
INVBLOCK U10 (GIN[0] , GOUT[0] );
BLOCK1A U21 (PIN[0] , GIN[0] , GIN[1] , GOUT[1] );
BLOCK1 U32 (PIN[0] , PIN[1] , GIN[1] , GIN[2] , POUT[0] , GOUT[2] );
BLOCK1 U33 (PIN[1] , PIN[2] , GIN[2] , GIN[3] , POUT[1] , GOUT[3] );
BLOCK1 U34 (PIN[2] , PIN[3] , GIN[3] , GIN[4] , POUT[2] , GOUT[4] );
BLOCK1 U35 (PIN[3] , PIN[4] , GIN[4] , GIN[5] , POUT[3] , GOUT[5] );
BLOCK1 U36 (PIN[4] , PIN[5] , GIN[5] , GIN[6] , POUT[4] , GOUT[6] );
BLOCK1 U37 (PIN[5] , PIN[6] , GIN[6] , GIN[7] , POUT[5] , GOUT[7] );
BLOCK1 U38 (PIN[6] , PIN[7] , GIN[7] , GIN[8] , POUT[6] , GOUT[8] );
BLOCK1 U39 (PIN[7] , PIN[8] , GIN[8] , GIN[9] , POUT[7] , GOUT[9] );
BLOCK1 U310 (PIN[8] , PIN[9] , GIN[9] , GIN[10] , POUT[8] , GOUT[10] );
BLOCK1 U311 (PIN[9] , PIN[10] , GIN[10] , GIN[11] , POUT[9] , GOUT[11] );
BLOCK1 U312 (PIN[10] , PIN[11] , GIN[11] , GIN[12] , POUT[10] , GOUT[12] );
BLOCK1 U313 (PIN[11] , PIN[12] , GIN[12] , GIN[13] , POUT[11] , GOUT[13] );
BLOCK1 U314 (PIN[12] , PIN[13] , GIN[13] , GIN[14] , POUT[12] , GOUT[14] );
BLOCK1 U315 (PIN[13] , PIN[14] , GIN[14] , GIN[15] , POUT[13] , GOUT[15] );
BLOCK1 U316 (PIN[14] , PIN[15] , GIN[15] , GIN[16] , POUT[14] , GOUT[16] );
BLOCK1 U317 (PIN[15] , PIN[16] , GIN[16] , GIN[17] , POUT[15] , GOUT[17] );
BLOCK1 U318 (PIN[16] , PIN[17] , GIN[17] , GIN[18] , POUT[16] , GOUT[18] );
BLOCK1 U319 (PIN[17] , PIN[18] , GIN[18] , GIN[19] , POUT[17] , GOUT[19] );
BLOCK1 U320 (PIN[18] , PIN[19] , GIN[19] , GIN[20] , POUT[18] , GOUT[20] );
BLOCK1 U321 (PIN[19] , PIN[20] , GIN[20] , GIN[21] , POUT[19] , GOUT[21] );
BLOCK1 U322 (PIN[20] , PIN[21] , GIN[21] , GIN[22] , POUT[20] , GOUT[22] );
BLOCK1 U323 (PIN[21] , PIN[22] , GIN[22] , GIN[23] , POUT[21] , GOUT[23] );
BLOCK1 U324 (PIN[22] , PIN[23] , GIN[23] , GIN[24] , POUT[22] , GOUT[24] );
BLOCK1 U325 (PIN[23] , PIN[24] , GIN[24] , GIN[25] , POUT[23] , GOUT[25] );
BLOCK1 U326 (PIN[24] , PIN[25] , GIN[25] , GIN[26] , POUT[24] , GOUT[26] );
BLOCK1 U327 (PIN[25] , PIN[26] , GIN[26] , GIN[27] , POUT[25] , GOUT[27] );
BLOCK1 U328 (PIN[26] , PIN[27] , GIN[27] , GIN[28] , POUT[26] , GOUT[28] );
BLOCK1 U329 (PIN[27] , PIN[28] , GIN[28] , GIN[29] , POUT[27] , GOUT[29] );
BLOCK1 U330 (PIN[28] , PIN[29] , GIN[29] , GIN[30] , POUT[28] , GOUT[30] );
BLOCK1 U331 (PIN[29] , PIN[30] , GIN[30] , GIN[31] , POUT[29] , GOUT[31] );
BLOCK1 U332 (PIN[30] , PIN[31] , GIN[31] , GIN[32] , POUT[30] , GOUT[32] );
BLOCK1 U333 (PIN[31] , PIN[32] , GIN[32] , GIN[33] , POUT[31] , GOUT[33] );
BLOCK1 U334 (PIN[32] , PIN[33] , GIN[33] , GIN[34] , POUT[32] , GOUT[34] );
BLOCK1 U335 (PIN[33] , PIN[34] , GIN[34] , GIN[35] , POUT[33] , GOUT[35] );
BLOCK1 U336 (PIN[34] , PIN[35] , GIN[35] , GIN[36] , POUT[34] , GOUT[36] );
BLOCK1 U337 (PIN[35] , PIN[36] , GIN[36] , GIN[37] , POUT[35] , GOUT[37] );
BLOCK1 U338 (PIN[36] , PIN[37] , GIN[37] , GIN[38] , POUT[36] , GOUT[38] );
BLOCK1 U339 (PIN[37] , PIN[38] , GIN[38] , GIN[39] , POUT[37] , GOUT[39] );
BLOCK1 U340 (PIN[38] , PIN[39] , GIN[39] , GIN[40] , POUT[38] , GOUT[40] );
BLOCK1 U341 (PIN[39] , PIN[40] , GIN[40] , GIN[41] , POUT[39] , GOUT[41] );
BLOCK1 U342 (PIN[40] , PIN[41] , GIN[41] , GIN[42] , POUT[40] , GOUT[42] );
BLOCK1 U343 (PIN[41] , PIN[42] , GIN[42] , GIN[43] , POUT[41] , GOUT[43] );
BLOCK1 U344 (PIN[42] , PIN[43] , GIN[43] , GIN[44] , POUT[42] , GOUT[44] );
BLOCK1 U345 (PIN[43] , PIN[44] , GIN[44] , GIN[45] , POUT[43] , GOUT[45] );
BLOCK1 U346 (PIN[44] , PIN[45] , GIN[45] , GIN[46] , POUT[44] , GOUT[46] );
BLOCK1 U347 (PIN[45] , PIN[46] , GIN[46] , GIN[47] , POUT[45] , GOUT[47] );
BLOCK1 U348 (PIN[46] , PIN[47] , GIN[47] , GIN[48] , POUT[46] , GOUT[48] );
BLOCK1 U349 (PIN[47] , PIN[48] , GIN[48] , GIN[49] , POUT[47] , GOUT[49] );
BLOCK1 U350 (PIN[48] , PIN[49] , GIN[49] , GIN[50] , POUT[48] , GOUT[50] );
BLOCK1 U351 (PIN[49] , PIN[50] , GIN[50] , GIN[51] , POUT[49] , GOUT[51] );
BLOCK1 U352 (PIN[50] , PIN[51] , GIN[51] , GIN[52] , POUT[50] , GOUT[52] );
BLOCK1 U353 (PIN[51] , PIN[52] , GIN[52] , GIN[53] , POUT[51] , GOUT[53] );
BLOCK1 U354 (PIN[52] , PIN[53] , GIN[53] , GIN[54] , POUT[52] , GOUT[54] );
BLOCK1 U355 (PIN[53] , PIN[54] , GIN[54] , GIN[55] , POUT[53] , GOUT[55] );
BLOCK1 U356 (PIN[54] , PIN[55] , GIN[55] , GIN[56] , POUT[54] , GOUT[56] );
BLOCK1 U357 (PIN[55] , PIN[56] , GIN[56] , GIN[57] , POUT[55] , GOUT[57] );
BLOCK1 U358 (PIN[56] , PIN[57] , GIN[57] , GIN[58] , POUT[56] , GOUT[58] );
BLOCK1 U359 (PIN[57] , PIN[58] , GIN[58] , GIN[59] , POUT[57] , GOUT[59] );
BLOCK1 U360 (PIN[58] , PIN[59] , GIN[59] , GIN[60] , POUT[58] , GOUT[60] );
BLOCK1 U361 (PIN[59] , PIN[60] , GIN[60] , GIN[61] , POUT[59] , GOUT[61] );
BLOCK1 U362 (PIN[60] , PIN[61] , GIN[61] , GIN[62] , POUT[60] , GOUT[62] );
BLOCK1 U363 (PIN[61] , PIN[62] , GIN[62] , GIN[63] , POUT[61] , GOUT[63] );
BLOCK1 U364 (PIN[62] , PIN[63] , GIN[63] , GIN[64] , POUT[62] , GOUT[64] );
endmodule // DBLC_0_64
module DBLC_1_64 ( PIN, GIN, POUT, GOUT );
input [62:0] PIN;
input [64:0] GIN;
output [60:0] POUT;
output [64:0] GOUT;
INVBLOCK U10 (GIN[0] , GOUT[0] );
INVBLOCK U11 (GIN[1] , GOUT[1] );
BLOCK2A U22 (PIN[0] , GIN[0] , GIN[2] , GOUT[2] );
BLOCK2A U23 (PIN[1] , GIN[1] , GIN[3] , GOUT[3] );
BLOCK2 U34 (PIN[0] , PIN[2] , GIN[2] , GIN[4] , POUT[0] , GOUT[4] );
BLOCK2 U35 (PIN[1] , PIN[3] , GIN[3] , GIN[5] , POUT[1] , GOUT[5] );
BLOCK2 U36 (PIN[2] , PIN[4] , GIN[4] , GIN[6] , POUT[2] , GOUT[6] );
BLOCK2 U37 (PIN[3] , PIN[5] , GIN[5] , GIN[7] , POUT[3] , GOUT[7] );
BLOCK2 U38 (PIN[4] , PIN[6] , GIN[6] , GIN[8] , POUT[4] , GOUT[8] );
BLOCK2 U39 (PIN[5] , PIN[7] , GIN[7] , GIN[9] , POUT[5] , GOUT[9] );
BLOCK2 U310 (PIN[6] , PIN[8] , GIN[8] , GIN[10] , POUT[6] , GOUT[10] );
BLOCK2 U311 (PIN[7] , PIN[9] , GIN[9] , GIN[11] , POUT[7] , GOUT[11] );
BLOCK2 U312 (PIN[8] , PIN[10] , GIN[10] , GIN[12] , POUT[8] , GOUT[12] );
BLOCK2 U313 (PIN[9] , PIN[11] , GIN[11] , GIN[13] , POUT[9] , GOUT[13] );
BLOCK2 U314 (PIN[10] , PIN[12] , GIN[12] , GIN[14] , POUT[10] , GOUT[14] );
BLOCK2 U315 (PIN[11] , PIN[13] , GIN[13] , GIN[15] , POUT[11] , GOUT[15] );
BLOCK2 U316 (PIN[12] , PIN[14] , GIN[14] , GIN[16] , POUT[12] , GOUT[16] );
BLOCK2 U317 (PIN[13] , PIN[15] , GIN[15] , GIN[17] , POUT[13] , GOUT[17] );
BLOCK2 U318 (PIN[14] , PIN[16] , GIN[16] , GIN[18] , POUT[14] , GOUT[18] );
BLOCK2 U319 (PIN[15] , PIN[17] , GIN[17] , GIN[19] , POUT[15] , GOUT[19] );
BLOCK2 U320 (PIN[16] , PIN[18] , GIN[18] , GIN[20] , POUT[16] , GOUT[20] );
BLOCK2 U321 (PIN[17] , PIN[19] , GIN[19] , GIN[21] , POUT[17] , GOUT[21] );
BLOCK2 U322 (PIN[18] , PIN[20] , GIN[20] , GIN[22] , POUT[18] , GOUT[22] );
BLOCK2 U323 (PIN[19] , PIN[21] , GIN[21] , GIN[23] , POUT[19] , GOUT[23] );
BLOCK2 U324 (PIN[20] , PIN[22] , GIN[22] , GIN[24] , POUT[20] , GOUT[24] );
BLOCK2 U325 (PIN[21] , PIN[23] , GIN[23] , GIN[25] , POUT[21] , GOUT[25] );
BLOCK2 U326 (PIN[22] , PIN[24] , GIN[24] , GIN[26] , POUT[22] , GOUT[26] );
BLOCK2 U327 (PIN[23] , PIN[25] , GIN[25] , GIN[27] , POUT[23] , GOUT[27] );
BLOCK2 U328 (PIN[24] , PIN[26] , GIN[26] , GIN[28] , POUT[24] , GOUT[28] );
BLOCK2 U329 (PIN[25] , PIN[27] , GIN[27] , GIN[29] , POUT[25] , GOUT[29] );
BLOCK2 U330 (PIN[26] , PIN[28] , GIN[28] , GIN[30] , POUT[26] , GOUT[30] );
BLOCK2 U331 (PIN[27] , PIN[29] , GIN[29] , GIN[31] , POUT[27] , GOUT[31] );
BLOCK2 U332 (PIN[28] , PIN[30] , GIN[30] , GIN[32] , POUT[28] , GOUT[32] );
BLOCK2 U333 (PIN[29] , PIN[31] , GIN[31] , GIN[33] , POUT[29] , GOUT[33] );
BLOCK2 U334 (PIN[30] , PIN[32] , GIN[32] , GIN[34] , POUT[30] , GOUT[34] );
BLOCK2 U335 (PIN[31] , PIN[33] , GIN[33] , GIN[35] , POUT[31] , GOUT[35] );
BLOCK2 U336 (PIN[32] , PIN[34] , GIN[34] , GIN[36] , POUT[32] , GOUT[36] );
BLOCK2 U337 (PIN[33] , PIN[35] , GIN[35] , GIN[37] , POUT[33] , GOUT[37] );
BLOCK2 U338 (PIN[34] , PIN[36] , GIN[36] , GIN[38] , POUT[34] , GOUT[38] );
BLOCK2 U339 (PIN[35] , PIN[37] , GIN[37] , GIN[39] , POUT[35] , GOUT[39] );
BLOCK2 U340 (PIN[36] , PIN[38] , GIN[38] , GIN[40] , POUT[36] , GOUT[40] );
BLOCK2 U341 (PIN[37] , PIN[39] , GIN[39] , GIN[41] , POUT[37] , GOUT[41] );
BLOCK2 U342 (PIN[38] , PIN[40] , GIN[40] , GIN[42] , POUT[38] , GOUT[42] );
BLOCK2 U343 (PIN[39] , PIN[41] , GIN[41] , GIN[43] , POUT[39] , GOUT[43] );
BLOCK2 U344 (PIN[40] , PIN[42] , GIN[42] , GIN[44] , POUT[40] , GOUT[44] );
BLOCK2 U345 (PIN[41] , PIN[43] , GIN[43] , GIN[45] , POUT[41] , GOUT[45] );
BLOCK2 U346 (PIN[42] , PIN[44] , GIN[44] , GIN[46] , POUT[42] , GOUT[46] );
BLOCK2 U347 (PIN[43] , PIN[45] , GIN[45] , GIN[47] , POUT[43] , GOUT[47] );
BLOCK2 U348 (PIN[44] , PIN[46] , GIN[46] , GIN[48] , POUT[44] , GOUT[48] );
BLOCK2 U349 (PIN[45] , PIN[47] , GIN[47] , GIN[49] , POUT[45] , GOUT[49] );
BLOCK2 U350 (PIN[46] , PIN[48] , GIN[48] , GIN[50] , POUT[46] , GOUT[50] );
BLOCK2 U351 (PIN[47] , PIN[49] , GIN[49] , GIN[51] , POUT[47] , GOUT[51] );
BLOCK2 U352 (PIN[48] , PIN[50] , GIN[50] , GIN[52] , POUT[48] , GOUT[52] );
BLOCK2 U353 (PIN[49] , PIN[51] , GIN[51] , GIN[53] , POUT[49] , GOUT[53] );
BLOCK2 U354 (PIN[50] , PIN[52] , GIN[52] , GIN[54] , POUT[50] , GOUT[54] );
BLOCK2 U355 (PIN[51] , PIN[53] , GIN[53] , GIN[55] , POUT[51] , GOUT[55] );
BLOCK2 U356 (PIN[52] , PIN[54] , GIN[54] , GIN[56] , POUT[52] , GOUT[56] );
BLOCK2 U357 (PIN[53] , PIN[55] , GIN[55] , GIN[57] , POUT[53] , GOUT[57] );
BLOCK2 U358 (PIN[54] , PIN[56] , GIN[56] , GIN[58] , POUT[54] , GOUT[58] );
BLOCK2 U359 (PIN[55] , PIN[57] , GIN[57] , GIN[59] , POUT[55] , GOUT[59] );
BLOCK2 U360 (PIN[56] , PIN[58] , GIN[58] , GIN[60] , POUT[56] , GOUT[60] );
BLOCK2 U361 (PIN[57] , PIN[59] , GIN[59] , GIN[61] , POUT[57] , GOUT[61] );
BLOCK2 U362 (PIN[58] , PIN[60] , GIN[60] , GIN[62] , POUT[58] , GOUT[62] );
BLOCK2 U363 (PIN[59] , PIN[61] , GIN[61] , GIN[63] , POUT[59] , GOUT[63] );
BLOCK2 U364 (PIN[60] , PIN[62] , GIN[62] , GIN[64] , POUT[60] , GOUT[64] );
endmodule // DBLC_1_64
module DBLC_2_64 ( PIN, GIN, POUT, GOUT );
input [60:0] PIN;
input [64:0] GIN;
output [56:0] POUT;
output [64:0] GOUT;
INVBLOCK U10 (GIN[0] , GOUT[0] );
INVBLOCK U11 (GIN[1] , GOUT[1] );
INVBLOCK U12 (GIN[2] , GOUT[2] );
INVBLOCK U13 (GIN[3] , GOUT[3] );
BLOCK1A U24 (PIN[0] , GIN[0] , GIN[4] , GOUT[4] );
BLOCK1A U25 (PIN[1] , GIN[1] , GIN[5] , GOUT[5] );
BLOCK1A U26 (PIN[2] , GIN[2] , GIN[6] , GOUT[6] );
BLOCK1A U27 (PIN[3] , GIN[3] , GIN[7] , GOUT[7] );
BLOCK1 U38 (PIN[0] , PIN[4] , GIN[4] , GIN[8] , POUT[0] , GOUT[8] );
BLOCK1 U39 (PIN[1] , PIN[5] , GIN[5] , GIN[9] , POUT[1] , GOUT[9] );
BLOCK1 U310 (PIN[2] , PIN[6] , GIN[6] , GIN[10] , POUT[2] , GOUT[10] );
BLOCK1 U311 (PIN[3] , PIN[7] , GIN[7] , GIN[11] , POUT[3] , GOUT[11] );
BLOCK1 U312 (PIN[4] , PIN[8] , GIN[8] , GIN[12] , POUT[4] , GOUT[12] );
BLOCK1 U313 (PIN[5] , PIN[9] , GIN[9] , GIN[13] , POUT[5] , GOUT[13] );
BLOCK1 U314 (PIN[6] , PIN[10] , GIN[10] , GIN[14] , POUT[6] , GOUT[14] );
BLOCK1 U315 (PIN[7] , PIN[11] , GIN[11] , GIN[15] , POUT[7] , GOUT[15] );
BLOCK1 U316 (PIN[8] , PIN[12] , GIN[12] , GIN[16] , POUT[8] , GOUT[16] );
BLOCK1 U317 (PIN[9] , PIN[13] , GIN[13] , GIN[17] , POUT[9] , GOUT[17] );
BLOCK1 U318 (PIN[10] , PIN[14] , GIN[14] , GIN[18] , POUT[10] , GOUT[18] );
BLOCK1 U319 (PIN[11] , PIN[15] , GIN[15] , GIN[19] , POUT[11] , GOUT[19] );
BLOCK1 U320 (PIN[12] , PIN[16] , GIN[16] , GIN[20] , POUT[12] , GOUT[20] );
BLOCK1 U321 (PIN[13] , PIN[17] , GIN[17] , GIN[21] , POUT[13] , GOUT[21] );
BLOCK1 U322 (PIN[14] , PIN[18] , GIN[18] , GIN[22] , POUT[14] , GOUT[22] );
BLOCK1 U323 (PIN[15] , PIN[19] , GIN[19] , GIN[23] , POUT[15] , GOUT[23] );
BLOCK1 U324 (PIN[16] , PIN[20] , GIN[20] , GIN[24] , POUT[16] , GOUT[24] );
BLOCK1 U325 (PIN[17] , PIN[21] , GIN[21] , GIN[25] , POUT[17] , GOUT[25] );
BLOCK1 U326 (PIN[18] , PIN[22] , GIN[22] , GIN[26] , POUT[18] , GOUT[26] );
BLOCK1 U327 (PIN[19] , PIN[23] , GIN[23] , GIN[27] , POUT[19] , GOUT[27] );
BLOCK1 U328 (PIN[20] , PIN[24] , GIN[24] , GIN[28] , POUT[20] , GOUT[28] );
BLOCK1 U329 (PIN[21] , PIN[25] , GIN[25] , GIN[29] , POUT[21] , GOUT[29] );
BLOCK1 U330 (PIN[22] , PIN[26] , GIN[26] , GIN[30] , POUT[22] , GOUT[30] );
BLOCK1 U331 (PIN[23] , PIN[27] , GIN[27] , GIN[31] , POUT[23] , GOUT[31] );
BLOCK1 U332 (PIN[24] , PIN[28] , GIN[28] , GIN[32] , POUT[24] , GOUT[32] );
BLOCK1 U333 (PIN[25] , PIN[29] , GIN[29] , GIN[33] , POUT[25] , GOUT[33] );
BLOCK1 U334 (PIN[26] , PIN[30] , GIN[30] , GIN[34] , POUT[26] , GOUT[34] );
BLOCK1 U335 (PIN[27] , PIN[31] , GIN[31] , GIN[35] , POUT[27] , GOUT[35] );
BLOCK1 U336 (PIN[28] , PIN[32] , GIN[32] , GIN[36] , POUT[28] , GOUT[36] );
BLOCK1 U337 (PIN[29] , PIN[33] , GIN[33] , GIN[37] , POUT[29] , GOUT[37] );
BLOCK1 U338 (PIN[30] , PIN[34] , GIN[34] , GIN[38] , POUT[30] , GOUT[38] );
BLOCK1 U339 (PIN[31] , PIN[35] , GIN[35] , GIN[39] , POUT[31] , GOUT[39] );
BLOCK1 U340 (PIN[32] , PIN[36] , GIN[36] , GIN[40] , POUT[32] , GOUT[40] );
BLOCK1 U341 (PIN[33] , PIN[37] , GIN[37] , GIN[41] , POUT[33] , GOUT[41] );
BLOCK1 U342 (PIN[34] , PIN[38] , GIN[38] , GIN[42] , POUT[34] , GOUT[42] );
BLOCK1 U343 (PIN[35] , PIN[39] , GIN[39] , GIN[43] , POUT[35] , GOUT[43] );
BLOCK1 U344 (PIN[36] , PIN[40] , GIN[40] , GIN[44] , POUT[36] , GOUT[44] );
BLOCK1 U345 (PIN[37] , PIN[41] , GIN[41] , GIN[45] , POUT[37] , GOUT[45] );
BLOCK1 U346 (PIN[38] , PIN[42] , GIN[42] , GIN[46] , POUT[38] , GOUT[46] );
BLOCK1 U347 (PIN[39] , PIN[43] , GIN[43] , GIN[47] , POUT[39] , GOUT[47] );
BLOCK1 U348 (PIN[40] , PIN[44] , GIN[44] , GIN[48] , POUT[40] , GOUT[48] );
BLOCK1 U349 (PIN[41] , PIN[45] , GIN[45] , GIN[49] , POUT[41] , GOUT[49] );
BLOCK1 U350 (PIN[42] , PIN[46] , GIN[46] , GIN[50] , POUT[42] , GOUT[50] );
BLOCK1 U351 (PIN[43] , PIN[47] , GIN[47] , GIN[51] , POUT[43] , GOUT[51] );
BLOCK1 U352 (PIN[44] , PIN[48] , GIN[48] , GIN[52] , POUT[44] , GOUT[52] );
BLOCK1 U353 (PIN[45] , PIN[49] , GIN[49] , GIN[53] , POUT[45] , GOUT[53] );
BLOCK1 U354 (PIN[46] , PIN[50] , GIN[50] , GIN[54] , POUT[46] , GOUT[54] );
BLOCK1 U355 (PIN[47] , PIN[51] , GIN[51] , GIN[55] , POUT[47] , GOUT[55] );
BLOCK1 U356 (PIN[48] , PIN[52] , GIN[52] , GIN[56] , POUT[48] , GOUT[56] );
BLOCK1 U357 (PIN[49] , PIN[53] , GIN[53] , GIN[57] , POUT[49] , GOUT[57] );
BLOCK1 U358 (PIN[50] , PIN[54] , GIN[54] , GIN[58] , POUT[50] , GOUT[58] );
BLOCK1 U359 (PIN[51] , PIN[55] , GIN[55] , GIN[59] , POUT[51] , GOUT[59] );
BLOCK1 U360 (PIN[52] , PIN[56] , GIN[56] , GIN[60] , POUT[52] , GOUT[60] );
BLOCK1 U361 (PIN[53] , PIN[57] , GIN[57] , GIN[61] , POUT[53] , GOUT[61] );
BLOCK1 U362 (PIN[54] , PIN[58] , GIN[58] , GIN[62] , POUT[54] , GOUT[62] );
BLOCK1 U363 (PIN[55] , PIN[59] , GIN[59] , GIN[63] , POUT[55] , GOUT[63] );
BLOCK1 U364 (PIN[56] , PIN[60] , GIN[60] , GIN[64] , POUT[56] , GOUT[64] );
endmodule // DBLC_2_64
module DBLC_3_64 ( PIN, GIN, POUT, GOUT );
input [56:0] PIN;
input [64:0] GIN;
output [48:0] POUT;
output [64:0] GOUT;
INVBLOCK U10 (GIN[0] , GOUT[0] );
INVBLOCK U11 (GIN[1] , GOUT[1] );
INVBLOCK U12 (GIN[2] , GOUT[2] );
INVBLOCK U13 (GIN[3] , GOUT[3] );
INVBLOCK U14 (GIN[4] , GOUT[4] );
INVBLOCK U15 (GIN[5] , GOUT[5] );
INVBLOCK U16 (GIN[6] , GOUT[6] );
INVBLOCK U17 (GIN[7] , GOUT[7] );
BLOCK2A U28 (PIN[0] , GIN[0] , GIN[8] , GOUT[8] );
BLOCK2A U29 (PIN[1] , GIN[1] , GIN[9] , GOUT[9] );
BLOCK2A U210 (PIN[2] , GIN[2] , GIN[10] , GOUT[10] );
BLOCK2A U211 (PIN[3] , GIN[3] , GIN[11] , GOUT[11] );
BLOCK2A U212 (PIN[4] , GIN[4] , GIN[12] , GOUT[12] );
BLOCK2A U213 (PIN[5] , GIN[5] , GIN[13] , GOUT[13] );
BLOCK2A U214 (PIN[6] , GIN[6] , GIN[14] , GOUT[14] );
BLOCK2A U215 (PIN[7] , GIN[7] , GIN[15] , GOUT[15] );
BLOCK2 U316 (PIN[0] , PIN[8] , GIN[8] , GIN[16] , POUT[0] , GOUT[16] );
BLOCK2 U317 (PIN[1] , PIN[9] , GIN[9] , GIN[17] , POUT[1] , GOUT[17] );
BLOCK2 U318 (PIN[2] , PIN[10] , GIN[10] , GIN[18] , POUT[2] , GOUT[18] );
BLOCK2 U319 (PIN[3] , PIN[11] , GIN[11] , GIN[19] , POUT[3] , GOUT[19] );
BLOCK2 U320 (PIN[4] , PIN[12] , GIN[12] , GIN[20] , POUT[4] , GOUT[20] );
BLOCK2 U321 (PIN[5] , PIN[13] , GIN[13] , GIN[21] , POUT[5] , GOUT[21] );
BLOCK2 U322 (PIN[6] , PIN[14] , GIN[14] , GIN[22] , POUT[6] , GOUT[22] );
BLOCK2 U323 (PIN[7] , PIN[15] , GIN[15] , GIN[23] , POUT[7] , GOUT[23] );
BLOCK2 U324 (PIN[8] , PIN[16] , GIN[16] , GIN[24] , POUT[8] , GOUT[24] );
BLOCK2 U325 (PIN[9] , PIN[17] , GIN[17] , GIN[25] , POUT[9] , GOUT[25] );
BLOCK2 U326 (PIN[10] , PIN[18] , GIN[18] , GIN[26] , POUT[10] , GOUT[26] );
BLOCK2 U327 (PIN[11] , PIN[19] , GIN[19] , GIN[27] , POUT[11] , GOUT[27] );
BLOCK2 U328 (PIN[12] , PIN[20] , GIN[20] , GIN[28] , POUT[12] , GOUT[28] );
BLOCK2 U329 (PIN[13] , PIN[21] , GIN[21] , GIN[29] , POUT[13] , GOUT[29] );
BLOCK2 U330 (PIN[14] , PIN[22] , GIN[22] , GIN[30] , POUT[14] , GOUT[30] );
BLOCK2 U331 (PIN[15] , PIN[23] , GIN[23] , GIN[31] , POUT[15] , GOUT[31] );
BLOCK2 U332 (PIN[16] , PIN[24] , GIN[24] , GIN[32] , POUT[16] , GOUT[32] );
BLOCK2 U333 (PIN[17] , PIN[25] , GIN[25] , GIN[33] , POUT[17] , GOUT[33] );
BLOCK2 U334 (PIN[18] , PIN[26] , GIN[26] , GIN[34] , POUT[18] , GOUT[34] );
BLOCK2 U335 (PIN[19] , PIN[27] , GIN[27] , GIN[35] , POUT[19] , GOUT[35] );
BLOCK2 U336 (PIN[20] , PIN[28] , GIN[28] , GIN[36] , POUT[20] , GOUT[36] );
BLOCK2 U337 (PIN[21] , PIN[29] , GIN[29] , GIN[37] , POUT[21] , GOUT[37] );
BLOCK2 U338 (PIN[22] , PIN[30] , GIN[30] , GIN[38] , POUT[22] , GOUT[38] );
BLOCK2 U339 (PIN[23] , PIN[31] , GIN[31] , GIN[39] , POUT[23] , GOUT[39] );
BLOCK2 U340 (PIN[24] , PIN[32] , GIN[32] , GIN[40] , POUT[24] , GOUT[40] );
BLOCK2 U341 (PIN[25] , PIN[33] , GIN[33] , GIN[41] , POUT[25] , GOUT[41] );
BLOCK2 U342 (PIN[26] , PIN[34] , GIN[34] , GIN[42] , POUT[26] , GOUT[42] );
BLOCK2 U343 (PIN[27] , PIN[35] , GIN[35] , GIN[43] , POUT[27] , GOUT[43] );
BLOCK2 U344 (PIN[28] , PIN[36] , GIN[36] , GIN[44] , POUT[28] , GOUT[44] );
BLOCK2 U345 (PIN[29] , PIN[37] , GIN[37] , GIN[45] , POUT[29] , GOUT[45] );
BLOCK2 U346 (PIN[30] , PIN[38] , GIN[38] , GIN[46] , POUT[30] , GOUT[46] );
BLOCK2 U347 (PIN[31] , PIN[39] , GIN[39] , GIN[47] , POUT[31] , GOUT[47] );
BLOCK2 U348 (PIN[32] , PIN[40] , GIN[40] , GIN[48] , POUT[32] , GOUT[48] );
BLOCK2 U349 (PIN[33] , PIN[41] , GIN[41] , GIN[49] , POUT[33] , GOUT[49] );
BLOCK2 U350 (PIN[34] , PIN[42] , GIN[42] , GIN[50] , POUT[34] , GOUT[50] );
BLOCK2 U351 (PIN[35] , PIN[43] , GIN[43] , GIN[51] , POUT[35] , GOUT[51] );
BLOCK2 U352 (PIN[36] , PIN[44] , GIN[44] , GIN[52] , POUT[36] , GOUT[52] );
BLOCK2 U353 (PIN[37] , PIN[45] , GIN[45] , GIN[53] , POUT[37] , GOUT[53] );
BLOCK2 U354 (PIN[38] , PIN[46] , GIN[46] , GIN[54] , POUT[38] , GOUT[54] );
BLOCK2 U355 (PIN[39] , PIN[47] , GIN[47] , GIN[55] , POUT[39] , GOUT[55] );
BLOCK2 U356 (PIN[40] , PIN[48] , GIN[48] , GIN[56] , POUT[40] , GOUT[56] );
BLOCK2 U357 (PIN[41] , PIN[49] , GIN[49] , GIN[57] , POUT[41] , GOUT[57] );
BLOCK2 U358 (PIN[42] , PIN[50] , GIN[50] , GIN[58] , POUT[42] , GOUT[58] );
BLOCK2 U359 (PIN[43] , PIN[51] , GIN[51] , GIN[59] , POUT[43] , GOUT[59] );
BLOCK2 U360 (PIN[44] , PIN[52] , GIN[52] , GIN[60] , POUT[44] , GOUT[60] );
BLOCK2 U361 (PIN[45] , PIN[53] , GIN[53] , GIN[61] , POUT[45] , GOUT[61] );
BLOCK2 U362 (PIN[46] , PIN[54] , GIN[54] , GIN[62] , POUT[46] , GOUT[62] );
BLOCK2 U363 (PIN[47] , PIN[55] , GIN[55] , GIN[63] , POUT[47] , GOUT[63] );
BLOCK2 U364 (PIN[48] , PIN[56] , GIN[56] , GIN[64] , POUT[48] , GOUT[64] );
endmodule // DBLC_3_64
module DBLC_4_64 ( PIN, GIN, POUT, GOUT );
input [48:0] PIN;
input [64:0] GIN;
output [32:0] POUT;
output [64:0] GOUT;
INVBLOCK U10 (GIN[0] , GOUT[0] );
INVBLOCK U11 (GIN[1] , GOUT[1] );
INVBLOCK U12 (GIN[2] , GOUT[2] );
INVBLOCK U13 (GIN[3] , GOUT[3] );
INVBLOCK U14 (GIN[4] , GOUT[4] );
INVBLOCK U15 (GIN[5] , GOUT[5] );
INVBLOCK U16 (GIN[6] , GOUT[6] );
INVBLOCK U17 (GIN[7] , GOUT[7] );
INVBLOCK U18 (GIN[8] , GOUT[8] );
INVBLOCK U19 (GIN[9] , GOUT[9] );
INVBLOCK U110 (GIN[10] , GOUT[10] );
INVBLOCK U111 (GIN[11] , GOUT[11] );
INVBLOCK U112 (GIN[12] , GOUT[12] );
INVBLOCK U113 (GIN[13] , GOUT[13] );
INVBLOCK U114 (GIN[14] , GOUT[14] );
INVBLOCK U115 (GIN[15] , GOUT[15] );
BLOCK1A U216 (PIN[0] , GIN[0] , GIN[16] , GOUT[16] );
BLOCK1A U217 (PIN[1] , GIN[1] , GIN[17] , GOUT[17] );
BLOCK1A U218 (PIN[2] , GIN[2] , GIN[18] , GOUT[18] );
BLOCK1A U219 (PIN[3] , GIN[3] , GIN[19] , GOUT[19] );
BLOCK1A U220 (PIN[4] , GIN[4] , GIN[20] , GOUT[20] );
BLOCK1A U221 (PIN[5] , GIN[5] , GIN[21] , GOUT[21] );
BLOCK1A U222 (PIN[6] , GIN[6] , GIN[22] , GOUT[22] );
BLOCK1A U223 (PIN[7] , GIN[7] , GIN[23] , GOUT[23] );
BLOCK1A U224 (PIN[8] , GIN[8] , GIN[24] , GOUT[24] );
BLOCK1A U225 (PIN[9] , GIN[9] , GIN[25] , GOUT[25] );
BLOCK1A U226 (PIN[10] , GIN[10] , GIN[26] , GOUT[26] );
BLOCK1A U227 (PIN[11] , GIN[11] , GIN[27] , GOUT[27] );
BLOCK1A U228 (PIN[12] , GIN[12] , GIN[28] , GOUT[28] );
BLOCK1A U229 (PIN[13] , GIN[13] , GIN[29] , GOUT[29] );
BLOCK1A U230 (PIN[14] , GIN[14] , GIN[30] , GOUT[30] );
BLOCK1A U231 (PIN[15] , GIN[15] , GIN[31] , GOUT[31] );
BLOCK1 U332 (PIN[0] , PIN[16] , GIN[16] , GIN[32] , POUT[0] , GOUT[32] );
BLOCK1 U333 (PIN[1] , PIN[17] , GIN[17] , GIN[33] , POUT[1] , GOUT[33] );
BLOCK1 U334 (PIN[2] , PIN[18] , GIN[18] , GIN[34] , POUT[2] , GOUT[34] );
BLOCK1 U335 (PIN[3] , PIN[19] , GIN[19] , GIN[35] , POUT[3] , GOUT[35] );
BLOCK1 U336 (PIN[4] , PIN[20] , GIN[20] , GIN[36] , POUT[4] , GOUT[36] );
BLOCK1 U337 (PIN[5] , PIN[21] , GIN[21] , GIN[37] , POUT[5] , GOUT[37] );
BLOCK1 U338 (PIN[6] , PIN[22] , GIN[22] , GIN[38] , POUT[6] , GOUT[38] );
BLOCK1 U339 (PIN[7] , PIN[23] , GIN[23] , GIN[39] , POUT[7] , GOUT[39] );
BLOCK1 U340 (PIN[8] , PIN[24] , GIN[24] , GIN[40] , POUT[8] , GOUT[40] );
BLOCK1 U341 (PIN[9] , PIN[25] , GIN[25] , GIN[41] , POUT[9] , GOUT[41] );
BLOCK1 U342 (PIN[10] , PIN[26] , GIN[26] , GIN[42] , POUT[10] , GOUT[42] );
BLOCK1 U343 (PIN[11] , PIN[27] , GIN[27] , GIN[43] , POUT[11] , GOUT[43] );
BLOCK1 U344 (PIN[12] , PIN[28] , GIN[28] , GIN[44] , POUT[12] , GOUT[44] );
BLOCK1 U345 (PIN[13] , PIN[29] , GIN[29] , GIN[45] , POUT[13] , GOUT[45] );
BLOCK1 U346 (PIN[14] , PIN[30] , GIN[30] , GIN[46] , POUT[14] , GOUT[46] );
BLOCK1 U347 (PIN[15] , PIN[31] , GIN[31] , GIN[47] , POUT[15] , GOUT[47] );
BLOCK1 U348 (PIN[16] , PIN[32] , GIN[32] , GIN[48] , POUT[16] , GOUT[48] );
BLOCK1 U349 (PIN[17] , PIN[33] , GIN[33] , GIN[49] , POUT[17] , GOUT[49] );
BLOCK1 U350 (PIN[18] , PIN[34] , GIN[34] , GIN[50] , POUT[18] , GOUT[50] );
BLOCK1 U351 (PIN[19] , PIN[35] , GIN[35] , GIN[51] , POUT[19] , GOUT[51] );
BLOCK1 U352 (PIN[20] , PIN[36] , GIN[36] , GIN[52] , POUT[20] , GOUT[52] );
BLOCK1 U353 (PIN[21] , PIN[37] , GIN[37] , GIN[53] , POUT[21] , GOUT[53] );
BLOCK1 U354 (PIN[22] , PIN[38] , GIN[38] , GIN[54] , POUT[22] , GOUT[54] );
BLOCK1 U355 (PIN[23] , PIN[39] , GIN[39] , GIN[55] , POUT[23] , GOUT[55] );
BLOCK1 U356 (PIN[24] , PIN[40] , GIN[40] , GIN[56] , POUT[24] , GOUT[56] );
BLOCK1 U357 (PIN[25] , PIN[41] , GIN[41] , GIN[57] , POUT[25] , GOUT[57] );
BLOCK1 U358 (PIN[26] , PIN[42] , GIN[42] , GIN[58] , POUT[26] , GOUT[58] );
BLOCK1 U359 (PIN[27] , PIN[43] , GIN[43] , GIN[59] , POUT[27] , GOUT[59] );
BLOCK1 U360 (PIN[28] , PIN[44] , GIN[44] , GIN[60] , POUT[28] , GOUT[60] );
BLOCK1 U361 (PIN[29] , PIN[45] , GIN[45] , GIN[61] , POUT[29] , GOUT[61] );
BLOCK1 U362 (PIN[30] , PIN[46] , GIN[46] , GIN[62] , POUT[30] , GOUT[62] );
BLOCK1 U363 (PIN[31] , PIN[47] , GIN[47] , GIN[63] , POUT[31] , GOUT[63] );
BLOCK1 U364 (PIN[32] , PIN[48] , GIN[48] , GIN[64] , POUT[32] , GOUT[64] );
endmodule // DBLC_4_64
module DBLC_5_64 ( PIN, GIN, POUT, GOUT );
input [32:0] PIN;
input [64:0] GIN;
output [0:0] POUT;
output [64:0] GOUT;
INVBLOCK U10 (GIN[0] , GOUT[0] );
INVBLOCK U11 (GIN[1] , GOUT[1] );
INVBLOCK U12 (GIN[2] , GOUT[2] );
INVBLOCK U13 (GIN[3] , GOUT[3] );
INVBLOCK U14 (GIN[4] , GOUT[4] );
INVBLOCK U15 (GIN[5] , GOUT[5] );
INVBLOCK U16 (GIN[6] , GOUT[6] );
INVBLOCK U17 (GIN[7] , GOUT[7] );
INVBLOCK U18 (GIN[8] , GOUT[8] );
INVBLOCK U19 (GIN[9] , GOUT[9] );
INVBLOCK U110 (GIN[10] , GOUT[10] );
INVBLOCK U111 (GIN[11] , GOUT[11] );
INVBLOCK U112 (GIN[12] , GOUT[12] );
INVBLOCK U113 (GIN[13] , GOUT[13] );
INVBLOCK U114 (GIN[14] , GOUT[14] );
INVBLOCK U115 (GIN[15] , GOUT[15] );
INVBLOCK U116 (GIN[16] , GOUT[16] );
INVBLOCK U117 (GIN[17] , GOUT[17] );
INVBLOCK U118 (GIN[18] , GOUT[18] );
INVBLOCK U119 (GIN[19] , GOUT[19] );
INVBLOCK U120 (GIN[20] , GOUT[20] );
INVBLOCK U121 (GIN[21] , GOUT[21] );
INVBLOCK U122 (GIN[22] , GOUT[22] );
INVBLOCK U123 (GIN[23] , GOUT[23] );
INVBLOCK U124 (GIN[24] , GOUT[24] );
INVBLOCK U125 (GIN[25] , GOUT[25] );
INVBLOCK U126 (GIN[26] , GOUT[26] );
INVBLOCK U127 (GIN[27] , GOUT[27] );
INVBLOCK U128 (GIN[28] , GOUT[28] );
INVBLOCK U129 (GIN[29] , GOUT[29] );
INVBLOCK U130 (GIN[30] , GOUT[30] );
INVBLOCK U131 (GIN[31] , GOUT[31] );
BLOCK2A U232 (PIN[0] , GIN[0] , GIN[32] , GOUT[32] );
BLOCK2A U233 (PIN[1] , GIN[1] , GIN[33] , GOUT[33] );
BLOCK2A U234 (PIN[2] , GIN[2] , GIN[34] , GOUT[34] );
BLOCK2A U235 (PIN[3] , GIN[3] , GIN[35] , GOUT[35] );
BLOCK2A U236 (PIN[4] , GIN[4] , GIN[36] , GOUT[36] );
BLOCK2A U237 (PIN[5] , GIN[5] , GIN[37] , GOUT[37] );
BLOCK2A U238 (PIN[6] , GIN[6] , GIN[38] , GOUT[38] );
BLOCK2A U239 (PIN[7] , GIN[7] , GIN[39] , GOUT[39] );
BLOCK2A U240 (PIN[8] , GIN[8] , GIN[40] , GOUT[40] );
BLOCK2A U241 (PIN[9] , GIN[9] , GIN[41] , GOUT[41] );
BLOCK2A U242 (PIN[10] , GIN[10] , GIN[42] , GOUT[42] );
BLOCK2A U243 (PIN[11] , GIN[11] , GIN[43] , GOUT[43] );
BLOCK2A U244 (PIN[12] , GIN[12] , GIN[44] , GOUT[44] );
BLOCK2A U245 (PIN[13] , GIN[13] , GIN[45] , GOUT[45] );
BLOCK2A U246 (PIN[14] , GIN[14] , GIN[46] , GOUT[46] );
BLOCK2A U247 (PIN[15] , GIN[15] , GIN[47] , GOUT[47] );
BLOCK2A U248 (PIN[16] , GIN[16] , GIN[48] , GOUT[48] );
BLOCK2A U249 (PIN[17] , GIN[17] , GIN[49] , GOUT[49] );
BLOCK2A U250 (PIN[18] , GIN[18] , GIN[50] , GOUT[50] );
BLOCK2A U251 (PIN[19] , GIN[19] , GIN[51] , GOUT[51] );
BLOCK2A U252 (PIN[20] , GIN[20] , GIN[52] , GOUT[52] );
BLOCK2A U253 (PIN[21] , GIN[21] , GIN[53] , GOUT[53] );
BLOCK2A U254 (PIN[22] , GIN[22] , GIN[54] , GOUT[54] );
BLOCK2A U255 (PIN[23] , GIN[23] , GIN[55] , GOUT[55] );
BLOCK2A U256 (PIN[24] , GIN[24] , GIN[56] , GOUT[56] );
BLOCK2A U257 (PIN[25] , GIN[25] , GIN[57] , GOUT[57] );
BLOCK2A U258 (PIN[26] , GIN[26] , GIN[58] , GOUT[58] );
BLOCK2A U259 (PIN[27] , GIN[27] , GIN[59] , GOUT[59] );
BLOCK2A U260 (PIN[28] , GIN[28] , GIN[60] , GOUT[60] );
BLOCK2A U261 (PIN[29] , GIN[29] , GIN[61] , GOUT[61] );
BLOCK2A U262 (PIN[30] , GIN[30] , GIN[62] , GOUT[62] );
BLOCK2A U263 (PIN[31] , GIN[31] , GIN[63] , GOUT[63] );
BLOCK2 U364 (PIN[0] , PIN[32] , GIN[32] , GIN[64] , POUT[0] , GOUT[64] );
endmodule // DBLC_5_64
module XORSTAGE_64 ( A, B, PBIT, CARRY, SUM, COUT );
input [63:0] A;
input [63:0] B;
input PBIT;
input [64:0] CARRY;
output [63:0] SUM;
output COUT;
XXOR1 U20 (A[0] , B[0] , CARRY[0] , SUM[0] );
XXOR1 U21 (A[1] , B[1] , CARRY[1] , SUM[1] );
XXOR1 U22 (A[2] , B[2] , CARRY[2] , SUM[2] );
XXOR1 U23 (A[3] , B[3] , CARRY[3] , SUM[3] );
XXOR1 U24 (A[4] , B[4] , CARRY[4] , SUM[4] );
XXOR1 U25 (A[5] , B[5] , CARRY[5] , SUM[5] );
XXOR1 U26 (A[6] , B[6] , CARRY[6] , SUM[6] );
XXOR1 U27 (A[7] , B[7] , CARRY[7] , SUM[7] );
XXOR1 U28 (A[8] , B[8] , CARRY[8] , SUM[8] );
XXOR1 U29 (A[9] , B[9] , CARRY[9] , SUM[9] );
XXOR1 U210 (A[10] , B[10] , CARRY[10] , SUM[10] );
XXOR1 U211 (A[11] , B[11] , CARRY[11] , SUM[11] );
XXOR1 U212 (A[12] , B[12] , CARRY[12] , SUM[12] );
XXOR1 U213 (A[13] , B[13] , CARRY[13] , SUM[13] );
XXOR1 U214 (A[14] , B[14] , CARRY[14] , SUM[14] );
XXOR1 U215 (A[15] , B[15] , CARRY[15] , SUM[15] );
XXOR1 U216 (A[16] , B[16] , CARRY[16] , SUM[16] );
XXOR1 U217 (A[17] , B[17] , CARRY[17] , SUM[17] );
XXOR1 U218 (A[18] , B[18] , CARRY[18] , SUM[18] );
XXOR1 U219 (A[19] , B[19] , CARRY[19] , SUM[19] );
XXOR1 U220 (A[20] , B[20] , CARRY[20] , SUM[20] );
XXOR1 U221 (A[21] , B[21] , CARRY[21] , SUM[21] );
XXOR1 U222 (A[22] , B[22] , CARRY[22] , SUM[22] );
XXOR1 U223 (A[23] , B[23] , CARRY[23] , SUM[23] );
XXOR1 U224 (A[24] , B[24] , CARRY[24] , SUM[24] );
XXOR1 U225 (A[25] , B[25] , CARRY[25] , SUM[25] );
XXOR1 U226 (A[26] , B[26] , CARRY[26] , SUM[26] );
XXOR1 U227 (A[27] , B[27] , CARRY[27] , SUM[27] );
XXOR1 U228 (A[28] , B[28] , CARRY[28] , SUM[28] );
XXOR1 U229 (A[29] , B[29] , CARRY[29] , SUM[29] );
XXOR1 U230 (A[30] , B[30] , CARRY[30] , SUM[30] );
XXOR1 U231 (A[31] , B[31] , CARRY[31] , SUM[31] );
XXOR1 U232 (A[32] , B[32] , CARRY[32] , SUM[32] );
XXOR1 U233 (A[33] , B[33] , CARRY[33] , SUM[33] );
XXOR1 U234 (A[34] , B[34] , CARRY[34] , SUM[34] );
XXOR1 U235 (A[35] , B[35] , CARRY[35] , SUM[35] );
XXOR1 U236 (A[36] , B[36] , CARRY[36] , SUM[36] );
XXOR1 U237 (A[37] , B[37] , CARRY[37] , SUM[37] );
XXOR1 U238 (A[38] , B[38] , CARRY[38] , SUM[38] );
XXOR1 U239 (A[39] , B[39] , CARRY[39] , SUM[39] );
XXOR1 U240 (A[40] , B[40] , CARRY[40] , SUM[40] );
XXOR1 U241 (A[41] , B[41] , CARRY[41] , SUM[41] );
XXOR1 U242 (A[42] , B[42] , CARRY[42] , SUM[42] );
XXOR1 U243 (A[43] , B[43] , CARRY[43] , SUM[43] );
XXOR1 U244 (A[44] , B[44] , CARRY[44] , SUM[44] );
XXOR1 U245 (A[45] , B[45] , CARRY[45] , SUM[45] );
XXOR1 U246 (A[46] , B[46] , CARRY[46] , SUM[46] );
XXOR1 U247 (A[47] , B[47] , CARRY[47] , SUM[47] );
XXOR1 U248 (A[48] , B[48] , CARRY[48] , SUM[48] );
XXOR1 U249 (A[49] , B[49] , CARRY[49] , SUM[49] );
XXOR1 U250 (A[50] , B[50] , CARRY[50] , SUM[50] );
XXOR1 U251 (A[51] , B[51] , CARRY[51] , SUM[51] );
XXOR1 U252 (A[52] , B[52] , CARRY[52] , SUM[52] );
XXOR1 U253 (A[53] , B[53] , CARRY[53] , SUM[53] );
XXOR1 U254 (A[54] , B[54] , CARRY[54] , SUM[54] );
XXOR1 U255 (A[55] , B[55] , CARRY[55] , SUM[55] );
XXOR1 U256 (A[56] , B[56] , CARRY[56] , SUM[56] );
XXOR1 U257 (A[57] , B[57] , CARRY[57] , SUM[57] );
XXOR1 U258 (A[58] , B[58] , CARRY[58] , SUM[58] );
XXOR1 U259 (A[59] , B[59] , CARRY[59] , SUM[59] );
XXOR1 U260 (A[60] , B[60] , CARRY[60] , SUM[60] );
XXOR1 U261 (A[61] , B[61] , CARRY[61] , SUM[61] );
XXOR1 U262 (A[62] , B[62] , CARRY[62] , SUM[62] );
XXOR1 U263 (A[63] , B[63] , CARRY[63] , SUM[63] );
BLOCK1A U1 (PBIT , CARRY[0] , CARRY[64] , COUT );
endmodule // XORSTAGE_64
module DBLCTREE_64 ( PIN, GIN, GOUT, POUT );
input [63:0] PIN;
input [64:0] GIN;
output [64:0] GOUT;
output [0:0] POUT;
wire [62:0] INTPROP_0;
wire [64:0] INTGEN_0;
wire [60:0] INTPROP_1;
wire [64:0] INTGEN_1;
wire [56:0] INTPROP_2;
wire [64:0] INTGEN_2;
wire [48:0] INTPROP_3;
wire [64:0] INTGEN_3;
wire [32:0] INTPROP_4;
wire [64:0] INTGEN_4;
DBLC_0_64 U_0 (.PIN(PIN) , .GIN(GIN) , .POUT(INTPROP_0) , .GOUT(INTGEN_0) );
DBLC_1_64 U_1 (.PIN(INTPROP_0) , .GIN(INTGEN_0) , .POUT(INTPROP_1) , .GOUT(INTGEN_1) );
DBLC_2_64 U_2 (.PIN(INTPROP_1) , .GIN(INTGEN_1) , .POUT(INTPROP_2) , .GOUT(INTGEN_2) );
DBLC_3_64 U_3 (.PIN(INTPROP_2) , .GIN(INTGEN_2) , .POUT(INTPROP_3) , .GOUT(INTGEN_3) );
DBLC_4_64 U_4 (.PIN(INTPROP_3) , .GIN(INTGEN_3) , .POUT(INTPROP_4) , .GOUT(INTGEN_4) );
DBLC_5_64 U_5 (.PIN(INTPROP_4) , .GIN(INTGEN_4) , .POUT(POUT) , .GOUT(GOUT) );
endmodule // DBLCTREE_64
module DBLCADDER_64_64 ( OPA, OPB, CIN, SUM, COUT );
input [63:0] OPA;
input [63:0] OPB;
input CIN;
output [63:0] SUM;
output COUT;
wire [63:0] INTPROP;
wire [64:0] INTGEN;
wire [0:0] PBIT;
wire [64:0] CARRY;
PRESTAGE_64 U1 (OPA , OPB , CIN , INTPROP , INTGEN );
DBLCTREE_64 U2 (INTPROP , INTGEN , CARRY , PBIT );
XORSTAGE_64 U3 (OPA[63:0] , OPB[63:0] , PBIT[0] , CARRY[64:0] , SUM , COUT );
endmodule

View file

@ -1,332 +0,0 @@
// This module implements a 12-bit carry lookahead adder. It is used
// for rounding in the floating point adder.
module cla12 (S, CO, X, Y);
input [11:0] X;
input [11:0] Y;
output [11:0] S;
output CO;
wire [63:0] A,B,Q;//***KEP was 0:63 - changed due to lint warning
wire LOGIC0;
wire CIN;
wire CO_64;
assign LOGIC0 = 0;
assign CIN = 0;
DBLCADDER_64_64 U1 (A , B , CIN, Q , CO_64);
assign A[0] = X[0];
assign B[0] = Y[0];
assign A[1] = X[1];
assign B[1] = Y[1];
assign A[2] = X[2];
assign B[2] = Y[2];
assign A[3] = X[3];
assign B[3] = Y[3];
assign A[4] = X[4];
assign B[4] = Y[4];
assign A[5] = X[5];
assign B[5] = Y[5];
assign A[6] = X[6];
assign B[6] = Y[6];
assign A[7] = X[7];
assign B[7] = Y[7];
assign A[8] = X[8];
assign B[8] = Y[8];
assign A[9] = X[9];
assign B[9] = Y[9];
assign A[10] = X[10];
assign B[10] = Y[10];
assign A[11] = X[11];
assign B[11] = Y[11];
assign A[12] = LOGIC0;
assign B[12] = LOGIC0;
assign A[13] = LOGIC0;
assign B[13] = LOGIC0;
assign A[14] = LOGIC0;
assign B[14] = LOGIC0;
assign A[15] = LOGIC0;
assign B[15] = LOGIC0;
assign A[16] = LOGIC0;
assign B[16] = LOGIC0;
assign A[17] = LOGIC0;
assign B[17] = LOGIC0;
assign A[18] = LOGIC0;
assign B[18] = LOGIC0;
assign A[19] = LOGIC0;
assign B[19] = LOGIC0;
assign A[20] = LOGIC0;
assign B[20] = LOGIC0;
assign A[21] = LOGIC0;
assign B[21] = LOGIC0;
assign A[22] = LOGIC0;
assign B[22] = LOGIC0;
assign A[23] = LOGIC0;
assign B[23] = LOGIC0;
assign A[24] = LOGIC0;
assign B[24] = LOGIC0;
assign A[25] = LOGIC0;
assign B[25] = LOGIC0;
assign A[26] = LOGIC0;
assign B[26] = LOGIC0;
assign A[27] = LOGIC0;
assign B[27] = LOGIC0;
assign A[28] = LOGIC0;
assign B[28] = LOGIC0;
assign A[29] = LOGIC0;
assign B[29] = LOGIC0;
assign A[30] = LOGIC0;
assign B[30] = LOGIC0;
assign A[31] = LOGIC0;
assign B[31] = LOGIC0;
assign A[32] = LOGIC0;
assign B[32] = LOGIC0;
assign A[33] = LOGIC0;
assign B[33] = LOGIC0;
assign A[34] = LOGIC0;
assign B[34] = LOGIC0;
assign A[35] = LOGIC0;
assign B[35] = LOGIC0;
assign A[36] = LOGIC0;
assign B[36] = LOGIC0;
assign A[37] = LOGIC0;
assign B[37] = LOGIC0;
assign A[38] = LOGIC0;
assign B[38] = LOGIC0;
assign A[39] = LOGIC0;
assign B[39] = LOGIC0;
assign A[40] = LOGIC0;
assign B[40] = LOGIC0;
assign A[41] = LOGIC0;
assign B[41] = LOGIC0;
assign A[42] = LOGIC0;
assign B[42] = LOGIC0;
assign A[43] = LOGIC0;
assign B[43] = LOGIC0;
assign A[44] = LOGIC0;
assign B[44] = LOGIC0;
assign A[45] = LOGIC0;
assign B[45] = LOGIC0;
assign A[46] = LOGIC0;
assign B[46] = LOGIC0;
assign A[47] = LOGIC0;
assign B[47] = LOGIC0;
assign A[48] = LOGIC0;
assign B[48] = LOGIC0;
assign A[49] = LOGIC0;
assign B[49] = LOGIC0;
assign A[50] = LOGIC0;
assign B[50] = LOGIC0;
assign A[51] = LOGIC0;
assign B[51] = LOGIC0;
assign A[52] = LOGIC0;
assign B[52] = LOGIC0;
assign A[53] = LOGIC0;
assign B[53] = LOGIC0;
assign A[54] = LOGIC0;
assign B[54] = LOGIC0;
assign A[55] = LOGIC0;
assign B[55] = LOGIC0;
assign A[56] = LOGIC0;
assign B[56] = LOGIC0;
assign A[57] = LOGIC0;
assign B[57] = LOGIC0;
assign A[58] = LOGIC0;
assign B[58] = LOGIC0;
assign A[59] = LOGIC0;
assign B[59] = LOGIC0;
assign A[60] = LOGIC0;
assign B[60] = LOGIC0;
assign A[61] = LOGIC0;
assign B[61] = LOGIC0;
assign A[62] = LOGIC0;
assign B[62] = LOGIC0;
assign A[63] = LOGIC0;
assign B[63] = LOGIC0;
assign S[0] = Q[0];
assign S[1] = Q[1];
assign S[2] = Q[2];
assign S[3] = Q[3];
assign S[4] = Q[4];
assign S[5] = Q[5];
assign S[6] = Q[6];
assign S[7] = Q[7];
assign S[8] = Q[8];
assign S[9] = Q[9];
assign S[10] = Q[10];
assign S[11] = Q[11];
assign CO = Q[12];
endmodule //cla52
// This module implements a 12-bit carry lookahead subtractor. It is used
// for rounding in the floating point adder.
module cla_sub12 (S, X, Y);
input [11:0] X;
input [11:0] Y;
output [11:0] S;
wire [63:0] A,B,Q,Bbar;//***KEP was 0:63 - changed due to lint warning
wire CO;
wire LOGIC0;
wire VDD;
logic CO_12;
assign Bbar = ~B;
assign LOGIC0 = 0;
assign VDD = 1;
DBLCADDER_64_64 U1 (A , Bbar , VDD, Q , CO);
assign A[0] = X[0];
assign B[0] = Y[0];
assign A[1] = X[1];
assign B[1] = Y[1];
assign A[2] = X[2];
assign B[2] = Y[2];
assign A[3] = X[3];
assign B[3] = Y[3];
assign A[4] = X[4];
assign B[4] = Y[4];
assign A[5] = X[5];
assign B[5] = Y[5];
assign A[6] = X[6];
assign B[6] = Y[6];
assign A[7] = X[7];
assign B[7] = Y[7];
assign A[8] = X[8];
assign B[8] = Y[8];
assign A[9] = X[9];
assign B[9] = Y[9];
assign A[10] = X[10];
assign B[10] = Y[10];
assign A[11] = X[11];
assign B[11] = Y[11];
assign A[12] = LOGIC0;
assign B[12] = LOGIC0;
assign A[13] = LOGIC0;
assign B[13] = LOGIC0;
assign A[14] = LOGIC0;
assign B[14] = LOGIC0;
assign A[15] = LOGIC0;
assign B[15] = LOGIC0;
assign A[16] = LOGIC0;
assign B[16] = LOGIC0;
assign A[17] = LOGIC0;
assign B[17] = LOGIC0;
assign A[18] = LOGIC0;
assign B[18] = LOGIC0;
assign A[19] = LOGIC0;
assign B[19] = LOGIC0;
assign A[20] = LOGIC0;
assign B[20] = LOGIC0;
assign A[21] = LOGIC0;
assign B[21] = LOGIC0;
assign A[22] = LOGIC0;
assign B[22] = LOGIC0;
assign A[23] = LOGIC0;
assign B[23] = LOGIC0;
assign A[24] = LOGIC0;
assign B[24] = LOGIC0;
assign A[25] = LOGIC0;
assign B[25] = LOGIC0;
assign A[26] = LOGIC0;
assign B[26] = LOGIC0;
assign A[27] = LOGIC0;
assign B[27] = LOGIC0;
assign A[28] = LOGIC0;
assign B[28] = LOGIC0;
assign A[29] = LOGIC0;
assign B[29] = LOGIC0;
assign A[30] = LOGIC0;
assign B[30] = LOGIC0;
assign A[31] = LOGIC0;
assign B[31] = LOGIC0;
assign A[32] = LOGIC0;
assign B[32] = LOGIC0;
assign A[33] = LOGIC0;
assign B[33] = LOGIC0;
assign A[34] = LOGIC0;
assign B[34] = LOGIC0;
assign A[35] = LOGIC0;
assign B[35] = LOGIC0;
assign A[36] = LOGIC0;
assign B[36] = LOGIC0;
assign A[37] = LOGIC0;
assign B[37] = LOGIC0;
assign A[38] = LOGIC0;
assign B[38] = LOGIC0;
assign A[39] = LOGIC0;
assign B[39] = LOGIC0;
assign A[40] = LOGIC0;
assign B[40] = LOGIC0;
assign A[41] = LOGIC0;
assign B[41] = LOGIC0;
assign A[42] = LOGIC0;
assign B[42] = LOGIC0;
assign A[43] = LOGIC0;
assign B[43] = LOGIC0;
assign A[44] = LOGIC0;
assign B[44] = LOGIC0;
assign A[45] = LOGIC0;
assign B[45] = LOGIC0;
assign A[46] = LOGIC0;
assign B[46] = LOGIC0;
assign A[47] = LOGIC0;
assign B[47] = LOGIC0;
assign A[48] = LOGIC0;
assign B[48] = LOGIC0;
assign A[49] = LOGIC0;
assign B[49] = LOGIC0;
assign A[50] = LOGIC0;
assign B[50] = LOGIC0;
assign A[51] = LOGIC0;
assign B[51] = LOGIC0;
assign A[52] = LOGIC0;
assign B[52] = LOGIC0;
assign A[53] = LOGIC0;
assign B[53] = LOGIC0;
assign A[54] = LOGIC0;
assign B[54] = LOGIC0;
assign A[55] = LOGIC0;
assign B[55] = LOGIC0;
assign A[56] = LOGIC0;
assign B[56] = LOGIC0;
assign A[57] = LOGIC0;
assign B[57] = LOGIC0;
assign A[58] = LOGIC0;
assign B[58] = LOGIC0;
assign A[59] = LOGIC0;
assign B[59] = LOGIC0;
assign A[60] = LOGIC0;
assign B[60] = LOGIC0;
assign A[61] = LOGIC0;
assign B[61] = LOGIC0;
assign A[62] = LOGIC0;
assign B[62] = LOGIC0;
assign A[63] = LOGIC0;
assign B[63] = LOGIC0;
assign S[0] = Q[0];
assign S[1] = Q[1];
assign S[2] = Q[2];
assign S[3] = Q[3];
assign S[4] = Q[4];
assign S[5] = Q[5];
assign S[6] = Q[6];
assign S[7] = Q[7];
assign S[8] = Q[8];
assign S[9] = Q[9];
assign S[10] = Q[10];
assign S[11] = Q[11];
assign CO_12 = Q[12];
endmodule //cla_sub52

View file

@ -1,409 +0,0 @@
// This module implements a 52-bit carry lookahead adder. It is used
// for rounding in the floating point adder.
module cla52 (S, CO, X, Y);
input [51:0] X;
input [51:0] Y;
output [51:0] S;
output CO;
wire [63:0] A,B,Q;//***KEP was 0:63 - changed due to lint warning
wire LOGIC0;
wire CIN;
wire CO_64;
assign LOGIC0 = 0;
assign CIN = 0;
DBLCADDER_64_64 U1 (A , B , CIN, Q , CO_64);
assign A[0] = X[0];
assign B[0] = Y[0];
assign A[1] = X[1];
assign B[1] = Y[1];
assign A[2] = X[2];
assign B[2] = Y[2];
assign A[3] = X[3];
assign B[3] = Y[3];
assign A[4] = X[4];
assign B[4] = Y[4];
assign A[5] = X[5];
assign B[5] = Y[5];
assign A[6] = X[6];
assign B[6] = Y[6];
assign A[7] = X[7];
assign B[7] = Y[7];
assign A[8] = X[8];
assign B[8] = Y[8];
assign A[9] = X[9];
assign B[9] = Y[9];
assign A[10] = X[10];
assign B[10] = Y[10];
assign A[11] = X[11];
assign B[11] = Y[11];
assign A[12] = X[12];
assign B[12] = Y[12];
assign A[13] = X[13];
assign B[13] = Y[13];
assign A[14] = X[14];
assign B[14] = Y[14];
assign A[15] = X[15];
assign B[15] = Y[15];
assign A[16] = X[16];
assign B[16] = Y[16];
assign A[17] = X[17];
assign B[17] = Y[17];
assign A[18] = X[18];
assign B[18] = Y[18];
assign A[19] = X[19];
assign B[19] = Y[19];
assign A[20] = X[20];
assign B[20] = Y[20];
assign A[21] = X[21];
assign B[21] = Y[21];
assign A[22] = X[22];
assign B[22] = Y[22];
assign A[23] = X[23];
assign B[23] = Y[23];
assign A[24] = X[24];
assign B[24] = Y[24];
assign A[25] = X[25];
assign B[25] = Y[25];
assign A[26] = X[26];
assign B[26] = Y[26];
assign A[27] = X[27];
assign B[27] = Y[27];
assign A[28] = X[28];
assign B[28] = Y[28];
assign A[29] = X[29];
assign B[29] = Y[29];
assign A[30] = X[30];
assign B[30] = Y[30];
assign A[31] = X[31];
assign B[31] = Y[31];
assign A[32] = X[32];
assign B[32] = Y[32];
assign A[33] = X[33];
assign B[33] = Y[33];
assign A[34] = X[34];
assign B[34] = Y[34];
assign A[35] = X[35];
assign B[35] = Y[35];
assign A[36] = X[36];
assign B[36] = Y[36];
assign A[37] = X[37];
assign B[37] = Y[37];
assign A[38] = X[38];
assign B[38] = Y[38];
assign A[39] = X[39];
assign B[39] = Y[39];
assign A[40] = X[40];
assign B[40] = Y[40];
assign A[41] = X[41];
assign B[41] = Y[41];
assign A[42] = X[42];
assign B[42] = Y[42];
assign A[43] = X[43];
assign B[43] = Y[43];
assign A[44] = X[44];
assign B[44] = Y[44];
assign A[45] = X[45];
assign B[45] = Y[45];
assign A[46] = X[46];
assign B[46] = Y[46];
assign A[47] = X[47];
assign B[47] = Y[47];
assign A[48] = X[48];
assign B[48] = Y[48];
assign A[49] = X[49];
assign B[49] = Y[49];
assign A[50] = X[50];
assign B[50] = Y[50];
assign A[51] = X[51];
assign B[51] = Y[51];
assign A[52] = LOGIC0;
assign B[52] = LOGIC0;
assign A[53] = LOGIC0;
assign B[53] = LOGIC0;
assign A[54] = LOGIC0;
assign B[54] = LOGIC0;
assign A[55] = LOGIC0;
assign B[55] = LOGIC0;
assign A[56] = LOGIC0;
assign B[56] = LOGIC0;
assign A[57] = LOGIC0;
assign B[57] = LOGIC0;
assign A[58] = LOGIC0;
assign B[58] = LOGIC0;
assign A[59] = LOGIC0;
assign B[59] = LOGIC0;
assign A[60] = LOGIC0;
assign B[60] = LOGIC0;
assign A[61] = LOGIC0;
assign B[61] = LOGIC0;
assign A[62] = LOGIC0;
assign B[62] = LOGIC0;
assign A[63] = LOGIC0;
assign B[63] = LOGIC0;
assign S[0] = Q[0];
assign S[1] = Q[1];
assign S[2] = Q[2];
assign S[3] = Q[3];
assign S[4] = Q[4];
assign S[5] = Q[5];
assign S[6] = Q[6];
assign S[7] = Q[7];
assign S[8] = Q[8];
assign S[9] = Q[9];
assign S[10] = Q[10];
assign S[11] = Q[11];
assign S[12] = Q[12];
assign S[13] = Q[13];
assign S[14] = Q[14];
assign S[15] = Q[15];
assign S[16] = Q[16];
assign S[17] = Q[17];
assign S[18] = Q[18];
assign S[19] = Q[19];
assign S[20] = Q[20];
assign S[21] = Q[21];
assign S[22] = Q[22];
assign S[23] = Q[23];
assign S[24] = Q[24];
assign S[25] = Q[25];
assign S[26] = Q[26];
assign S[27] = Q[27];
assign S[28] = Q[28];
assign S[29] = Q[29];
assign S[30] = Q[30];
assign S[31] = Q[31];
assign S[32] = Q[32];
assign S[33] = Q[33];
assign S[34] = Q[34];
assign S[35] = Q[35];
assign S[36] = Q[36];
assign S[37] = Q[37];
assign S[38] = Q[38];
assign S[39] = Q[39];
assign S[40] = Q[40];
assign S[41] = Q[41];
assign S[42] = Q[42];
assign S[43] = Q[43];
assign S[44] = Q[44];
assign S[45] = Q[45];
assign S[46] = Q[46];
assign S[47] = Q[47];
assign S[48] = Q[48];
assign S[49] = Q[49];
assign S[50] = Q[50];
assign S[51] = Q[51];
assign CO = Q[52];
endmodule //cla52
// This module implements a 52-bit carry lookahead subtractor. It is used
// for rounding in the floating point adder.
module cla_sub52 (S, X, Y);
input [51:0] X;
input [51:0] Y;
output [51:0] S;
wire [63:0] A,B,Q,Bbar;//***KEP was 0:63 - changed due to lint warning
wire LOGIC0;
wire CIN;
wire CO_52;
wire CO_64;
assign Bbar = ~B;
assign LOGIC0 = 0;
assign CIN = 0;
DBLCADDER_64_64 U1 (A , Bbar , CIN, Q , CO_64);
assign A[0] = X[0];
assign B[0] = Y[0];
assign A[1] = X[1];
assign B[1] = Y[1];
assign A[2] = X[2];
assign B[2] = Y[2];
assign A[3] = X[3];
assign B[3] = Y[3];
assign A[4] = X[4];
assign B[4] = Y[4];
assign A[5] = X[5];
assign B[5] = Y[5];
assign A[6] = X[6];
assign B[6] = Y[6];
assign A[7] = X[7];
assign B[7] = Y[7];
assign A[8] = X[8];
assign B[8] = Y[8];
assign A[9] = X[9];
assign B[9] = Y[9];
assign A[10] = X[10];
assign B[10] = Y[10];
assign A[11] = X[11];
assign B[11] = Y[11];
assign A[12] = X[12];
assign B[12] = Y[12];
assign A[13] = X[13];
assign B[13] = Y[13];
assign A[14] = X[14];
assign B[14] = Y[14];
assign A[15] = X[15];
assign B[15] = Y[15];
assign A[16] = X[16];
assign B[16] = Y[16];
assign A[17] = X[17];
assign B[17] = Y[17];
assign A[18] = X[18];
assign B[18] = Y[18];
assign A[19] = X[19];
assign B[19] = Y[19];
assign A[20] = X[20];
assign B[20] = Y[20];
assign A[21] = X[21];
assign B[21] = Y[21];
assign A[22] = X[22];
assign B[22] = Y[22];
assign A[23] = X[23];
assign B[23] = Y[23];
assign A[24] = X[24];
assign B[24] = Y[24];
assign A[25] = X[25];
assign B[25] = Y[25];
assign A[26] = X[26];
assign B[26] = Y[26];
assign A[27] = X[27];
assign B[27] = Y[27];
assign A[28] = X[28];
assign B[28] = Y[28];
assign A[29] = X[29];
assign B[29] = Y[29];
assign A[30] = X[30];
assign B[30] = Y[30];
assign A[31] = X[31];
assign B[31] = Y[31];
assign A[32] = X[32];
assign B[32] = Y[32];
assign A[33] = X[33];
assign B[33] = Y[33];
assign A[34] = X[34];
assign B[34] = Y[34];
assign A[35] = X[35];
assign B[35] = Y[35];
assign A[36] = X[36];
assign B[36] = Y[36];
assign A[37] = X[37];
assign B[37] = Y[37];
assign A[38] = X[38];
assign B[38] = Y[38];
assign A[39] = X[39];
assign B[39] = Y[39];
assign A[40] = X[40];
assign B[40] = Y[40];
assign A[41] = X[41];
assign B[41] = Y[41];
assign A[42] = X[42];
assign B[42] = Y[42];
assign A[43] = X[43];
assign B[43] = Y[43];
assign A[44] = X[44];
assign B[44] = Y[44];
assign A[45] = X[45];
assign B[45] = Y[45];
assign A[46] = X[46];
assign B[46] = Y[46];
assign A[47] = X[47];
assign B[47] = Y[47];
assign A[48] = X[48];
assign B[48] = Y[48];
assign A[49] = X[49];
assign B[49] = Y[49];
assign A[50] = X[50];
assign B[50] = Y[50];
assign A[51] = X[51];
assign B[51] = Y[51];
assign A[52] = LOGIC0;
assign B[52] = LOGIC0;
assign A[53] = LOGIC0;
assign B[53] = LOGIC0;
assign A[54] = LOGIC0;
assign B[54] = LOGIC0;
assign A[55] = LOGIC0;
assign B[55] = LOGIC0;
assign A[56] = LOGIC0;
assign B[56] = LOGIC0;
assign A[57] = LOGIC0;
assign B[57] = LOGIC0;
assign A[58] = LOGIC0;
assign B[58] = LOGIC0;
assign A[59] = LOGIC0;
assign B[59] = LOGIC0;
assign A[60] = LOGIC0;
assign B[60] = LOGIC0;
assign A[61] = LOGIC0;
assign B[61] = LOGIC0;
assign A[62] = LOGIC0;
assign B[62] = LOGIC0;
assign A[63] = LOGIC0;
assign B[63] = LOGIC0;
assign S[0] = Q[0];
assign S[1] = Q[1];
assign S[2] = Q[2];
assign S[3] = Q[3];
assign S[4] = Q[4];
assign S[5] = Q[5];
assign S[6] = Q[6];
assign S[7] = Q[7];
assign S[8] = Q[8];
assign S[9] = Q[9];
assign S[10] = Q[10];
assign S[11] = Q[11];
assign S[12] = Q[12];
assign S[13] = Q[13];
assign S[14] = Q[14];
assign S[15] = Q[15];
assign S[16] = Q[16];
assign S[17] = Q[17];
assign S[18] = Q[18];
assign S[19] = Q[19];
assign S[20] = Q[20];
assign S[21] = Q[21];
assign S[22] = Q[22];
assign S[23] = Q[23];
assign S[24] = Q[24];
assign S[25] = Q[25];
assign S[26] = Q[26];
assign S[27] = Q[27];
assign S[28] = Q[28];
assign S[29] = Q[29];
assign S[30] = Q[30];
assign S[31] = Q[31];
assign S[32] = Q[32];
assign S[33] = Q[33];
assign S[34] = Q[34];
assign S[35] = Q[35];
assign S[36] = Q[36];
assign S[37] = Q[37];
assign S[38] = Q[38];
assign S[39] = Q[39];
assign S[40] = Q[40];
assign S[41] = Q[41];
assign S[42] = Q[42];
assign S[43] = Q[43];
assign S[44] = Q[44];
assign S[45] = Q[45];
assign S[46] = Q[46];
assign S[47] = Q[47];
assign S[48] = Q[48];
assign S[49] = Q[49];
assign S[50] = Q[50];
assign S[51] = Q[51];
assign CO_52 = Q[52];
endmodule //cla_sub52

View file

@ -1,420 +0,0 @@
// This module implements a 64-bit carry lookehead adder/subtractor.
// It is used to perform the primary addition in the floating point
// adder
module cla64 (S, X, Y, Sub);
input [63:0] X;
input [63:0] Y;
input Sub;
output [63:0] S;
wire CO;
wire [63:0] A,B,Q, Bbar; //***KEP was 0:63 - changed due to lint warning
DBLCADDER_64_64 U1 (A , Bbar , Sub , Q , CO );
assign A[0] = X[0];
assign B[0] = Y[0];
assign A[1] = X[1];
assign B[1] = Y[1];
assign A[2] = X[2];
assign B[2] = Y[2];
assign A[3] = X[3];
assign B[3] = Y[3];
assign A[4] = X[4];
assign B[4] = Y[4];
assign A[5] = X[5];
assign B[5] = Y[5];
assign A[6] = X[6];
assign B[6] = Y[6];
assign A[7] = X[7];
assign B[7] = Y[7];
assign A[8] = X[8];
assign B[8] = Y[8];
assign A[9] = X[9];
assign B[9] = Y[9];
assign A[10] = X[10];
assign B[10] = Y[10];
assign A[11] = X[11];
assign B[11] = Y[11];
assign A[12] = X[12];
assign B[12] = Y[12];
assign A[13] = X[13];
assign B[13] = Y[13];
assign A[14] = X[14];
assign B[14] = Y[14];
assign A[15] = X[15];
assign B[15] = Y[15];
assign A[16] = X[16];
assign B[16] = Y[16];
assign A[17] = X[17];
assign B[17] = Y[17];
assign A[18] = X[18];
assign B[18] = Y[18];
assign A[19] = X[19];
assign B[19] = Y[19];
assign A[20] = X[20];
assign B[20] = Y[20];
assign A[21] = X[21];
assign B[21] = Y[21];
assign A[22] = X[22];
assign B[22] = Y[22];
assign A[23] = X[23];
assign B[23] = Y[23];
assign A[24] = X[24];
assign B[24] = Y[24];
assign A[25] = X[25];
assign B[25] = Y[25];
assign A[26] = X[26];
assign B[26] = Y[26];
assign A[27] = X[27];
assign B[27] = Y[27];
assign A[28] = X[28];
assign B[28] = Y[28];
assign A[29] = X[29];
assign B[29] = Y[29];
assign A[30] = X[30];
assign B[30] = Y[30];
assign A[31] = X[31];
assign B[31] = Y[31];
assign A[32] = X[32];
assign B[32] = Y[32];
assign A[33] = X[33];
assign B[33] = Y[33];
assign A[34] = X[34];
assign B[34] = Y[34];
assign A[35] = X[35];
assign B[35] = Y[35];
assign A[36] = X[36];
assign B[36] = Y[36];
assign A[37] = X[37];
assign B[37] = Y[37];
assign A[38] = X[38];
assign B[38] = Y[38];
assign A[39] = X[39];
assign B[39] = Y[39];
assign A[40] = X[40];
assign B[40] = Y[40];
assign A[41] = X[41];
assign B[41] = Y[41];
assign A[42] = X[42];
assign B[42] = Y[42];
assign A[43] = X[43];
assign B[43] = Y[43];
assign A[44] = X[44];
assign B[44] = Y[44];
assign A[45] = X[45];
assign B[45] = Y[45];
assign A[46] = X[46];
assign B[46] = Y[46];
assign A[47] = X[47];
assign B[47] = Y[47];
assign A[48] = X[48];
assign B[48] = Y[48];
assign A[49] = X[49];
assign B[49] = Y[49];
assign A[50] = X[50];
assign B[50] = Y[50];
assign A[51] = X[51];
assign B[51] = Y[51];
assign A[52] = X[52];
assign B[52] = Y[52];
assign A[53] = X[53];
assign B[53] = Y[53];
assign A[54] = X[54];
assign B[54] = Y[54];
assign A[55] = X[55];
assign B[55] = Y[55];
assign A[56] = X[56];
assign B[56] = Y[56];
assign A[57] = X[57];
assign B[57] = Y[57];
assign A[58] = X[58];
assign B[58] = Y[58];
assign A[59] = X[59];
assign B[59] = Y[59];
assign A[60] = X[60];
assign B[60] = Y[60];
assign A[61] = X[61];
assign B[61] = Y[61];
assign A[62] = X[62];
assign B[62] = Y[62];
assign A[63] = X[63];
assign B[63] = Y[63];
assign S[0] = Q[0];
assign S[1] = Q[1];
assign S[2] = Q[2];
assign S[3] = Q[3];
assign S[4] = Q[4];
assign S[5] = Q[5];
assign S[6] = Q[6];
assign S[7] = Q[7];
assign S[8] = Q[8];
assign S[9] = Q[9];
assign S[10] = Q[10];
assign S[11] = Q[11];
assign S[12] = Q[12];
assign S[13] = Q[13];
assign S[14] = Q[14];
assign S[15] = Q[15];
assign S[16] = Q[16];
assign S[17] = Q[17];
assign S[18] = Q[18];
assign S[19] = Q[19];
assign S[20] = Q[20];
assign S[21] = Q[21];
assign S[22] = Q[22];
assign S[23] = Q[23];
assign S[24] = Q[24];
assign S[25] = Q[25];
assign S[26] = Q[26];
assign S[27] = Q[27];
assign S[28] = Q[28];
assign S[29] = Q[29];
assign S[30] = Q[30];
assign S[31] = Q[31];
assign S[32] = Q[32];
assign S[33] = Q[33];
assign S[34] = Q[34];
assign S[35] = Q[35];
assign S[36] = Q[36];
assign S[37] = Q[37];
assign S[38] = Q[38];
assign S[39] = Q[39];
assign S[40] = Q[40];
assign S[41] = Q[41];
assign S[42] = Q[42];
assign S[43] = Q[43];
assign S[44] = Q[44];
assign S[45] = Q[45];
assign S[46] = Q[46];
assign S[47] = Q[47];
assign S[48] = Q[48];
assign S[49] = Q[49];
assign S[50] = Q[50];
assign S[51] = Q[51];
assign S[52] = Q[52];
assign S[53] = Q[53];
assign S[54] = Q[54];
assign S[55] = Q[55];
assign S[56] = Q[56];
assign S[57] = Q[57];
assign S[58] = Q[58];
assign S[59] = Q[59];
assign S[60] = Q[60];
assign S[61] = Q[61];
assign S[62] = Q[62];
assign S[63] = Q[63];
assign Bbar = B ^ {64{Sub}};
endmodule // cla64
// This module performs 64-bit subtraction. It is used to get the two's complement
// of main addition or subtraction in the floating point adder.
module cla_sub64 (S, X, Y);
input [63:0] X;
input [63:0] Y;
output [63:0] S;
wire CO;
wire VDD = 1'b1;
wire [63:0] A,B,Q, Bbar; //***KEP was 0:63 - changed due to lint warning
DBLCADDER_64_64 U1 (A , Bbar , VDD, Q , CO );
assign A[0] = X[0];
assign B[0] = Y[0];
assign A[1] = X[1];
assign B[1] = Y[1];
assign A[2] = X[2];
assign B[2] = Y[2];
assign A[3] = X[3];
assign B[3] = Y[3];
assign A[4] = X[4];
assign B[4] = Y[4];
assign A[5] = X[5];
assign B[5] = Y[5];
assign A[6] = X[6];
assign B[6] = Y[6];
assign A[7] = X[7];
assign B[7] = Y[7];
assign A[8] = X[8];
assign B[8] = Y[8];
assign A[9] = X[9];
assign B[9] = Y[9];
assign A[10] = X[10];
assign B[10] = Y[10];
assign A[11] = X[11];
assign B[11] = Y[11];
assign A[12] = X[12];
assign B[12] = Y[12];
assign A[13] = X[13];
assign B[13] = Y[13];
assign A[14] = X[14];
assign B[14] = Y[14];
assign A[15] = X[15];
assign B[15] = Y[15];
assign A[16] = X[16];
assign B[16] = Y[16];
assign A[17] = X[17];
assign B[17] = Y[17];
assign A[18] = X[18];
assign B[18] = Y[18];
assign A[19] = X[19];
assign B[19] = Y[19];
assign A[20] = X[20];
assign B[20] = Y[20];
assign A[21] = X[21];
assign B[21] = Y[21];
assign A[22] = X[22];
assign B[22] = Y[22];
assign A[23] = X[23];
assign B[23] = Y[23];
assign A[24] = X[24];
assign B[24] = Y[24];
assign A[25] = X[25];
assign B[25] = Y[25];
assign A[26] = X[26];
assign B[26] = Y[26];
assign A[27] = X[27];
assign B[27] = Y[27];
assign A[28] = X[28];
assign B[28] = Y[28];
assign A[29] = X[29];
assign B[29] = Y[29];
assign A[30] = X[30];
assign B[30] = Y[30];
assign A[31] = X[31];
assign B[31] = Y[31];
assign A[32] = X[32];
assign B[32] = Y[32];
assign A[33] = X[33];
assign B[33] = Y[33];
assign A[34] = X[34];
assign B[34] = Y[34];
assign A[35] = X[35];
assign B[35] = Y[35];
assign A[36] = X[36];
assign B[36] = Y[36];
assign A[37] = X[37];
assign B[37] = Y[37];
assign A[38] = X[38];
assign B[38] = Y[38];
assign A[39] = X[39];
assign B[39] = Y[39];
assign A[40] = X[40];
assign B[40] = Y[40];
assign A[41] = X[41];
assign B[41] = Y[41];
assign A[42] = X[42];
assign B[42] = Y[42];
assign A[43] = X[43];
assign B[43] = Y[43];
assign A[44] = X[44];
assign B[44] = Y[44];
assign A[45] = X[45];
assign B[45] = Y[45];
assign A[46] = X[46];
assign B[46] = Y[46];
assign A[47] = X[47];
assign B[47] = Y[47];
assign A[48] = X[48];
assign B[48] = Y[48];
assign A[49] = X[49];
assign B[49] = Y[49];
assign A[50] = X[50];
assign B[50] = Y[50];
assign A[51] = X[51];
assign B[51] = Y[51];
assign A[52] = X[52];
assign B[52] = Y[52];
assign A[53] = X[53];
assign B[53] = Y[53];
assign A[54] = X[54];
assign B[54] = Y[54];
assign A[55] = X[55];
assign B[55] = Y[55];
assign A[56] = X[56];
assign B[56] = Y[56];
assign A[57] = X[57];
assign B[57] = Y[57];
assign A[58] = X[58];
assign B[58] = Y[58];
assign A[59] = X[59];
assign B[59] = Y[59];
assign A[60] = X[60];
assign B[60] = Y[60];
assign A[61] = X[61];
assign B[61] = Y[61];
assign A[62] = X[62];
assign B[62] = Y[62];
assign A[63] = X[63];
assign B[63] = Y[63];
assign S[0] = Q[0];
assign S[1] = Q[1];
assign S[2] = Q[2];
assign S[3] = Q[3];
assign S[4] = Q[4];
assign S[5] = Q[5];
assign S[6] = Q[6];
assign S[7] = Q[7];
assign S[8] = Q[8];
assign S[9] = Q[9];
assign S[10] = Q[10];
assign S[11] = Q[11];
assign S[12] = Q[12];
assign S[13] = Q[13];
assign S[14] = Q[14];
assign S[15] = Q[15];
assign S[16] = Q[16];
assign S[17] = Q[17];
assign S[18] = Q[18];
assign S[19] = Q[19];
assign S[20] = Q[20];
assign S[21] = Q[21];
assign S[22] = Q[22];
assign S[23] = Q[23];
assign S[24] = Q[24];
assign S[25] = Q[25];
assign S[26] = Q[26];
assign S[27] = Q[27];
assign S[28] = Q[28];
assign S[29] = Q[29];
assign S[30] = Q[30];
assign S[31] = Q[31];
assign S[32] = Q[32];
assign S[33] = Q[33];
assign S[34] = Q[34];
assign S[35] = Q[35];
assign S[36] = Q[36];
assign S[37] = Q[37];
assign S[38] = Q[38];
assign S[39] = Q[39];
assign S[40] = Q[40];
assign S[41] = Q[41];
assign S[42] = Q[42];
assign S[43] = Q[43];
assign S[44] = Q[44];
assign S[45] = Q[45];
assign S[46] = Q[46];
assign S[47] = Q[47];
assign S[48] = Q[48];
assign S[49] = Q[49];
assign S[50] = Q[50];
assign S[51] = Q[51];
assign S[52] = Q[52];
assign S[53] = Q[53];
assign S[54] = Q[54];
assign S[55] = Q[55];
assign S[56] = Q[56];
assign S[57] = Q[57];
assign S[58] = Q[58];
assign S[59] = Q[59];
assign S[60] = Q[60];
assign S[61] = Q[61];
assign S[62] = Q[62];
assign S[63] = Q[63];
assign Bbar = ~B;
endmodule // cla_sub64

View file

@ -1,83 +0,0 @@
// Exception logic for the floating point adder. Note: We may
// actually want to move to where the result is computed.
module exception (
input logic [2:0] op_type, // Function opcode
input logic XSgnE, YSgnE,
// input logic [52:0] XManE, YManE,
input logic XDenormE, YDenormE,
input logic XNormE, YNormE,
input logic XZeroE, YZeroE,
input logic XInfE, YInfE,
input logic XNaNE, YNaNE,
input logic XSNaNE, YSNaNE,
output logic [3:0] Ztype, // Indicates type of result (Z)
output logic Invalid, // Invalid operation exception
output logic Denorm, // Denormalized logic
output logic Sub // The effective operation is subtraction
);
wire ZQNaN; // '1' if result Z is a quiet NaN
wire ZPInf; // '1' if result Z positive infnity
wire ZNInf; // '1' if result Z negative infnity
wire add_sub; // '1' if operation is add or subtract
wire converts; // See if there are any converts
// Is this instruction a convert
assign converts = op_type[1];
// An "Invalid Operation" exception occurs if (A or B is a signalling NaN)
// or (A and B are both Infinite and the "effective operation" is
// subtraction).
assign add_sub = ~op_type[1];
assign Invalid = (XSNaNE | YSNaNE | (add_sub & XInfE & YInfE & (XSgnE^YSgnE^op_type[0]))) & ~converts;
// The Denorm flag is set if (A is denormlized and the operation is not integer
// conversion ) or (if B is normalized and the operation is addition or subtraction).
assign Denorm = XDenormE | YDenormE & add_sub;
// The result is a quiet NaN if (an "Invalid Operation" exception occurs)
// or (A is a NaN) or (B is a NaN and the operation uses B).
assign ZQNaN = Invalid | XNaNE | (YNaNE & add_sub);
// The result is +Inf if ((A is +Inf) or (B is -Inf and the operation is
// subtraction) or (B is +Inf and the operation is addition)) and (the
// result is not a quiet NaN).
assign ZPInf = (XInfE&XSgnE | add_sub&YInfE&(~YSgnE^op_type[0]))&~ZQNaN;
// The result is -Inf if ((A is -Inf) or (B is +Inf and the operation is
// subtraction) or (B is -Inf and the operation is addition)) and the
// result is not a quiet NaN.
assign ZNInf = (XInfE&~XSgnE | add_sub&YInfE&(YSgnE^op_type[0]))&~ZQNaN;
// Set the type of the result as follows:
// (needs optimization - got lazy or was late)
// Ztype Result
// 0000 Normal
// 0001 Quiet NaN
// 0010 Negative Infinity
// 0011 Positive Infinity
// 0100 +Bzero and +Azero (and vice-versa)
// 0101 +Bzero and -Azero (and vice-versa)
// 1000 Convert SP to DP (and vice-versa)
assign Ztype[0] = (ZQNaN | ZPInf) |
((XZeroE & YZeroE & (XSgnE^YSgnE^op_type[0]))
& ~converts);
assign Ztype[1] = (ZNInf | ZPInf) |
(((XZeroE & YZeroE & XSgnE & YSgnE & ~op_type[0]) |
(XZeroE & YZeroE & XSgnE & ~YSgnE & op_type[0]))
& ~converts);
assign Ztype[2] = ((XZeroE & YZeroE & ~op_type[1])
& ~converts);
assign Ztype[3] = (op_type[1] & ~op_type[0]);
// Determine if the effective operation is subtraction
assign Sub = add_sub & (XSgnE^YSgnE^op_type[0]);
endmodule // exception

View file

@ -1,426 +0,0 @@
//
// File name : fpadd
// Title : Floating-Point Adder/Subtractor
// project : FPU
// Library : fpadd
// Author(s) : James E. Stine, Jr., Brett Mathis
// Purpose : definition of main unit to floating-point add/sub
// notes :
//
// Copyright Oklahoma State University
// Copyright AFRL
//
// Basic and Denormalized Operations
//
// Step 1: Load operands, set flags, and convert SP to DP
// Step 2: Check for special inputs ( +/- Infinity, NaN)
// Step 3: Compare exponents. Swap the operands of exp1 < exp2
// or of (exp1 = exp2 AND mnt1 < mnt2)
// Step 4: Shift the mantissa corresponding to the smaller exponent,
// and extend precision by three bits to the right.
// Step 5: Add or subtract the mantissas.
// Step 6: Normalize the result.//
// Shift left until normalized. Normalized when the value to the
// left of the binrary point is 1.
// Step 7: Round the result.//
// Step 8: Put sum onto output.
//
module faddcvt(
input logic clk,
input logic reset,
input logic FlushM, // flush the memory stage
input logic StallM, // stall the memory stage
input logic [63:0] FSrcXE, // 1st input operand (A)
input logic [63:0] FSrcYE, // 2nd input operand (B)
input logic [2:0] FOpCtrlE, FOpCtrlM, // Function opcode
input logic FmtE, FmtM, // Result Precision (0 for double, 1 for single)
input logic [2:0] FrmM, // Rounding mode - specify values
input logic XSgnE, YSgnE,
input logic [52:0] XManE, YManE,
input logic [10:0] XExpE, YExpE,
input logic XSgnM, YSgnM,
input logic [52:0] XManM, YManM,
input logic [10:0] XExpM, YExpM,
input logic XDenormE, YDenormE,
input logic XNormE, YNormE,
input logic XNormM, YNormM,
input logic XZeroE, YZeroE,
input logic XInfE, YInfE,
input logic XNaNE, YNaNE,
input logic XSNaNE, YSNaNE,
output logic [63:0] FAddResM, // Result of operation
output logic [4:0] FAddFlgM); // IEEE exception flags
logic [63:0] AddSumE, AddSumM;
logic [63:0] AddSumTcE, AddSumTcM;
logic [3:0] AddSelInvE, AddSelInvM;
logic [10:0] AddExpPostSumE,AddExpPostSumM;
logic AddCorrSignE, AddCorrSignM;
logic AddOpANormE, AddOpANormM;
logic AddOpBNormE, AddOpBNormM;
logic AddInvalidE, AddInvalidM;
logic AddDenormInE, AddDenormInM;
logic AddSwapE, AddSwapM;
logic AddSignAE, AddSignAM;
logic [11:0] AddExp1DenormE, AddExp2DenormE, AddExp1DenormM, AddExp2DenormM;
logic [10:0] AddExponentE, AddExponentM;
fpuaddcvt1 fpadd1 (.FOpCtrlE, .FmtE, .AddExponentE,
.AddExpPostSumE, .AddExp1DenormE, .AddExp2DenormE, .AddSumE, .AddSumTcE, .AddSelInvE,
.XSgnE, .YSgnE,.XManE, .YManE, .XExpE, .YExpE, .XDenormE, .YDenormE, .XNormE, .YNormE, .XZeroE, .YZeroE, .XInfE, .YInfE, .XNaNE, .YNaNE, .XSNaNE, .YSNaNE,
.AddCorrSignE, .AddSignAE, .AddOpANormE, .AddOpBNormE, .AddInvalidE,
.AddDenormInE, .AddSwapE);
// E/M pipeline registers
flopenrc #(64) EMRegAdd1(clk, reset, FlushM, ~StallM, AddSumE, AddSumM);
flopenrc #(64) EMRegAdd2(clk, reset, FlushM, ~StallM, AddSumTcE, AddSumTcM);
flopenrc #(11) EMRegAdd3(clk, reset, FlushM, ~StallM, AddExpPostSumE, AddExpPostSumM);
flopenrc #(12) EMRegAdd6(clk, reset, FlushM, ~StallM, AddExp1DenormE, AddExp1DenormM);
flopenrc #(12) EMRegAdd7(clk, reset, FlushM, ~StallM, AddExp2DenormE, AddExp2DenormM);
flopenrc #(11) EMRegAdd8(clk, reset, FlushM, ~StallM, AddExponentE, AddExponentM);
flopenrc #(11) EMRegAdd9(clk, reset, FlushM, ~StallM,
{AddSelInvE, AddCorrSignE, AddOpANormE, AddOpBNormE, AddInvalidE, AddDenormInE, AddSwapE, AddSignAE},
{AddSelInvM, AddCorrSignM, AddOpANormM, AddOpBNormM, AddInvalidM, AddDenormInM, AddSwapM, AddSignAM});
fpuaddcvt2 fpadd2 (.FrmM, .FOpCtrlM, .FmtM, .AddSumM, .AddSumTcM, .XNormM, .YNormM,
.AddExp1DenormM, .AddExp2DenormM, .AddExponentM, .AddExpPostSumM, .AddSelInvM, .XSgnM, .YSgnM, .XManM, .YManM, .XExpM, .YExpM,
.AddOpANormM, .AddOpBNormM, .AddInvalidM, .AddDenormInM,
.AddSignAM, .AddCorrSignM, .AddSwapM, .FAddResM, .FAddFlgM);
endmodule
module fpuaddcvt1 (
input logic [2:0] FOpCtrlE, // Function opcode
input logic FmtE, // Result Precision (1 for double, 0 for single)
input logic XSgnE, YSgnE,
input logic [10:0] XExpE, YExpE,
input logic [52:0] XManE, YManE,
input logic XDenormE, YDenormE,
input logic XNormE, YNormE,
input logic XZeroE, YZeroE,
input logic XInfE, YInfE,
input logic XNaNE, YNaNE,
input logic XSNaNE, YSNaNE,
output logic [10:0] AddExponentE,
output logic [10:0] AddExpPostSumE,
output logic [11:0] AddExp1DenormE, AddExp2DenormE,//KEP used to be [10:0]
output logic [63:0] AddSumE, AddSumTcE,
output logic [3:0] AddSelInvE,
output logic AddCorrSignE,
output logic AddSignAE,
output logic AddOpANormE, AddOpBNormE,
output logic AddInvalidE,
output logic AddDenormInE,
output logic AddSwapE
);
logic [5:0] ZP_mantissaA;
logic [5:0] ZP_mantissaB;
wire ZV_mantissaA;
wire ZV_mantissaB;
wire P;
assign P = ~(FmtE^FOpCtrlE[1]);
wire [63:0] IntValue;
wire [11:0] exp1, exp2;
wire [11:0] exp_diff1, exp_diff2;
wire [11:0] exp_shift;
wire [51:0] mantissaA;
wire [56:0] mantissaA1;
wire [63:0] mantissaA3;
wire [51:0] mantissaB;
wire [56:0] mantissaB1, mantissaB2;
wire [63:0] mantissaB3;
wire exp_gt63;
wire Sticky_out;
wire sub;
wire zeroB;
wire [5:0] align_shift;
// Test for exceptions and return the "Invalid Operation" and
// "Denormalized" Input Flags. The "AddSelInvE" is used in
// the third pipeline stage to select the result. Also, AddOp1NormE
// and AddOp2NormE are one if FSrcXE and FSrcYE are not zero or denormalized.
// sub is one if the effective operation is subtaction.
exception exc1 (.Ztype(AddSelInvE), .Invalid(AddInvalidE), .Denorm(AddDenormInE), .Sub(sub),
.XSgnE, .YSgnE, .XDenormE, .YDenormE, .XNormE, .YNormE, .XZeroE, .YZeroE, .XInfE, .YInfE, .XNaNE, .YNaNE, .XSNaNE, .YSNaNE,
.op_type(FOpCtrlE));
// Perform Exponent Subtraction (used for alignment). For performance
// both exponent subtractions are performed in parallel. This was
// changed to a behavior level to allow the tools to try to optimize
// the two parallel additions. The input values are zero-extended to 12
// bits prior to performing the addition.
assign exp1 = {1'b0, XExpE};
assign exp2 = {1'b0, YExpE};
assign exp_diff1 = exp1 - exp2;
assign exp_diff2 = AddDenormInE ? ({YSgnE, YExpE} - {XSgnE, XExpE}): exp2 - exp1;
// The second operand (B) should be set to zero, if FOpCtrlE does not
// specify addition or subtraction
assign zeroB = FOpCtrlE[1];
// Swapped operands if zeroB is not one and exp1 < exp2.
// Swapping causes exp2 to be used for the result exponent.
// Only the exponent of the larger operand is used to determine
// the final result.
assign AddSwapE = exp_diff1[11] & ~zeroB;
assign AddExponentE = AddSwapE ? YExpE : XExpE;
assign AddExpPostSumE = AddSwapE ? YExpE : XExpE;
assign mantissaA = AddSwapE ? YManE[51:0] : XManE[51:0];
assign mantissaB = AddSwapE ? XManE[51:0] : YManE[51:0];
assign AddSignAE = AddSwapE ? YSgnE : XSgnE;
// Leading-Zero Detector. Determine the size of the shift needed for
// normalization. If sum_corrected is all zeros, the exp_valid is
// zero; otherwise, it is one.
// modified to 52 bits to detect leading zeroes on denormalized mantissas
// lz52 lz_norm_1 (ZP_mantissaA, ZV_mantissaA, mantissaA);
// lz52 lz_norm_2 (ZP_mantissaB, ZV_mantissaB, mantissaB);
logic [8:0] i;
logic [8:0] j;
always_comb begin
i = 0;
while (~mantissaA[52-i] & $unsigned(i) <= $unsigned(52)) i = i+1; // search for leading one
ZP_mantissaA = i;
end
always_comb begin
j = 0;
while (~mantissaB[52-j] & $unsigned(j) <= $unsigned(52)) j = j+1; // search for leading one
ZP_mantissaB = j;
end
// Denormalized exponents created by subtracting the leading zeroes from the original exponents
assign AddExp1DenormE = AddSwapE ? (exp1 - {6'b0, ZP_mantissaB}) : (exp1 - {6'b0, ZP_mantissaA}); //KEP extended ZP_mantissa
assign AddExp2DenormE = AddSwapE ? (exp2 - {6'b0, ZP_mantissaA}) : (exp2 - {6'b0, ZP_mantissaB});
// Determine the alignment shift and limit it to 63. If any bit from
// exp_shift[6] to exp_shift[11] is one, then shift is set to all ones.
assign exp_shift = AddSwapE ? exp_diff2 : exp_diff1;
assign exp_gt63 = exp_shift[11] | exp_shift[10] | exp_shift[9]
| exp_shift[8] | exp_shift[7] | exp_shift[6];
assign align_shift = exp_shift[5:0] | {6{exp_gt63}}; //KEP used to be all of exp_shift
// Unpack the 52-bit mantissas to 57-bit numbers of the form.
// 001.M[51]M[50] ... M[1]M[0]00
// Unless the number has an exponent of zero, in which case it
// is unpacked as
// 000.00 ... 00
// This effectively flushes denormalized values to zero.
// The three bits of to the left of the binary point prevent overflow
// and loss of sign information. The two bits to the right of the
// original mantissa form the "guard" and "round" bits that are used
// to round the result.
assign AddOpANormE = AddSwapE ? YNormE : XNormE;
assign AddOpBNormE = AddSwapE ? XNormE : YNormE;
assign mantissaA1 = {2'h0, AddOpANormE, mantissaA[51:0]&{52{AddOpANormE}}, 2'h0};
assign mantissaB1 = {2'h0, AddOpBNormE, mantissaB[51:0]&{52{AddOpBNormE}}, 2'h0};
// Perform mantissa alignment using a 57-bit barrel shifter
// If any of the bits shifted out are one, Sticky_out is set.
// The size of the barrel shifter could be reduced by two bits
// by not adding the leading two zeros until after the shift.
barrel_shifter_r57 bs1 (mantissaB2, Sticky_out, mantissaB1, align_shift);
// Place either the sign-extened 32-bit value or the original 64-bit value
// into IntValue (to be used for integer to floating point conversion)
// assign IntValue [31:0] = FSrcXE[31:0];
// assign IntValue [63:32] = FOpCtrlE[0] ? {32{FSrcXE[31]}} : FSrcXE[63:32];
// If doing an integer to floating point conversion, mantissaA3 is set to
// IntVal and the prenomalized exponent is set to 1084. Otherwise,
// mantissaA3 is simply extended to 64-bits by setting the 7 LSBs to zero,
// and the exponent value is left unchanged.
// Under denormalized cases, the exponent before the rounder is set to 1
// if the normal shift value is 11.
assign mantissaA3 = AddDenormInE ? ({12'h0, mantissaA}) : {mantissaA1, 7'h0};
// Put zero in for mantissaB3, if zeroB is one. Otherwise, B is extended to
// 64-bits by setting the 7 LSBs to the Sticky_out bit followed by six
// zeros.
assign mantissaB3[63:7] = AddDenormInE ? {12'h0, mantissaB[51:7]} : mantissaB2 & {57{~zeroB}};
assign mantissaB3[6] = AddDenormInE ? mantissaB[6] : Sticky_out & ~zeroB;
assign mantissaB3[5:0] = AddDenormInE ? mantissaB[5:0] : 6'h0;
// The sign of the result needs to be corrected if the true
// operation is subtraction and the input operands were swapped.
assign AddCorrSignE = ~FOpCtrlE[1]&FOpCtrlE[0]&AddSwapE;
// 64-bit Mantissa Adder/Subtractor
cla64 add1 (AddSumE, mantissaA3, mantissaB3, sub); //***adder
// 64-bit Mantissa Subtractor - to get the two's complement of the
// result when the sign from the adder/subtractor is negative.
cla_sub64 sub1 (AddSumTcE, mantissaB3, mantissaA3); //***adder
// Finds normal underflow result to determine whether to round final exponent down
//***KEP used to be (AddSumE == 16'h0) I am unsure what it's supposed to be
// assign AddNormOvflowE = (AddDenormInE & (AddSumE == 64'h0) & (AddOpANormE | AddOpBNormE) & ~FOpCtrlE[0]) ? 1'b1 : (AddSumE[63] ? AddSumTcE[52] : AddSumE[52]);
endmodule // fpadd
//
// File name : fpadd
// Title : Floating-Point Adder/Subtractor
// project : FPU
// Library : fpadd
// Author(s) : James E. Stine, Jr., Brett Mathis
// Purpose : definition of main unit to floating-point add/sub
// notes :
//
// Copyright Oklahoma State University
// Copyright AFRL
//
// Basic and Denormalized Operations
//
// Step 1: Load operands, set flags, and AddConvertM SP to DP
// Step 2: Check for special inputs ( +/- Infinity, NaN)
// Step 3: Compare exponents. Swap the operands of exp1 < exp2
// or of (exp1 = exp2 AND mnt1 < mnt2)
// Step 4: Shift the mantissa corresponding to the smaller AddExponentM,
// and extend precision by three bits to the right.
// Step 5: Add or subtract the mantissas.
// Step 6: Normalize the result.//
// Shift left until normalized. Normalized when the value to the
// left of the binrary point is 1.
// Step 7: Round the result.//
// Step 8: Put AddSumM onto output.
//
module fpuaddcvt2 (
input logic [2:0] FrmM, // Rounding mode - specify values
input logic [2:0] FOpCtrlM, // Function opcode
input logic FmtM, // Result Precision (0 for double, 1 for single)
input logic [63:0] AddSumM, AddSumTcM,
input logic [11:0] AddExp1DenormM, AddExp2DenormM,
input logic [10:0] AddExponentM, AddExpPostSumM,
input logic [3:0] AddSelInvM,
input logic XSgnM, YSgnM,
input logic [52:0] XManM, YManM,
input logic [10:0] XExpM, YExpM,
input logic XNormM, YNormM,
input logic AddOpANormM, AddOpBNormM,
input logic AddInvalidM,
input logic AddDenormInM,
input logic AddSignAM,
input logic AddCorrSignM,
input logic AddSwapM,
output logic [63:0] FAddResM, // Result of operation
output logic [4:0] FAddFlgM // IEEE exception flags
);
wire AddDenormM; // AddDenormM on input or output
wire P;
assign P = ~(FmtM^FOpCtrlM[1]);
wire [10:0] exp_pre;
wire [63:0] Result;
wire [63:0] sum_norm, sum_norm_w_bypass;
wire [5:0] norm_shift, norm_shift_denorm;
wire exp_valid;
wire DenormIO;
wire [4:0] FlagsIn;
wire Sticky_out;
wire sign_corr;
wire zeroB;
wire mantissa_comp;
wire mantissa_comp_sum;
wire mantissa_comp_sum_tc;
wire Float1_sum_comp;
wire Float2_sum_comp;
wire Float1_sum_tc_comp;
wire Float2_sum_tc_comp;
wire normal_underflow;
wire [63:0] sum_corr;
logic AddNormOvflowM;
logic AddOvEnM; // Overflow trap enabled
logic AddUnEnM; // Underflow trap enabled
assign AddOvEnM = 1'b1;
assign AddUnEnM = 1'b1;
//AddExponentM value pre-rounding with considerations for denormalized
//cases/conversion cases
assign exp_pre = AddDenormInM ?
((norm_shift == 6'b001011) ? 11'b00000000001 : (AddSwapM ? AddExp2DenormM[10:0] : AddExp1DenormM[10:0]))
: AddExponentM;
// Finds normal underflow result to determine whether to round final AddExponentM down
// Comparison between each float and the resulting AddSumM of the primary cla adder/subtractor and cla subtractor
assign Float1_sum_comp = ~(XManM[51:0] > AddSumM[51:0]);
assign Float2_sum_comp = ~(YManM[51:0] > AddSumM[51:0]);
assign Float1_sum_tc_comp = ~(XManM[51:0] > AddSumTcM[51:0]);
assign Float2_sum_tc_comp = ~(YManM[51:0] > AddSumTcM[51:0]);
// Determines the correct Float value to compare based on AddSwapM result
assign mantissa_comp_sum = AddSwapM ? Float2_sum_comp : Float1_sum_comp;
assign mantissa_comp_sum_tc = AddSwapM ? Float2_sum_tc_comp : Float1_sum_tc_comp;
// Determines the correct comparison result based on operation and sign of resulting AddSumM
assign mantissa_comp = (FOpCtrlM[0] ^ AddSumM[63]) ? mantissa_comp_sum_tc : mantissa_comp_sum;
// If the signs are different and both operands aren't denormalized
// the normal underflow bit is needed and therefore updated.
assign normal_underflow = ((XSgnM ^ YSgnM) & (AddOpANormM | AddOpBNormM)) ? mantissa_comp : 1'b0;
// Determine the correct sign of the result
assign sign_corr = (AddCorrSignM ^ AddSignAM) ^ AddSumM[63];
// If the AddSumM is negative, use its two complement instead.
// This value has to be 64-bits to correctly handle the
// case 10...00
assign sum_corr = (AddDenormInM & (AddOpANormM | AddOpBNormM) & ( ( (XSgnM ~^ YSgnM) & FOpCtrlM[0] ) | ((XSgnM ^ YSgnM) & ~FOpCtrlM[0]) ))
? (AddSumM[63] ? AddSumM : AddSumTcM) : (AddSumM[63] ? AddSumTcM : AddSumM);
// Finds normal underflow result to determine whether to round final AddExponentM down
//KEP used to be (AddSumM == 16'h0) not sure what it is supposed to be
assign AddNormOvflowM = (AddDenormInM & (AddSumM == 64'h0) & (AddOpANormM | AddOpBNormM) & ~FOpCtrlM[0]) ? 1'b1 : (AddSumM[63] ? AddSumTcM[52] : AddSumM[52]);
// Leading-Zero Detector. Determine the size of the shift needed for
// normalization. If sum_corrected is all zeros, the exp_valid is
// zero; otherwise, it is one.
lz64 lzd1 (norm_shift, exp_valid, sum_corr);
assign norm_shift_denorm = (AddDenormInM & ( (~AddOpANormM & ~AddOpBNormM) | normal_underflow)) ? (6'h00) : (norm_shift);
// Barell shifter used for normalization. It takes as inputs the
// the corrected AddSumM and the amount by which the AddSumM should
// be right shifted. It outputs the normalized AddSumM.
barrel_shifter_l64 bs2 (sum_norm, sum_corr, norm_shift_denorm);
assign sum_norm_w_bypass = sum_norm;
// Round the mantissa to a 52-bit value, with the leading one
// removed. If the result is a single precision number, the actual
// mantissa is in the upper 23 bits and the lower 29 bits are zero.
// At this point, normalization has already been performed, so we know
// exactly where the rounding point is. The rounding units also
// handles special cases and set the exception flags.
// Changed DenormIO -> AddDenormM and FlagsIn -> FAddFlgM in order to
// help in processor reservation station detection of load/stores. In
// other words, the processor would like to know ahead of time that
// if the result is an exception then don't load or store.
rounder round1 (.Result, .DenormIO, .Flags(FlagsIn), .rm(FrmM), .P, .OvEn(AddOvEnM), .UnEn(AddUnEnM), .exp_valid,
.sel_inv(AddSelInvM), .Invalid(AddInvalidM), .DenormIn(AddDenormInM), .Asign(sign_corr), .Aexp(exp_pre), .norm_shift, .A(sum_norm_w_bypass),
.exponent_postsum(AddExpPostSumM), .A_Norm(XNormM), .B_Norm(YNormM), .exp_A_unmodified({XSgnM, XExpM}), .exp_B_unmodified({YSgnM, YExpM}),
.normal_overflow(AddNormOvflowM), .normal_underflow, .swap(AddSwapM), .op_type(FOpCtrlM), .sum(AddSumM));
// Store the final result and the exception flags in registers.
assign FAddResM = Result;
assign {AddDenormM, FAddFlgM} = {DenormIO, FlagsIn};
endmodule // fpadd

View file

@ -11,15 +11,15 @@ module fcvt (
input logic [2:0] FOpCtrlE, // choose which opperation (look below for values)
input logic FWriteIntE, // is fp->int (since it's writting to the integer register)
input logic XZeroE, // is the input zero
input logic XOrigDenormE, // is the input denormalized
input logic XDenormE, // is the input denormalized
input logic XInfE, // is the input infinity
input logic XNaNE, // is the input a NaN
input logic XSNaNE, // is the input a signaling NaN
input logic [2:0] FrmE, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic [`FPSIZES/3:0] FmtE, // the input's precision (11=quad 01=double 00=single 10=half)
output logic [`FLEN-1:0] CvtResE, // the fp to fp conversion's result
output logic [`XLEN-1:0] CvtIntResE, // the fp to fp conversion's result
output logic [4:0] CvtFlgE // the fp to fp conversion's flags
output logic [`FLEN-1:0] CvtResE, // the fp conversion result
output logic [`XLEN-1:0] CvtIntResE, // the int conversion result
output logic [4:0] CvtFlgE // the conversion's flags
);
// OpCtrls:
@ -39,9 +39,10 @@ module fcvt (
logic [`FPSIZES/3:0] OutFmt; // format of the output
logic [`XLEN-1:0] PosInt; // the positive integer input
logic [`XLEN-1:0] TrimInt; // integer trimmed to the correct size
logic [`LGLEN-1:0] LzcIn; // input to the Leading Zero Counter (priority encoder)
logic [`NE:0] CalcExp; // the calculated expoent
logic [$clog2(`LGLEN):0] ShiftAmt; // how much to shift by
logic [$clog2(`LGLEN+1)-1:0] ShiftAmt; // how much to shift by
logic [`LGLEN+`NF:0] ShiftIn; // number to be shifted
logic ResDenormUf;// does the result underflow or is denormalized
logic ResUf; // does the result underflow
@ -71,6 +72,7 @@ module fcvt (
logic Int64; // is the integer 64 bits?
logic IntToFp; // is the opperation an int->fp conversion?
logic ToInt; // is the opperation an fp->int conversion?
logic [$clog2(`LGLEN+1)-1:0] ZeroCnt; // output from the LZC
// seperate OpCtrl for code readability
@ -91,18 +93,11 @@ module fcvt (
///////////////////////////////////////////////////////////////////////////
// negation
///////////////////////////////////////////////////////////////////////////
// negate the input if the input is a negitive singed integer
// - remove leading ones if the input is a unsigned 32-bit integer
//
// Negitive input
// 64-bit input : negate the input
// 32-bit input : trim to 32-bits and negate the input
// Positive input
// 64-bit input : do nothing
// 32-bit input : trim to 32-bits
// 1) negate the input if the input is a negitive singed integer
// 2) trim the input to the proper size (kill the 32 most significant zeroes if needed)
assign PosInt = ResSgn ? Int64 ? -ForwardedSrcAE : {{`XLEN-32{1'b0}}, -ForwardedSrcAE[31:0]} :
Int64 ? ForwardedSrcAE : {{`XLEN-32{1'b0}}, ForwardedSrcAE[31:0]};
assign PosInt = ResSgn ? -ForwardedSrcAE : ForwardedSrcAE;
assign TrimInt = {{`XLEN-32{Int64}}, {32{1'b1}}} & PosInt;
///////////////////////////////////////////////////////////////////////////
// lzc
@ -111,16 +106,10 @@ module fcvt (
// choose the input to the leading zero counter i.e. priority encoder
// int -> fp : | positive integer | 00000... (if needed) |
// fp -> fp : | fraction | 00000... (if needed) |
assign LzcIn = IntToFp ? {PosInt, {`LGLEN-`XLEN{1'b0}}} : // I->F
{XManE[`NF-1:0], {`LGLEN-`NF{1'b0}}}; // F->F
assign LzcIn = IntToFp ? {TrimInt, {`LGLEN-`XLEN{1'b0}}} :
{XManE[`NF-1:0], {`LGLEN-`NF{1'b0}}};
// lglen is the largest possible value of ZeroCnt (NF or XLEN) hence normcnt must be log2(lglen) bits
logic [$clog2(`LGLEN):0] i, ZeroCnt;
always_comb begin
i = 0;
while (~LzcIn[`LGLEN-1-i] & i <= `LGLEN-1) i = i+1; // search for leading one
ZeroCnt = i;
end
lzc #(`LGLEN) lzc (.num(LzcIn), .ZeroCnt);
///////////////////////////////////////////////////////////////////////////
@ -154,9 +143,9 @@ module fcvt (
// - only shift fp -> fp if the intital value is denormalized
// - this is a problem because the input to the lzc was the fraction rather than the mantissa
// - rather have a few and-gates than an extra bit in the priority encoder??? *** is this true?
assign ShiftAmt = ToInt ? CalcExp[$clog2(`LGLEN):0]&{$clog2(`LGLEN)+1{~CalcExp[`NE]}} :
ResDenormUf&~IntToFp ? ($clog2(`LGLEN)+1)'(`NF-1)+CalcExp[$clog2(`LGLEN):0] :
(ZeroCnt+1)&{$clog2(`LGLEN)+1{XOrigDenormE|IntToFp}};
assign ShiftAmt = ToInt ? CalcExp[$clog2(`LGLEN+1)-1:0]&{$clog2(`LGLEN+1){~CalcExp[`NE]}} :
ResDenormUf&~IntToFp ? ($clog2(`LGLEN+1))'(`NF-1)+CalcExp[$clog2(`LGLEN+1)-1:0] :
(ZeroCnt+1)&{$clog2(`LGLEN+1){XDenormE|IntToFp}};
// shift
// fp -> int: | `XLEN zeros | Mantissa | 0's if nessisary | << CalcExp
@ -266,13 +255,13 @@ module fcvt (
// | keep |
//
// - if the input is denormalized then we dont shift... so the "- (ZeroCnt+1)" is just leftovers from other options
// int -> fp : largest bias XLEN - Largest bias + new bias - 1 - ZeroCnt = XLEN + NewBias - 1 - ZeroCnt
// int -> fp : largest bias + XLEN - Largest bias + new bias - 1 - ZeroCnt = XLEN + NewBias - 1 - ZeroCnt
// Process:
// - shifted right by XLEN (XLEN)
// - shift left to normilize (-1-ZeroCnt)
// - newBias to make the biased exponent
//
assign CalcExp = {1'b0, OldExp} - (`NE+1)'(`BIAS) + {2'b0, NewBias} - {{`NE{1'b0}}, XOrigDenormE|IntToFp} - {{`NE-$clog2(`LGLEN){1'b0}}, (ZeroCnt&{$clog2(`LGLEN)+1{XOrigDenormE|IntToFp}})};
assign CalcExp = {1'b0, OldExp} - (`NE+1)'(`BIAS) + {2'b0, NewBias} - {{`NE{1'b0}}, XDenormE|IntToFp} - {{`NE-$clog2(`LGLEN+1)+1{1'b0}}, (ZeroCnt&{$clog2(`LGLEN+1){XDenormE|IntToFp}})};
// find if the result is dnormal or underflows
// - if Calculated expoenent is 0 or negitive (and the input/result is not exactaly 0)
// - can't underflow an integer to Fp conversion
@ -568,7 +557,7 @@ module fcvt (
// - do so if the result underflows, is zero (the exp doesnt calculate correctly). or the integer input is 0
// - dont set to zero if fp input is zero but not using the fp input
// - dont set to zero if int input is zero but not using the int input
assign KillRes = (ResUf|(XZeroE&~IntToFp)|(~|PosInt&IntToFp));
assign KillRes = (ResUf|(XZeroE&~IntToFp)|(~|TrimInt&IntToFp));
if (`FPSIZES == 1) begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
@ -755,7 +744,7 @@ module fcvt (
NaNRes = {{`Q_LEN-`H_LEN{1'b1}}, 1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - if the input overflows in rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, {`H_NE-1{1'b1}}, 1'b0, {`H_NF{1'b1}}} : {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, {`H_NE{1'b1}}, (`H_NF)'(0)};

View file

@ -1,190 +0,0 @@
`include "wally-config.vh"
module fcvtfp (
input logic [10:0] XExpE, // input's exponent
input logic [52:0] XManE, // input's mantissa
input logic XSgnE, // input's sign
input logic XZeroE, // is the input zero
input logic XDenormE, // is the input denormalized
input logic XInfE, // is the input infinity
input logic XNaNE, // is the input a NaN
input logic XSNaNE, // is the input a signaling NaN
input logic [2:0] FrmE, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic FmtE, // the input's precision (1 = double 0 = single)
output logic [63:0] CvtFpResE, // the fp to fp conversion's result
output logic [4:0] CvtFpFlgE); // the fp to fp conversion's flags
logic [12:0] DSExp; // double to single precision exponent
logic Denorm; // is the double to single precision result denormalized
logic Shift; // do you shift the double precision exponent (if single precision result is denormalized)
logic [51:0] SDFrac; // single to double precision fraction
logic [25:0] DSFrac; // double to single precision fraction
logic [77:0] DSFracShifted; // single precision fraction shifted for double precision
logic Sticky, UfSticky, Guard, Round, LSBFrac, UfGuard, UfRound, UfLSBFrac; // rounding bits
logic CalcPlus1, UfCalcPlus1, Plus1, UfPlus1; // do you add one to the result
logic [12:0] DSExpFull; // full double to single exponent
logic [22:0] DSResFrac; // final double to single fraction
logic [7:0] DSResExp; // final double to single exponent
logic [10:0] SDExp; // final single to double precision exponent
logic Overflow, Underflow, Inexact; // flags
logic [31:0] DSRes; // double to single precision result
// add support for all formats
// consider reordering code blocks so upconverting is in one region of the file
// and downconverting is in the other region.
///////////////////////////////////////////////////////////////////////////////
// LZC: Leading Zero Counter
///////////////////////////////////////////////////////////////////////////////
// *** consider sharing this with fcvtint
// *** emphasize parallel structure between the two
// *** add a priorityencoder module to generic (similar to priorityonehot) and use it
// LZC - find the first 1 in the input's mantissa
logic [8:0] i,NormCnt;
always_comb begin
i = 0;
while (~XManE[52-i] & i <= 52) i = i+1; // search for leading one
NormCnt = i;
end
///////////////////////////////////////////////////////////////////////////////
// Expoents
///////////////////////////////////////////////////////////////////////////////
// convert the single precion exponent to single precision.
// - subtract the double precision exponent (1023) and add the
// single precsision exponent (127)
// - if the input is zero then kill the exponent
assign DSExp = ({2'b0,XExpE}-13'd1023+13'd127)&{13{~XZeroE}};
// is the converted double to single precision exponent in the denormalized range
assign Denorm = $signed(DSExp) <= 0 & $signed(DSExp) > $signed(-(13'd23));
// caluculate the final single to double precsion exponent
// - subtract the single precision bias (127) and add the double
// precision bias (127)
// - if the result is zero or denormalized, kill the exponent
assign SDExp = XExpE-({2'b0,NormCnt&{9{~XZeroE}}})+({11{XDenormE}}&1024-127); //*** seems ineffecient
///////////////////////////////////////////////////////////////////////////////
// Fraction
///////////////////////////////////////////////////////////////////////////////
// normalize the single precision fraction for double precsion
// - needed for denormal single precsion values
assign SDFrac = XManE[51:0] << NormCnt;
// check if the double precision mantissa needs to be shifted
// - the mantissa needs to be shifted if the single precision result is denormal
assign Shift = Denorm | (($signed(DSExp) > $signed(-(13'd25))) & DSExp[12]);
// shift the mantissa
assign DSFracShifted = {XManE, 25'b0} >> ((-DSExp+1)&{13{Shift}}); //***might be some optimization here
assign DSFrac = DSFracShifted[76:51];
///////////////////////////////////////////////////////////////////////////////
// Rounder
///////////////////////////////////////////////////////////////////////////////
// used to determine underflow flag
assign UfSticky = |DSFracShifted[50:0];
assign UfGuard = DSFrac[1];
assign UfRound = DSFrac[0];
assign UfLSBFrac = DSFrac[2];
assign Sticky = UfSticky | UfRound;
assign Guard = DSFrac[2];
assign Round = DSFrac[1];
assign LSBFrac = DSFrac[3];
always_comb begin // ***remove guard bit
// Determine if you add 1
case (FrmE)
3'b000: CalcPlus1 = Guard & (Round | (Sticky) | (~Round&~Sticky&LSBFrac));//round to nearest even
3'b001: CalcPlus1 = 0;//round to zero
3'b010: CalcPlus1 = XSgnE;//round down
3'b011: CalcPlus1 = ~XSgnE;//round up
3'b100: CalcPlus1 = (Guard & (Round | (Sticky) | (~Round&~Sticky)));//round to nearest max magnitude
default: CalcPlus1 = 1'bx;
endcase
// Determine if you add 1 (for underflow flag)
case (FrmE)
3'b000: UfCalcPlus1 = UfGuard & (UfRound | UfSticky | (~UfRound&~UfSticky&UfLSBFrac));//round to nearest even
3'b001: UfCalcPlus1 = 0;//round to zero
3'b010: UfCalcPlus1 = XSgnE;//round down
3'b011: UfCalcPlus1 = ~XSgnE;//round up
3'b100: UfCalcPlus1 = (UfGuard & (UfRound | UfSticky | (~UfRound&~UfSticky)));//round to nearest max magnitude
default: UfCalcPlus1 = 1'bx;
endcase
end
// if an answer is exact don't round
assign Plus1 = CalcPlus1 & (Sticky | UfGuard | Guard | Round);
assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard);
// round the double to single precision result
assign {DSExpFull, DSResFrac} = {DSExp&{13{~Denorm}}, DSFrac[25:3]} + {35'b0,Plus1};
assign DSResExp = DSExpFull[7:0];
///////////////////////////////////////////////////////////////////////////////
// Flags
///////////////////////////////////////////////////////////////////////////////
// calculate the flags
// - overflow, underflow and inexact can only be set by the double to single precision opperation
// - don't set underflow or overflow if the input is NaN or Infinity
// - don't set the inexact flag if the input is NaN
assign Overflow = $signed(DSExpFull) >= $signed({5'b0, {8{1'b1}}}) & ~(XNaNE|XInfE);
assign Underflow = (($signed(DSExpFull) <= 0) & ((Sticky|Guard|Round) | (XManE[52]&~|DSFrac) | (|DSFrac&~Denorm)) | ((DSExpFull == 1) & Denorm & ~(UfPlus1&UfLSBFrac))) & ~(XNaNE|XInfE);
assign Inexact = (Sticky|Guard|Round|Underflow|Overflow) &~(XNaNE);
// pack the flags together and choose the result based on the opperation
assign CvtFpFlgE = FmtE ? {XSNaNE, 1'b0, Overflow, Underflow, Inexact} : {XSNaNE, 4'b0};
///////////////////////////////////////////////////////////////////////////////
// Result Selection
///////////////////////////////////////////////////////////////////////////////
if(`IEEE754) begin
// select the double to single precision result
assign DSRes = XNaNE ? {XSgnE, {8{1'b1}}, 1'b1, XManE[50:29]} :
Underflow & ~Denorm ? {XSgnE, 30'b0, CalcPlus1&(|FrmE[1:0]|Shift)} :
Overflow | XInfE ? ((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~XSgnE) | (FrmE[1:0]==2'b11&XSgnE)) & ~XInfE ? {XSgnE, 8'hfe, {23{1'b1}}} :
{XSgnE, 8'hff, 23'b0} :
{XSgnE, DSResExp, DSResFrac};
// select the final result based on the opperation
//*** in al units before putting into : ? put in a seperate signal
assign CvtFpResE = FmtE ? {{32{1'b1}},DSRes} : {XSgnE, SDExp, SDFrac[51]|XNaNE, SDFrac[50:0]};
end else begin
// select the double to single precision result
assign DSRes = XNaNE ? {1'b0, {8{1'b1}}, 1'b1, 22'b0} :
Underflow & ~Denorm ? {XSgnE, 30'b0, CalcPlus1&(|FrmE[1:0]|Shift)} :
Overflow | XInfE ? ((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~XSgnE) | (FrmE[1:0]==2'b11&XSgnE)) & ~XInfE ? {XSgnE, 8'hfe, {23{1'b1}}} :
{XSgnE, 8'hff, 23'b0} :
{XSgnE, DSResExp, DSResFrac};
// select the final result based on the opperation
assign CvtFpResE = FmtE ? {{32{1'b1}},DSRes} : {XSgnE&~XNaNE, SDExp, SDFrac[51]|XNaNE, SDFrac[50:0]&{51{~XNaNE}}};
end
endmodule // fpadd

View file

@ -1,190 +0,0 @@
`include "wally-config.vh"
// `include "../../config/rv64icfd/wally-config.vh"
// `define XLEN 64
module fcvtint (
input logic XSgnE, // X's sign
input logic [10:0] XExpE, // X's exponent
input logic [52:0] XManE, // X's fraction
input logic XZeroE, // is X zero
input logic XNaNE, // is X NaN
input logic XInfE, // is X infinity
input logic XDenormE, // is X denormalized
input logic [`XLEN-1:0] ForwardedSrcAE, // integer input
input logic [2:0] FOpCtrlE, // chooses which instruction is done (full list below)
input logic [2:0] FrmE, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic FmtE, // precision 1 = double 0 = single
output logic [63:0] CvtResE, // convert final result
output logic [4:0] CvtFlgE); // convert flags {invalid, divide by zero, overflow, underflow, inexact}
logic ResSgn; // FP result's sign
logic [10:0] ResExp,TmpExp; // FP result's exponent
logic [51:0] ResFrac; // FP result's fraction
logic [6:0] LZResP; // lz output
logic [7:0] Bits; // how many bits are in the integer result
logic [7:0] SubBits; // subtract these bits from the exponent (FP result)
logic [64+51:0] ShiftedManTmp; // Shifted mantissa
logic [64+51:0] ShiftVal; // value being shifted (to int - XMan, to FP - |integer input|)
logic [64+1:0] ShiftedMan; // shifted mantissa truncated
logic [64:0] RoundedTmp; // full size rounded result - in case of overfow
logic [63:0] Rounded; // rounded result
logic [12:0] ExpVal; // unbiased X exponent
logic [12:0] ShiftCnt; // how much is the mantissa shifted
logic [64-1:0] IntIn; // trimed integer input
logic [64-1:0] PosInt; // absolute value of the integer input
logic [63:0] CvtIntRes; // interger result from the fp -> int instructions
logic [63:0] CvtFPRes; // floating point result from the int -> fp instructions
logic Of, Uf; // did the integer result underflow or overflow
logic Guard, Round, LSB, Sticky; // bits used to determine rounding
logic Plus1,CalcPlus1; // do you add one for rounding
logic SgnRes; // sign of the floating point result
logic Res64, In64; // is the result or input 64 bits
logic RoundMSB; // most significant bit of the fraction
logic RoundSgn; // sign of the rounded result
logic Invalid, Inexact; // flags
// FOpCtrlE:
// fcvt.w.s = 001
// fcvt.wu.s = 011
// fcvt.s.w = 000
// fcvt.s.wu = 010
// fcvt.l.s = 101
// fcvt.lu.s = 111
// fcvt.s.l = 100
// fcvt.s.lu = 110
// fcvt.w.d = 001
// fcvt.wu.d = 011
// fcvt.d.w = 000
// fcvt.d.wu = 010
// fcvt.l.d = 101
// fcvt.lu.d = 111
// fcvt.d.l = 100
// fcvt.d.lu = 110
// {long, unsigned, to int}
// *** revisit this module, explain in more depth
// should the int to fp and fp to int paths be separated?
// add support for all formats
// calculate signals based off the input and output's size
assign Res64 = (FOpCtrlE[0]&FOpCtrlE[2]) | (FmtE&~FOpCtrlE[0]);
assign In64 = (~FOpCtrlE[0]&FOpCtrlE[2]) | (FmtE&FOpCtrlE[0]);
assign SubBits = In64 ? 8'd64 : 8'd32;
assign Bits = Res64 ? 8'd64 : 8'd32;
// calulate the unbiased exponent
assign ExpVal = {1'b0,XExpE} - {1'b0, (11)'(`BIAS)} + {12'b0, XDenormE};
////////////////////////////////////////////////////////
// position the input in the most significant bits
assign IntIn = FOpCtrlE[2] ? {ForwardedSrcAE, {64-`XLEN{1'b0}}} : {ForwardedSrcAE[31:0], 32'b0};
// make the integer positive
assign PosInt = IntIn[64-1]&~FOpCtrlE[1] ? -IntIn : IntIn;
// determine the integer's sign
assign ResSgn = ~FOpCtrlE[1]&IntIn[64-1];
// Leading one detector
logic [8:0] i;
always_comb begin
i = 0;
while (~PosInt[64-1-i] & i < `XLEN) i = i+1; // search for leading one
LZResP = i[5:0]+1; // compute shift count
end
// if no one was found set to zero otherwise calculate the exponent
assign TmpExp = i==`XLEN ? 0 : FmtE ? 11'd1023 + {3'b0, SubBits} - {4'b0, LZResP} : 11'd127 + {3'b0, SubBits} - {4'b0, LZResP};
////////////////////////////////////////////
// select the shift value and amount based on operation (to fp or int)
assign ShiftCnt = FOpCtrlE[0] ? ExpVal : {6'b0, LZResP};
assign ShiftVal = FOpCtrlE[0] ? {{64-1{1'b0}}, XManE} : {PosInt, 52'b0};
// if shift = -1 then shift one bit right for gaurd bit (right shifting twice never rounds)
// if the shift is negitive add a bit for sticky bit calculation
// otherwise shift left
assign ShiftedManTmp = &ShiftCnt ? {{64{1'b0}}, XManE[52:1]} : ShiftCnt[12] ? {{64+51{1'b0}}, ~XZeroE} : ShiftVal << ShiftCnt;
// truncate the shifted mantissa
assign ShiftedMan = ShiftedManTmp[64+51:50];
// calculate sticky bit
// - take into account the possible right shift from before
// - the sticky bit calculation covers three diffrent sizes depending on the opperation
assign Sticky = |ShiftedManTmp[49:0] | &ShiftCnt&XManE[0] | (~FOpCtrlE[0]&|ShiftedManTmp[62:50]) | (~FOpCtrlE[0]&~FmtE&|ShiftedManTmp[91:63]);
// determine guard, round, and least significant bit of the result
assign Guard = FOpCtrlE[0] ? ShiftedMan[1] : FmtE ? ShiftedMan[13] : ShiftedMan[42];
assign Round = FOpCtrlE[0] ? ShiftedMan[0] : FmtE ? ShiftedMan[12] : ShiftedMan[41];
assign LSB = FOpCtrlE[0] ? ShiftedMan[2] : FmtE ? ShiftedMan[14] : ShiftedMan[43];
always_comb begin//*** remove guard bit
// Determine if you add 1
case (FrmE)
3'b000: CalcPlus1 = Guard & (Round | Sticky | (~Round&~Sticky&LSB));//round to nearest even
3'b001: CalcPlus1 = 0;//round to zero
3'b010: CalcPlus1 = (XSgnE&FOpCtrlE[0]) | (ResSgn&~FOpCtrlE[0]);//round down
3'b011: CalcPlus1 = (~XSgnE&FOpCtrlE[0]) | (~ResSgn&~FOpCtrlE[0]);//round up
3'b100: CalcPlus1 = Guard & (Round | Sticky | (~Round&~Sticky));//round to nearest max magnitude
default: CalcPlus1 = 1'bx;
endcase
end
// dont tound if the result is exact
assign Plus1 = CalcPlus1 & (Guard|Round|Sticky)&~(XZeroE&FOpCtrlE[0]);
// round the shifted mantissa
assign RoundedTmp = ShiftedMan[64+1:2] + {64'b0, Plus1};
assign {ResExp, ResFrac} = FmtE ? {TmpExp, ShiftedMan[64+1:14]} + {62'b0, Plus1} : {{TmpExp, ShiftedMan[64+1:43]} + {33'b0,Plus1}, 29'b0} ;
// fit the rounded result into the appropriate size and take the 2's complement if needed
assign Rounded = Res64 ? XSgnE&FOpCtrlE[0] ? -RoundedTmp[63:0] : RoundedTmp[63:0] :
XSgnE ? {{32{1'b1}}, -RoundedTmp[31:0]} : {32'b0, RoundedTmp[31:0]};
// extract the MSB and Sign for later use (will be used to determine underflow and overflow)
assign RoundMSB = Res64 ? RoundedTmp[64] : RoundedTmp[32];
assign RoundSgn = Res64 ? Rounded[63] : Rounded[31];
// check if the result overflows
assign Of = (~XSgnE&($signed(ShiftCnt) >= $signed({{5{Bits[7]}}, Bits}))) | (~XSgnE&RoundSgn&~FOpCtrlE[1]) | (RoundMSB&(ShiftCnt==({{5{Bits[7]}}, Bits}-1))) | (~XSgnE&XInfE) | XNaNE;
// check if the result underflows (this calculation changes if the result is signed or unsigned)
assign Uf = FOpCtrlE[1] ? XSgnE&~XZeroE | (XSgnE&XInfE) | (XSgnE&~XZeroE&(~ShiftCnt[12]|CalcPlus1)) | (ShiftCnt[12]&Plus1) : (XSgnE&XInfE) | (XSgnE&($signed(ShiftCnt) >= $signed({{5{Bits[7]}}, Bits}))) | (XSgnE&~RoundSgn&~ShiftCnt[12]); // assign CvtIntRes = (XSgnE | ShiftCnt[12]) ? {64{1'b0}} : (ShiftCnt >= 64) ? {64{1'b1}} : Rounded;
// calculate the result's sign
assign SgnRes = ~FOpCtrlE[2] & FOpCtrlE[0];
// select the integer result
assign CvtIntRes = Of ? FOpCtrlE[1] ? {64{1'b1}} : SgnRes ? {33'b0, {31{1'b1}}}: {1'b0, {63{1'b1}}} :
Uf ? FOpCtrlE[1] ? {63'b0, Plus1&~XSgnE} : SgnRes ? {{33{1'b1}}, 31'b0} : {1'b1, 63'b0} :
|RoundedTmp ? Rounded[64-1:0] : 64'b0;
// select the floating point result
assign CvtFPRes = FmtE ? {ResSgn, ResExp, ResFrac} : {{32{1'b1}}, ResSgn, ResExp[7:0], ResFrac[51:29]};
// select the result
assign CvtResE = FOpCtrlE[0] ? CvtIntRes : CvtFPRes;
// calculate the flags
// - only set invalid flag for out-of-range vales
// - set inexact if in representable range and not exact
if(`IEEE754) begin // checks before rounding
assign Invalid = (Of | Uf)&FOpCtrlE[0];
assign Inexact = (Guard|Round|Sticky)&~(&FOpCtrlE[1:0]&(XSgnE|Of))&~((Of|Uf)&~FOpCtrlE[1]&FOpCtrlE[0]);
assign CvtFlgE = {Invalid&~Inexact, 3'b0, Inexact};
end else begin // RISC-V checks if the result is in range after rounding
assign Invalid = (Of | Uf)&FOpCtrlE[0];
assign Inexact = (Guard|Round|Sticky)&~(&FOpCtrlE[1:0]&((XSgnE&~(ShiftCnt[12]&~Plus1))|Of))&~((Of|Uf)&~FOpCtrlE[1]&FOpCtrlE[0]);
assign CvtFlgE = {Invalid&~Inexact, 3'b0, Inexact};
end
endmodule // fpadd

View file

@ -43,8 +43,7 @@ module fma(
input logic XSgnM, YSgnM, // input signs - memory stage
input logic [`NE-1:0] ZExpM, // input exponents - memory stage
input logic [`NF:0] XManM, YManM, ZManM, // input mantissa - memory stage
input logic ZOrigDenormE, // is the original precision denormalized
input logic XDenormE, YDenormE, ZDenormE, // is denorm
input logic ZDenormE, // is denorm
input logic XZeroE, YZeroE, ZZeroE, // is zero - execute stage
input logic XNaNM, YNaNM, ZNaNM, // is NaN
input logic XSNaNM, YSNaNM, ZSNaNM, // is signaling NaN
@ -73,10 +72,10 @@ module fma(
logic PSgnE, PSgnM;
logic [$clog2(3*`NF+7)-1:0] NormCntE, NormCntM;
logic Mult;
logic ZOrigDenormM;
logic ZDenormM;
fma1 fma1 (.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
.XZeroE, .YZeroE, .ZZeroE,
.FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
.ProdExpE, .AddendStickyE, .KillProdE);
@ -84,10 +83,10 @@ module fma(
flopenrc #(3*`NF+6) EMRegFma2(clk, reset, FlushM, ~StallM, SumE, SumM);
flopenrc #(13) EMRegFma3(clk, reset, FlushM, ~StallM, ProdExpE, ProdExpM);
flopenrc #($clog2(3*`NF+7)+8) EMRegFma4(clk, reset, FlushM, ~StallM,
{AddendStickyE, KillProdE, InvZE, NormCntE, NegSumE, ZSgnEffE, PSgnE, FOpCtrlE[2]&~FOpCtrlE[1]&~FOpCtrlE[0], ZOrigDenormE},
{AddendStickyM, KillProdM, InvZM, NormCntM, NegSumM, ZSgnEffM, PSgnM, Mult, ZOrigDenormM});
{AddendStickyE, KillProdE, InvZE, NormCntE, NegSumE, ZSgnEffE, PSgnE, FOpCtrlE[2]&~FOpCtrlE[1]&~FOpCtrlE[0], ZDenormE},
{AddendStickyM, KillProdM, InvZM, NormCntM, NegSumM, ZSgnEffM, PSgnM, Mult, ZDenormM});
fma2 fma2(.XSgnM, .YSgnM, .ZExpM, .XManM, .YManM, .ZManM, .ZOrigDenormM,
fma2 fma2(.XSgnM, .YSgnM, .ZExpM, .XManM, .YManM, .ZManM, .ZDenormM,
.FrmM, .FmtM, .ProdExpM, .AddendStickyM, .KillProdM, .SumM, .NegSumM, .InvZM, .NormCntM, .ZSgnEffM, .PSgnM,
.XZeroM, .YZeroM, .ZZeroM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, .XSNaNM, .YSNaNM, .ZSNaNM, .Mult,
.FMAResM, .FMAFlgM);
@ -101,7 +100,6 @@ module fma1(
input logic XSgnE, YSgnE, ZSgnE, // input's signs
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // biased exponents in B(NE.0) format
input logic [`NF:0] XManE, YManE, ZManE, // fractions in U(0.NF) format
input logic XDenormE, YDenormE, ZDenormE, // is the input denormal
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic [`FPSIZES/3:0] FmtE, // precision 1 = double 0 = single
@ -116,13 +114,11 @@ module fma1(
output logic [$clog2(3*`NF+7)-1:0] NormCntE // normalization shift cnt
);
logic [`NE-1:0] Denorm; // value of a denormaized number based on precision
logic [2*`NF+1:0] ProdManE; // 1.X frac * 1.Y frac in U(2.2Nf) format
logic [3*`NF+5:0] AlignedAddendE; // Z aligned for addition in U(NF+5.2NF+1)
logic [3*`NF+6:0] AlignedAddendInv; // aligned addend possibly inverted
logic [2*`NF+1:0] ProdManKilled; // the product's mantissa possibly killed
logic [3*`NF+6:0] PreSum, NegPreSum; // positive and negitve versions of the sum
logic [`NE-1:0] XExpVal, YExpVal; // exponent value after taking into accound denormals
///////////////////////////////////////////////////////////////////////////////
// Calculate the product
// - When multipliying two fp numbers, add the exponents
@ -133,8 +129,8 @@ module fma1(
// calculate the product's exponent
expadd expadd(.FmtE, .XExpE, .YExpE, .XZeroE, .YZeroE, .XDenormE, .YDenormE, .XExpVal, .YExpVal,
.Denorm, .ProdExpE);
expadd expadd(.FmtE, .XExpE, .YExpE, .XZeroE, .YZeroE,
.ProdExpE);
// multiplication of the mantissa's
mult mult(.XManE, .YManE, .ProdManE);
@ -143,7 +139,7 @@ module fma1(
// Alignment shifter
///////////////////////////////////////////////////////////////////////////////
align align(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm, .XExpVal, .YExpVal,
align align(.ZExpE, .ZManE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .XExpE, .YExpE,
.AlignedAddendE, .AddendStickyE, .KillProdE);
// calculate the signs and take the opperation into account
@ -167,51 +163,12 @@ endmodule
module expadd(
input logic [`FPSIZES/3:0] FmtE, // precision
input logic [`NE-1:0] XExpE, YExpE, // input exponents
input logic XDenormE, YDenormE, // are the inputs denormalized
input logic XZeroE, YZeroE, // are the inputs zero
output logic [`NE-1:0] XExpVal, YExpVal, // Exponent value after taking into account denormals
output logic [`NE-1:0] Denorm, // value of denormalized exponent
output logic [`NE+1:0] ProdExpE // product's exponent B^(1023)NE+2
);
// denormalized numbers have diffrent values depending on which precison it is.
// FLEN - 1
// Other - BIAS - other bias + 1
if (`FPSIZES == 1) begin
assign Denorm = 1;
end else if (`FPSIZES == 2) begin
assign Denorm = FmtE ? (`NE)'(1) : (`NE)'(`BIAS)-(`NE)'(`BIAS1)+(`NE)'(1);
end else if (`FPSIZES == 3) begin
always_comb begin
case (FmtE)
`FMT: Denorm = 1;
`FMT1: Denorm = `BIAS-`BIAS1+1;
`FMT2: Denorm = `BIAS-`BIAS2+1;
default: Denorm = 1'bx;
endcase
end
end else if (`FPSIZES == 4) begin
always_comb begin
case (FmtE)
2'h3: Denorm = 1;
2'h1: Denorm = `BIAS-`D_BIAS+1;
2'h0: Denorm = `BIAS-`S_BIAS+1;
2'h2: Denorm = `BIAS-`H_BIAS+1;
endcase
end
end
// pick denormalized value or exponent
assign XExpVal = XDenormE ? Denorm : XExpE;
assign YExpVal = YDenormE ? Denorm : YExpE;
// kill the exponent if the product is zero - either X or Y is 0
assign ProdExpE = ({2'b0, XExpVal} + {2'b0, YExpVal} - {2'b0, (`NE)'(`BIAS)})&{`NE+2{~(XZeroE|YZeroE)}};
assign ProdExpE = ({2'b0, XExpE} + {2'b0, YExpE} - {2'b0, (`NE)'(`BIAS)})&{`NE+2{~(XZeroE|YZeroE)}};
endmodule
@ -258,13 +215,10 @@ endmodule
module align(
input logic [`NE-1:0] ZExpE, // biased exponents in B(NE.0) format
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // biased exponents in B(NE.0) format
input logic [`NF:0] ZManE, // fractions in U(0.NF) format]
input logic ZDenormE, // is the input denormal
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
input logic [`NE-1:0] XExpVal, YExpVal, // Exponent value after taking into account denormals
input logic [`NE+1:0] ProdExpE, // the product's exponent
input logic [`NE-1:0] Denorm, // the biased value of a denormalized number
output logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
output logic AddendStickyE, // Sticky bit calculated from the aliged addend
output logic KillProdE // should the product be set to zero
@ -273,7 +227,6 @@ module align(
logic [`NE+1:0] AlignCnt; // how far to shift the addend to align with the product in Q(NE+2.0) format
logic [4*`NF+5:0] ZManShifted; // output of the alignment shifter including sticky bits U(NF+5.3NF+1)
logic [4*`NF+5:0] ZManPreShifted; // input to the alignment shifter U(NF+5.3NF+1)
logic [`NE-1:0] ZExpVal; // Exponent value after taking into account denormals
///////////////////////////////////////////////////////////////////////////////
// Alignment shifter
@ -282,11 +235,9 @@ module align(
// determine the shift count for alignment
// - negitive means Z is larger, so shift Z left
// - positive means the product is larger, so shift Z right
// - Denormal numbers have a diffrent exponent value depending on the precision
assign ZExpVal = ZDenormE ? Denorm : ZExpE;
// assign AlignCnt = ProdExpE - {2'b0, ZExpVal} + (`NF+3);
// *** can we use ProdExpE instead of XExp/YExp to save an adder? DH 5/12/22
assign AlignCnt = XZeroE|YZeroE ? -1 : {2'b0, XExpVal} + {2'b0, YExpVal} - {2'b0, (`NE)'(`BIAS)} + `NF+3 - {2'b0, ZExpVal};
// KP- yes we used ProdExpE originally but we did this for timing
assign AlignCnt = XZeroE|YZeroE ? -1 : {2'b0, XExpE} + {2'b0, YExpE} - {2'b0, (`NE)'(`BIAS)} + `NF+3 - {2'b0, ZExpE};
// Defualt Addition without shifting
// | 54'b0 | 106'b(product) | 2'b0 |
@ -409,22 +360,10 @@ module loa( //https://ieeexplore.ieee.org/abstract/document/930098
lzc lzc(.f, .NormCntE);
lzc #(3*`NF+7) lzc (.num(f), .ZeroCnt(NormCntE));
endmodule
module lzc(
input logic [3*`NF+6:0] f,
output logic [$clog2(3*`NF+7)-1:0] NormCntE // normalization shift
);
logic [$clog2(3*`NF+7)-1:0] i;
always_comb begin
i = 0;
while (~f[3*`NF+6-i] & $unsigned(i) <= $unsigned($clog2(3*`NF+7)'(3)*($clog2(3*`NF+7))'(`NF)+($clog2(3*`NF+7))'(6))) i = i+1; // search for leading one
NormCntE = i;
end
endmodule
@ -450,7 +389,7 @@ module fma2(
input logic [3*`NF+5:0] SumM, // the positive sum
input logic NegSumM, // was the sum negitive
input logic InvZM, // do you invert Z
input logic ZOrigDenormM, // is the original precision denormalized
input logic ZDenormM, // is the original precision denormalized
input logic ZSgnEffM, // the modified Z sign - depends on instruction
input logic PSgnM, // the product's sign
input logic Mult, // multiply opperation
@ -465,7 +404,7 @@ module fma2(
logic ResultSgn, ResultSgnTmp; // Result sign
logic [`NE+1:0] SumExp; // exponent of the normalized sum
logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow
logic [`NF+2:0] NormSum; // normalized sum
logic [`NF+1:0] NormSum; // normalized sum
logic NormSumSticky; // sticky bit calulated from the normalized sum
logic SumZero; // is the sum zero
logic ResultDenorm; // is the result denormalized
@ -486,7 +425,7 @@ module fma2(
///////////////////////////////////////////////////////////////////////////////
normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum,
.ZOrigDenormM, .SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
.ZDenormM, .SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
@ -533,7 +472,7 @@ module fma2(
// Select the result
///////////////////////////////////////////////////////////////////////////////
resultselect resultselect(.XSgnM, .YSgnM, .ZExpM, .XManM, .YManM, .ZManM, .ZOrigDenormM,
resultselect resultselect(.XSgnM, .YSgnM, .ZExpM, .XManM, .YManM, .ZManM, .ZDenormM,
.FrmM, .FmtM, .AddendStickyM, .KillProdM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, .RoundAdd,
.ZSgnEffM, .PSgnM, .ResultSgn, .CalcPlus1, .Invalid, .Overflow, .Underflow,
.ResultDenorm, .ResultExp, .ResultFrac, .FMAResM);
@ -580,9 +519,9 @@ module normalize(
input logic [$clog2(3*`NF+7)-1:0] NormCntM, // normalization shift count
input logic [`FPSIZES/3:0] FmtM, // precision 1 = double 0 = single
input logic KillProdM, // is the product set to zero
input logic ZOrigDenormM,
input logic ZDenormM,
input logic AddendStickyM, // the sticky bit caclulated from the aligned addend
output logic [`NF+2:0] NormSum, // normalized sum
output logic [`NF+1:0] NormSum, // normalized sum
output logic SumZero, // is the sum zero
output logic NormSumSticky, UfSticky, // sticky bits
output logic [`NE+1:0] SumExp, // exponent of the normalized sum
@ -599,12 +538,12 @@ module normalize(
///////////////////////////////////////////////////////////////////////////////
// Normalization
///////////////////////////////////////////////////////////////////////////////
//*** insert bias-bias simplification in fcvt.sv/phone pictures/ whiteboard... if still there
//*** insert bias-bias simplification in fcvt.sv/phone pictures
// Determine if the sum is zero
assign SumZero = ~(|SumM);
// calculate the sum's exponent
assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM[`NE-1:1], ZExpM[0]&~ZOrigDenormM} : ProdExpM + -({4'b0, NormCntM} + 1 - (`NF+4));
assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM[`NE-1:1], ZExpM[0]&~ZDenormM} : ProdExpM + -({4'b0, NormCntM} + 1 - (`NF+4));
//convert the sum's exponent into the propper percision
if (`FPSIZES == 1) begin
@ -707,27 +646,27 @@ module normalize(
assign LZAPlus2 = SumShifted[3*`NF+8];
// the only possible mantissa for a plus two is all zeroes - a one has to propigate all the way through a sum. so we can leave the bottom statement alone
assign CorrSumShifted = LZAPlus1 ? SumShifted[3*`NF+6:1] : SumShifted[3*`NF+5:0];
assign NormSum = CorrSumShifted[3*`NF+5:2*`NF+3];
assign NormSum = CorrSumShifted[3*`NF+5:2*`NF+4];
// Calculate the sticky bit
if (`FPSIZES == 1) begin
assign NormSumSticky = |CorrSumShifted[2*`NF+2:0];
assign NormSumSticky = |CorrSumShifted[2*`NF+3:0];
end else if (`FPSIZES == 2) begin
// 3*NF+5 - NF1 - 3
assign NormSumSticky = (|CorrSumShifted[2*`NF+2:0]) |
(|CorrSumShifted[3*`NF+2-`NF1:2*`NF+3]&~FmtM);
assign NormSumSticky = (|CorrSumShifted[2*`NF+3:0]) |
(|CorrSumShifted[3*`NF+3-`NF1:2*`NF+4]&~FmtM);
end else if (`FPSIZES == 3) begin
assign NormSumSticky = (|CorrSumShifted[2*`NF+2:0]) |
(|CorrSumShifted[3*`NF+2-`NF1:2*`NF+3]&((FmtM==`FMT1)|(FmtM==`FMT2))) |
(|CorrSumShifted[3*`NF+2-`NF2:3*`NF+3-`NF1]&(FmtM==`FMT2));
assign NormSumSticky = (|CorrSumShifted[2*`NF+3:0]) |
(|CorrSumShifted[3*`NF+3-`NF1:2*`NF+4]&((FmtM==`FMT1)|(FmtM==`FMT2))) |
(|CorrSumShifted[3*`NF+3-`NF2:3*`NF+4-`NF1]&(FmtM==`FMT2));
end else if (`FPSIZES == 4) begin
assign NormSumSticky = (|CorrSumShifted[2*`NF+2:0]) |
(|CorrSumShifted[3*`NF+2-`D_NF:2*`NF+3]&((FmtM==1)|(FmtM==0)|(FmtM==2))) |
(|CorrSumShifted[3*`NF+2-`S_NF:3*`NF+3-`D_NF]&((FmtM==0)|(FmtM==2))) |
(|CorrSumShifted[3*`NF+2-`H_NF:3*`NF+3-`S_NF]&(FmtM==2));
assign NormSumSticky = (|CorrSumShifted[2*`NF+3:0]) |
(|CorrSumShifted[3*`NF+3-`D_NF:2*`NF+4]&((FmtM==1)|(FmtM==0)|(FmtM==2))) |
(|CorrSumShifted[3*`NF+3-`S_NF:3*`NF+4-`D_NF]&((FmtM==0)|(FmtM==2))) |
(|CorrSumShifted[3*`NF+3-`H_NF:3*`NF+4-`S_NF]&(FmtM==2));
end
@ -745,7 +684,7 @@ module fmaround(
input logic [`FPSIZES/3:0] FmtM, // precision 1 = double 0 = single
input logic [2:0] FrmM, // rounding mode
input logic UfSticky, // sticky bit for underlow calculation
input logic [`NF+2:0] NormSum, // normalized sum
input logic [`NF+1:0] NormSum, // normalized sum
input logic AddendStickyM, // addend's sticky bit
input logic NormSumSticky, // normalized sum's sticky bit
input logic ZZeroM, // is Z zero
@ -799,83 +738,53 @@ module fmaround(
if (`FPSIZES == 1) begin
// determine guard, round, and least significant bit of the result
assign Guard = NormSum[2];
assign Round = NormSum[1];
assign LSBNormSum = NormSum[3];
assign LSBNormSum = NormSum[2];
// used to determine underflow flag
assign UfGuard = NormSum[1];
assign UfRound = NormSum[0];
assign UfLSBNormSum = NormSum[2];
// determine sticky
assign Sticky = UfSticky | NormSum[0];
end else if (`FPSIZES == 2) begin
// \/-------------NF---------------,
// | NF1 | 3 | |
// | NF1 | 2 | |
// '-------NF1------^
// determine guard, round, and least significant bit of the result
assign Guard = FmtM ? NormSum[2] : NormSum[`NF-`NF1+2];
assign Round = FmtM ? NormSum[1] : NormSum[`NF-`NF1+1];
assign LSBNormSum = FmtM ? NormSum[3] : NormSum[`NF-`NF1+3];
assign LSBNormSum = FmtM ? NormSum[2] : NormSum[`NF-`NF1+2];
// used to determine underflow flag
assign UfGuard = FmtM ? NormSum[1] : NormSum[`NF-`NF1+1];
assign UfRound = FmtM ? NormSum[0] : NormSum[`NF-`NF1];
assign UfLSBNormSum = FmtM ? NormSum[2] : NormSum[`NF-`NF1+2];
// determine sticky
assign Sticky = UfSticky | (FmtM ? NormSum[0] : NormSum[`NF-`NF1]);
end else if (`FPSIZES == 3) begin
always_comb begin
case (FmtM)
`FMT: begin
// determine guard, round, and least significant bit of the result
Guard = NormSum[2];
Round = NormSum[1];
LSBNormSum = NormSum[3];
LSBNormSum = NormSum[2];
// used to determine underflow flag
UfGuard = NormSum[1];
UfRound = NormSum[0];
UfLSBNormSum = NormSum[2];
// determine sticky
Sticky = UfSticky | NormSum[0];
end
`FMT1: begin
// determine guard, round, and least significant bit of the result
Guard = NormSum[`NF-`NF1+2];
Round = NormSum[`NF-`NF1+1];
LSBNormSum = NormSum[`NF-`NF1+3];
LSBNormSum = NormSum[`NF-`NF1+2];
// used to determine underflow flag
UfGuard = NormSum[`NF-`NF1+1];
UfRound = NormSum[`NF-`NF1];
UfLSBNormSum = NormSum[`NF-`NF1+2];
// determine sticky
Sticky = UfSticky | NormSum[`NF-`NF1];
end
`FMT2: begin
// determine guard, round, and least significant bit of the result
Guard = NormSum[`NF-`NF2+2];
Round = NormSum[`NF-`NF2+1];
LSBNormSum = NormSum[`NF-`NF2+3];
LSBNormSum = NormSum[`NF-`NF2+2];
// used to determine underflow flag
UfGuard = NormSum[`NF-`NF2+1];
UfRound = NormSum[`NF-`NF2];
UfLSBNormSum = NormSum[`NF-`NF2+2];
// determine sticky
Sticky = UfSticky | NormSum[`NF-`NF2];
end
default: begin
Guard = 1'bx;
Round = 1'bx;
LSBNormSum = 1'bx;
UfGuard = 1'bx;
UfRound = 1'bx;
UfLSBNormSum = 1'bx;
Sticky = 1'bx;
end
endcase
end
@ -885,56 +794,40 @@ module fmaround(
case (FmtM)
2'h3: begin
// determine guard, round, and least significant bit of the result
Guard = NormSum[2];
Round = NormSum[1];
LSBNormSum = NormSum[3];
LSBNormSum = NormSum[2];
// used to determine underflow flag
UfGuard = NormSum[1];
UfRound = NormSum[0];
UfLSBNormSum = NormSum[2];
// determine sticky
Sticky = UfSticky | NormSum[0];
end
2'h1: begin
// determine guard, round, and least significant bit of the result
Guard = NormSum[`NF-`D_NF+2];
Round = NormSum[`NF-`D_NF+1];
LSBNormSum = NormSum[`NF-`D_NF+3];
LSBNormSum = NormSum[`NF-`D_NF+2];
// used to determine underflow flag
UfGuard = NormSum[`NF-`D_NF+1];
UfRound = NormSum[`NF-`D_NF];
UfLSBNormSum = NormSum[`NF-`D_NF+2];
// determine sticky
Sticky = UfSticky | NormSum[`NF-`D_NF];
end
2'h0: begin
// determine guard, round, and least significant bit of the result
Guard = NormSum[`NF-`S_NF+2];
Round = NormSum[`NF-`S_NF+1];
LSBNormSum = NormSum[`NF-`S_NF+3];
LSBNormSum = NormSum[`NF-`S_NF+2];
// used to determine underflow flag
UfGuard = NormSum[`NF-`S_NF+1];
UfRound = NormSum[`NF-`S_NF];
UfLSBNormSum = NormSum[`NF-`S_NF+2];
// determine sticky
Sticky = UfSticky | NormSum[`NF-`S_NF];
end
2'h2: begin
// determine guard, round, and least significant bit of the result
Guard = NormSum[`NF-`H_NF+2];
Round = NormSum[`NF-`H_NF+1];
LSBNormSum = NormSum[`NF-`H_NF+3];
LSBNormSum = NormSum[`NF-`H_NF+2];
// used to determine underflow flag
UfGuard = NormSum[`NF-`H_NF+1];
UfRound = NormSum[`NF-`H_NF];
UfLSBNormSum = NormSum[`NF-`H_NF+2];
// determine sticky
Sticky = UfSticky | NormSum[`NF-`H_NF];
end
endcase
end
end
// used to determine underflow flag
assign UfLSBNormSum = Round;
// determine sticky
assign Sticky = UfSticky | UfRound;
// Deterimine if a small number was supposed to be subtrated
@ -944,28 +837,28 @@ module fmaround(
always_comb begin
// Determine if you add 1
case (FrmM)
3'b000: CalcPlus1 = Guard & (Round | ((Sticky)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky)&LSBNormSum&~SubBySmallNum));//round to nearest even
3'b000: CalcPlus1 = Round & ((Sticky| LSBNormSum)&~SubBySmallNum);//round to nearest even
3'b001: CalcPlus1 = 0;//round to zero
3'b010: CalcPlus1 = ResultSgnTmp & ~(SubBySmallNum & ~Guard & ~Round);//round down
3'b011: CalcPlus1 = ~ResultSgnTmp & ~(SubBySmallNum & ~Guard & ~Round);//round up
3'b100: CalcPlus1 = (Guard & (Round | ((Sticky)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky)&~SubBySmallNum)));//round to nearest max magnitude
3'b010: CalcPlus1 = ResultSgnTmp & ~(SubBySmallNum & ~Round);//round down
3'b011: CalcPlus1 = ~ResultSgnTmp & ~(SubBySmallNum & ~Round);//round up
3'b100: CalcPlus1 = Round & ~SubBySmallNum;//round to nearest max magnitude
default: CalcPlus1 = 1'bx;
endcase
// Determine if you add 1 (for underflow flag)
case (FrmM)
3'b000: UfCalcPlus1 = UfGuard & (UfRound | (UfSticky&UfRound|~UfSubBySmallNum) | (~Sticky&UfLSBNormSum&~UfSubBySmallNum));//round to nearest even
3'b000: UfCalcPlus1 = UfRound & ((UfSticky| UfLSBNormSum)&~UfSubBySmallNum);//round to nearest even
3'b001: UfCalcPlus1 = 0;//round to zero
3'b010: UfCalcPlus1 = ResultSgnTmp & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round down
3'b011: UfCalcPlus1 = ~ResultSgnTmp & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round up
3'b100: UfCalcPlus1 = (UfGuard & (UfRound | (UfSticky&~(~UfRound&UfSubBySmallNum)) | (~Sticky&~UfSubBySmallNum)));//round to nearest max magnitude
3'b010: UfCalcPlus1 = ResultSgnTmp & ~(UfSubBySmallNum & ~UfRound);//round down
3'b011: UfCalcPlus1 = ~ResultSgnTmp & ~(UfSubBySmallNum & ~UfRound);//round up
3'b100: UfCalcPlus1 = UfRound & ~UfSubBySmallNum;//round to nearest max magnitude
default: UfCalcPlus1 = 1'bx;
endcase
// Determine if you subtract 1
case (FrmM)
3'b000: CalcMinus1 = 0;//round to nearest even
3'b001: CalcMinus1 = SubBySmallNum & ~Guard & ~Round;//round to zero
3'b010: CalcMinus1 = ~ResultSgnTmp & ~Guard & ~Round & SubBySmallNum;//round down
3'b011: CalcMinus1 = ResultSgnTmp & ~Guard & ~Round & SubBySmallNum;//round up
3'b001: CalcMinus1 = SubBySmallNum & ~Round;//round to zero
3'b010: CalcMinus1 = ~ResultSgnTmp & ~Round & SubBySmallNum;//round down
3'b011: CalcMinus1 = ResultSgnTmp & ~Round & SubBySmallNum;//round up
3'b100: CalcMinus1 = 0;//round to nearest max magnitude
default: CalcMinus1 = 1'bx;
endcase
@ -973,9 +866,9 @@ module fmaround(
end
// If an answer is exact don't round
assign Plus1 = CalcPlus1 & (Sticky | Guard | Round);
assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard);//UfRound is part of sticky
assign Minus1 = CalcMinus1 & (Sticky | Guard | Round);
assign Plus1 = CalcPlus1 & (Sticky | Round);
assign UfPlus1 = UfCalcPlus1 & (Sticky | UfRound);//UfRound is part of sticky
assign Minus1 = CalcMinus1 & (Sticky | Round);
// Compute rounded result
if (`FPSIZES == 1) begin
@ -1011,7 +904,7 @@ module fmaround(
end
assign NormSumTruncated = NormSum[`NF+2:3];
assign NormSumTruncated = NormSum[`NF+1:2];
assign {FullResultExp, ResultFrac} = {SumExp, NormSumTruncated} + RoundAdd;
assign ResultExp = FullResultExp[`NE-1:0];
@ -1083,12 +976,12 @@ module fmaflags(
// Set Underflow flag if the number is too small to be represented in normal numbers
// - Don't set the underflow flag if the result is exact
assign Underflow = (SumExp[`NE+1] | ((SumExp == 0) & (Round|Guard|Sticky)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
assign Underflow = (SumExp[`NE+1] | ((SumExp == 0) & (Round|Sticky)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// exp is negitive result is denorm exp was denorm but rounded to norm and if given an unbounded exponent it would stay denormal
assign UnderflowFlag = (FullResultExp[`NE+1] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Guard|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
assign UnderflowFlag = (FullResultExp[`NE+1] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Set Inexact flag if the result is diffrent from what would be outputed given infinite precision
// - Don't set the underflow flag if an underflowed result isn't outputed
assign Inexact = (Sticky|Overflow|Guard|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
assign Inexact = (Sticky|Overflow|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Combine flags
// - FMA can't set the Divide by zero flag
@ -1108,7 +1001,7 @@ module resultselect(
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
input logic XInfM, YInfM, ZInfM, // inputs are infinity
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
input logic ZOrigDenormM, // is the original precision denormalized
input logic ZDenormM, // is the original precision denormalized
input logic ZSgnEffM, // the modified Z sign - depends on instruction
input logic PSgnM, // the product's sign
input logic ResultSgn, // the result's sign
@ -1134,7 +1027,7 @@ module resultselect(
end
assign OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}};
assign KillProdResult = {ResultSgn, {ZExpM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
assign KillProdResult = {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
assign UnderflowResult = {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))};
assign InfResult = {InfSgn, {`NE{1'b1}}, (`NF)'(0)};
assign NormResult = {ResultSgn, ResultExp, ResultFrac};
@ -1153,7 +1046,7 @@ module resultselect(
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} :
{{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1{1'b1}}, (`NF1)'(0)};
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})} : {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~ZOrigDenormM, ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})} : {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))} : {{`FLEN-`LEN1{1'b1}}, {ResultSgn, (`LEN1-1)'(0)} + {(`LEN1-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
assign InfResult = FmtM ? {InfSgn, {`NE{1'b1}}, (`NF)'(0)} : {{`FLEN-`LEN1{1'b1}}, InfSgn, {`NE1{1'b1}}, (`NF1)'(0)};
assign NormResult = FmtM ? {ResultSgn, ResultExp, ResultFrac} : {{`FLEN-`LEN1{1'b1}}, ResultSgn, ResultExp[`NE1-1:0], ResultFrac[`NF-1:`NF-`NF1]};
@ -1173,7 +1066,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}};
KillProdResult = {ResultSgn, {ZExpM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
KillProdResult = {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
UnderflowResult = {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))};
InfResult = {InfSgn, {`NE{1'b1}}, (`NF)'(0)};
NormResult = {ResultSgn, ResultExp, ResultFrac};
@ -1189,7 +1082,7 @@ module resultselect(
end
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} :
{{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1{1'b1}}, (`NF1)'(0)};
KillProdResult = {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~ZOrigDenormM, ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`LEN1{1'b1}}, {ResultSgn, (`LEN1-1)'(0)} + {(`LEN1-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`LEN1{1'b1}}, InfSgn, {`NE1{1'b1}}, (`NF1)'(0)};
NormResult = {{`FLEN-`LEN1{1'b1}}, ResultSgn, ResultExp[`NE1-1:0], ResultFrac[`NF-1:`NF-`NF1]};
@ -1206,7 +1099,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`LEN2{1'b1}}, ResultSgn, {`NE2-1{1'b1}}, 1'b0, {`NF2{1'b1}}} :
{{`FLEN-`LEN2{1'b1}}, ResultSgn, {`NE2{1'b1}}, (`NF2)'(0)};
KillProdResult = {{`FLEN-`LEN2{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE2-2:1], ZExpM[0]&~ZOrigDenormM, ZManM[`NF-1:`NF-`NF2]} + (RoundAdd[`NF-`NF2+`LEN2-2:`NF-`NF2]&{`LEN2-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`LEN2{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE2-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`NF2]} + (RoundAdd[`NF-`NF2+`LEN2-2:`NF-`NF2]&{`LEN2-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`LEN2{1'b1}}, {ResultSgn, (`LEN2-1)'(0)} + {(`LEN2-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`LEN2{1'b1}}, InfSgn, {`NE2{1'b1}}, (`NF2)'(0)};
NormResult = {{`FLEN-`LEN2{1'b1}}, ResultSgn, ResultExp[`NE2-1:0], ResultFrac[`NF-1:`NF-`NF2]};
@ -1244,7 +1137,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}};
KillProdResult = {ResultSgn, {ZExpM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
KillProdResult = {ResultSgn, {ZExpM[`Q_NE-1:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
UnderflowResult = {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))};
InfResult = {InfSgn, {`NE{1'b1}}, (`NF)'(0)};
NormResult = {ResultSgn, ResultExp, ResultFrac};
@ -1260,7 +1153,7 @@ module resultselect(
end
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`D_LEN{1'b1}}, ResultSgn, {`D_NE-1{1'b1}}, 1'b0, {`D_NF{1'b1}}} :
{{`FLEN-`D_LEN{1'b1}}, ResultSgn, {`D_NE{1'b1}}, (`D_NF)'(0)};
KillProdResult = {{`FLEN-`D_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`D_NE-2:1], ZExpM[0]&~ZOrigDenormM, ZManM[`NF-1:`NF-`D_NF]} + (RoundAdd[`NF-`D_NF+`D_LEN-2:`NF-`D_NF]&{`D_LEN-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`D_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`D_NE-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`D_NF]} + (RoundAdd[`NF-`D_NF+`D_LEN-2:`NF-`D_NF]&{`D_LEN-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`D_LEN{1'b1}}, {ResultSgn, (`D_LEN-1)'(0)} + {(`D_LEN-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`D_LEN{1'b1}}, InfSgn, {`D_NE{1'b1}}, (`D_NF)'(0)};
NormResult = {{`FLEN-`D_LEN{1'b1}}, ResultSgn, ResultExp[`D_NE-1:0], ResultFrac[`NF-1:`NF-`D_NF]};
@ -1277,7 +1170,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`S_LEN{1'b1}}, ResultSgn, {`S_NE-1{1'b1}}, 1'b0, {`S_NF{1'b1}}} :
{{`FLEN-`S_LEN{1'b1}}, ResultSgn, {`S_NE{1'b1}}, (`S_NF)'(0)};
KillProdResult = {{`FLEN-`S_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`S_NE-2:1], ZExpM[0]&~ZOrigDenormM, ZManM[`NF-1:`NF-`S_NF]} + (RoundAdd[`NF-`S_NF+`S_LEN-2:`NF-`S_NF]&{`S_LEN-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`S_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`S_NE-2:1], ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`S_NF]} + (RoundAdd[`NF-`S_NF+`S_LEN-2:`NF-`S_NF]&{`S_LEN-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`S_LEN{1'b1}}, {ResultSgn, (`S_LEN-1)'(0)} + {(`S_LEN-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`S_LEN{1'b1}}, InfSgn, {`S_NE{1'b1}}, (`S_NF)'(0)};
NormResult = {{`FLEN-`S_LEN{1'b1}}, ResultSgn, ResultExp[`S_NE-1:0], ResultFrac[`NF-1:`NF-`S_NF]};
@ -1295,7 +1188,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`H_LEN{1'b1}}, ResultSgn, {`H_NE-1{1'b1}}, 1'b0, {`H_NF{1'b1}}} :
{{`FLEN-`H_LEN{1'b1}}, ResultSgn, {`H_NE{1'b1}}, (`H_NF)'(0)};
KillProdResult = {{`FLEN-`H_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`H_NE-2:1],ZExpM[0]&~ZOrigDenormM, ZManM[`NF-1:`NF-`H_NF]} + (RoundAdd[`NF-`H_NF+`H_LEN-2:`NF-`H_NF]&{`H_LEN-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`H_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`H_NE-2:1],ZExpM[0]&~ZDenormM, ZManM[`NF-1:`NF-`H_NF]} + (RoundAdd[`NF-`H_NF+`H_LEN-2:`NF-`H_NF]&{`H_LEN-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`H_LEN{1'b1}}, {ResultSgn, (`H_LEN-1)'(0)} + {(`H_LEN-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`H_LEN{1'b1}}, InfSgn, {`H_NE{1'b1}}, (`H_NF)'(0)};
NormResult = {{`FLEN-`H_LEN{1'b1}}, ResultSgn, ResultExp[`H_NE-1:0], ResultFrac[`NF-1:`NF-`H_NF]};

View file

@ -104,7 +104,6 @@ module fpu (
logic XInfQ, YInfQ; // is the input infinity - divide
logic XExpMaxE; // is the exponent all ones (max value)
logic XNormE; // is normal
logic ZOrigDenormE, XOrigDenormE;
logic FmtQ;
logic FOpCtrlQ;
@ -176,7 +175,7 @@ module fpu (
// unpack unit
// - splits FP inputs into their various parts
// - does some classifications (SNaN, NaN, Denorm, Norm, Zero, Infifnity)
unpack unpack (.X(FSrcXE), .Y(FSrcYE), .Z(FSrcZE), .FmtE, .ZOrigDenormE, .XOrigDenormE,
unpack unpack (.X(FSrcXE), .Y(FSrcYE), .Z(FSrcZE), .FmtE,
.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
.XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE, .XDenormE, .YDenormE, .ZDenormE,
.XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE, .XExpMaxE, .XNormE);
@ -188,11 +187,11 @@ module fpu (
// - handles FMA and multiply instructions
fma fma (.clk, .reset, .FlushM, .StallM,
.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
.ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
.XSgnM, .YSgnM, .ZExpM, .XManM, .YManM, .ZManM,
.XNaNM, .YNaNM, .ZNaNM, .XZeroM, .YZeroM, .ZZeroM,
.XInfM, .YInfM, .ZInfM, .XSNaNM, .YSNaNM, .ZSNaNM,
.FOpCtrlE, .ZOrigDenormE,
.FOpCtrlE,
.FmtE, .FmtM, .FrmM,
.FMAFlgM, .FMAResM);
@ -215,9 +214,9 @@ module fpu (
// other FP execution units
fcmp fcmp (.FmtE, .FOpCtrlE, .XSgnE, .YSgnE, .XExpE, .YExpE, .XManE, .YManE,
.XZeroE, .YZeroE, .XNaNE, .YNaNE, .XSNaNE, .YSNaNE, .FSrcXE, .FSrcYE, .CmpNVE, .CmpResE);
fsgn fsgn (.SgnOpCodeE(FOpCtrlE[1:0]), .XSgnE, .YSgnE, .FSrcXE, .FmtE, .SgnResE);
fsgninj fsgninj(.SgnOpCodeE(FOpCtrlE[1:0]), .XSgnE, .YSgnE, .FSrcXE, .FmtE, .SgnResE);
fclassify fclassify (.XSgnE, .XDenormE, .XZeroE, .XNaNE, .XInfE, .XNormE, .XSNaNE, .ClassResE);
fcvt fcvt (.XSgnE, .XExpE, .XManE, .ForwardedSrcAE, .FOpCtrlE, .FWriteIntE, .XZeroE, .XOrigDenormE,
fcvt fcvt (.XSgnE, .XExpE, .XManE, .ForwardedSrcAE, .FOpCtrlE, .FWriteIntE, .XZeroE, .XDenormE,
.XInfE, .XNaNE, .XSNaNE, .FrmE, .FmtE, .CvtResE, .CvtIntResE, .CvtFlgE);
// data to be stored in memory - to IEU
@ -235,6 +234,8 @@ module fpu (
// select the result that may be written to the integer register - to IEU
mux4 #(`XLEN) IntResMux(CmpResE[`XLEN-1:0], FSrcXE[`XLEN-1:0], ClassResE[`XLEN-1:0],
CvtIntResE, FIntResSelE, FIntResE);
// *** DH 5/25/22: CvtRes will move to mem stage. Premux in execute to save area, then make sure stalls are ok
// *** make sure the fpu matches the chapter diagram
// E/M pipe registers

View file

@ -1,29 +0,0 @@
//performs the fsgnj/fsgnjn/fsgnjx RISCV instructions
module fsgn (
input logic XSgnE, YSgnE, // X and Y sign bits
input logic [63:0] FSrcXE, // X
input logic FmtE, // precision 1 = double 0 = single
input logic [1:0] SgnOpCodeE, // operation control
output logic [63:0] SgnResE // result
);
logic ResSgn;
//op code designation:
//
//00 - fsgnj - directly copy over sign value of FSrcYE
//01 - fsgnjn - negate sign value of FSrcYE
//10 - fsgnjx - XOR sign values of FSrcXE & FSrcYE
//
// calculate the result's sign
assign ResSgn = SgnOpCodeE[1] ? (XSgnE ^ YSgnE) : (YSgnE ^ SgnOpCodeE[0]);
// format final result based on precision
// - uses NaN-blocking format
// - if there are any unsused bits the most significant bits are filled with 1s
assign SgnResE = FmtE ? {ResSgn, FSrcXE[62:0]} : {FSrcXE[63:32], ResSgn, FSrcXE[30:0]};
endmodule

56
pipelined/src/fpu/fsgninj.sv Executable file
View file

@ -0,0 +1,56 @@
///////////////////////////////////////////
//
// Written: Katherine Parry
// Modified: 6/23/2021
//
// Purpose: FPU Sign Injection instructions
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
module fsgninj (
input logic XSgnE, YSgnE, // X and Y sign bits
input logic [63:0] FSrcXE, // X
input logic FmtE, // precision 1 = double 0 = single
input logic [1:0] SgnOpCodeE, // operation control
output logic [63:0] SgnResE // result
);
logic ResSgn;
//op code designation:
//
//00 - fsgnj - directly copy over sign value of FSrcYE
//01 - fsgnjn - negate sign value of FSrcYE
//10 - fsgnjx - XOR sign values of FSrcXE & FSrcYE
//
// calculate the result's sign
assign ResSgn = SgnOpCodeE[1] ? (XSgnE ^ YSgnE) : (YSgnE ^ SgnOpCodeE[0]);
// format final result based on precision
// - uses NaN-blocking format
// - if there are any unsused bits the most significant bits are filled with 1s
assign SgnResE = FmtE ? {ResSgn, FSrcXE[62:0]} : {FSrcXE[63:32], ResSgn, FSrcXE[30:0]};
endmodule

View file

@ -12,7 +12,6 @@ module unpack (
output logic XDenormE, YDenormE, ZDenormE, // is XYZ denormalized
output logic XZeroE, YZeroE, ZZeroE, // is XYZ zero
output logic XInfE, YInfE, ZInfE, // is XYZ infinity
output logic XOrigDenormE, ZOrigDenormE, // is the original precision denormalized
output logic XExpMaxE // does X have the maximum exponent (NaN or Inf)
);
@ -22,535 +21,20 @@ module unpack (
logic XExpZero, YExpZero, ZExpZero; // is the exponent zero
logic YExpMaxE, ZExpMaxE; // is the exponent all 1s
if (`FPSIZES == 1) begin // if there is only one floating point format supported
unpackinput unpackinputX (.In(X), .FmtE, .Sgn(XSgnE), .Exp(XExpE), .Man(XManE),
.NaN(XNaNE), .SNaN(XSNaNE), .Denorm(XDenormE),
.Zero(XZeroE), .Inf(XInfE), .ExpMax(XExpMaxE), .ExpZero(XExpZero));
// sign bit
assign XSgnE = X[`FLEN-1];
assign YSgnE = Y[`FLEN-1];
assign ZSgnE = Z[`FLEN-1];
unpackinput unpackinputY (.In(Y), .FmtE, .Sgn(YSgnE), .Exp(YExpE), .Man(YManE),
.NaN(YNaNE), .SNaN(YSNaNE), .Denorm(YDenormE),
.Zero(YZeroE), .Inf(YInfE), .ExpMax(YExpMaxE), .ExpZero(YExpZero));
// exponent
assign XExpE = X[`FLEN-2:`NF];
assign YExpE = Y[`FLEN-2:`NF];
assign ZExpE = Z[`FLEN-2:`NF];
// fraction (no assumed 1)
assign XFracE = X[`NF-1:0];
assign YFracE = Y[`NF-1:0];
assign ZFracE = Z[`NF-1:0];
// is the exponent non-zero
assign XExpNonzero = |XExpE;
assign YExpNonzero = |YExpE;
assign ZExpNonzero = |ZExpE;
// is the exponent all 1's
assign XExpMaxE = &XExpE;
assign YExpMaxE = &YExpE;
assign ZExpMaxE = &ZExpE;
assign XOrigDenormE = 1'b0;
assign ZOrigDenormE = 1'b0;
end else if (`FPSIZES == 2) begin // if there are 2 floating point formats supported
//***need better names for these constants
// largest format | smaller format
//----------------------------------
// `FLEN | `LEN1 length of floating point number
// `NE | `NE1 length of exponent
// `NF | `NF1 length of fraction
// `BIAS | `BIAS1 exponent's bias value
// `FMT | `FMT1 precision's format value - Q=11 D=01 S=00 H=10
// Possible combinantions specified by spec:
// double and single
// single and half
// Not needed but can also handle:
// quad and double
// quad and single
// quad and half
// double and half
logic [`LEN1-1:0] XLen1, YLen1, ZLen1; // Remove NaN boxing or NaN, if not properly NaN boxed
logic YOrigDenormE; // the original value of XYZ is denormalized
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN
assign XLen1 = &X[`FLEN-1:`LEN1] ? X[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
assign YLen1 = &Y[`FLEN-1:`LEN1] ? Y[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
assign ZLen1 = &Z[`FLEN-1:`LEN1] ? Z[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
// choose sign bit depending on format - 1=larger precsion 0=smaller precision
assign XSgnE = FmtE ? X[`FLEN-1] : XLen1[`LEN1-1];
assign YSgnE = FmtE ? Y[`FLEN-1] : YLen1[`LEN1-1];
assign ZSgnE = FmtE ? Z[`FLEN-1] : ZLen1[`LEN1-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// extract the exponent, converting the smaller exponent into the larger precision if nessisary
// - if the original precision had a denormal number convert the exponent value 1
assign XExpE = FmtE ? X[`FLEN-2:`NF] : XOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {XLen1[`LEN1-2], {`NE-`NE1{~XLen1[`LEN1-2]&~XExpZero|XExpMaxE}}, XLen1[`LEN1-3:`NF1]};
assign YExpE = FmtE ? Y[`FLEN-2:`NF] : YOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {YLen1[`LEN1-2], {`NE-`NE1{~YLen1[`LEN1-2]&~YExpZero|YExpMaxE}}, YLen1[`LEN1-3:`NF1]};
assign ZExpE = FmtE ? Z[`FLEN-2:`NF] : ZOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {ZLen1[`LEN1-2], {`NE-`NE1{~ZLen1[`LEN1-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`LEN1-3:`NF1]};
// is the input (in it's original format) denormalized
assign XOrigDenormE = FmtE ? 0 : ~|XLen1[`LEN1-2:`NF1] & ~XFracZero;
assign YOrigDenormE = FmtE ? 0 : ~|YLen1[`LEN1-2:`NF1] & ~YFracZero;
assign ZOrigDenormE = FmtE ? 0 : ~|ZLen1[`LEN1-2:`NF1] & ~ZFracZero;
// extract the fraction, add trailing zeroes to the mantissa if nessisary
assign XFracE = FmtE ? X[`NF-1:0] : {XLen1[`NF1-1:0], (`NF-`NF1)'(0)};
assign YFracE = FmtE ? Y[`NF-1:0] : {YLen1[`NF1-1:0], (`NF-`NF1)'(0)};
assign ZFracE = FmtE ? Z[`NF-1:0] : {ZLen1[`NF1-1:0], (`NF-`NF1)'(0)};
// is the exponent non-zero
assign XExpNonzero = FmtE ? |X[`FLEN-2:`NF] : |XLen1[`LEN1-2:`NF1];
assign YExpNonzero = FmtE ? |Y[`FLEN-2:`NF] : |YLen1[`LEN1-2:`NF1];
assign ZExpNonzero = FmtE ? |Z[`FLEN-2:`NF] : |ZLen1[`LEN1-2:`NF1];
// is the exponent all 1's
assign XExpMaxE = FmtE ? &X[`FLEN-2:`NF] : &XLen1[`LEN1-2:`NF1];
assign YExpMaxE = FmtE ? &Y[`FLEN-2:`NF] : &YLen1[`LEN1-2:`NF1];
assign ZExpMaxE = FmtE ? &Z[`FLEN-2:`NF] : &ZLen1[`LEN1-2:`NF1];
end else if (`FPSIZES == 3) begin // three floating point precsions supported
//***need better names for these constants
// largest format | larger format | smallest format
//---------------------------------------------------
// `FLEN | `LEN1 | `LEN2 length of floating point number
// `NE | `NE1 | `NE2 length of exponent
// `NF | `NF1 | `NF2 length of fraction
// `BIAS | `BIAS1 | `BIAS2 exponent's bias value
// `FMT | `FMT1 | `FMT2 precision's format value - Q=11 D=01 S=00 H=10
// Possible combinantions specified by spec:
// quad and double and single
// double and single and half
// Not needed but can also handle:
// quad and double and half
// quad and single and half
logic [`LEN1-1:0] XLen1, YLen1, ZLen1; // Remove NaN boxing or NaN, if not properly NaN boxed for larger percision
logic [`LEN2-1:0] XLen2, YLen2, ZLen2; // Remove NaN boxing or NaN, if not properly NaN boxed for smallest precision
logic YOrigDenormE; // the original value of XYZ is denormalized
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for larger precision
assign XLen1 = &X[`FLEN-1:`LEN1] ? X[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
assign YLen1 = &Y[`FLEN-1:`LEN1] ? Y[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
assign ZLen1 = &Z[`FLEN-1:`LEN1] ? Z[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for smaller precision
assign XLen2 = &X[`FLEN-1:`LEN2] ? X[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
assign YLen2 = &Y[`FLEN-1:`LEN2] ? Y[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
assign ZLen2 = &Z[`FLEN-1:`LEN2] ? Z[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
// There are 2 case statements
// - one for other singals and one for sgn/exp/frac
// - need two for the dependencies in the expoenent calculation
always_comb begin
case (FmtE)
`FMT: begin // if input is largest precision (`FLEN - ie quad or double)
// This is the original format so set OrigDenorm to 0
XOrigDenormE = 1'b0;
YOrigDenormE = 1'b0;
ZOrigDenormE = 1'b0;
// is the exponent non-zero
XExpNonzero = |X[`FLEN-2:`NF];
YExpNonzero = |Y[`FLEN-2:`NF];
ZExpNonzero = |Z[`FLEN-2:`NF];
// is the exponent all 1's
XExpMaxE = &X[`FLEN-2:`NF];
YExpMaxE = &Y[`FLEN-2:`NF];
ZExpMaxE = &Z[`FLEN-2:`NF];
end
`FMT1: begin // if input is larger precsion (`LEN1 - double or single)
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen1[`LEN1-2:`NF1] & ~XFracZero;
YOrigDenormE = ~|YLen1[`LEN1-2:`NF1] & ~YFracZero;
ZOrigDenormE = ~|ZLen1[`LEN1-2:`NF1] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen1[`LEN1-2:`NF1];
YExpNonzero = |YLen1[`LEN1-2:`NF1];
ZExpNonzero = |ZLen1[`LEN1-2:`NF1];
// is the exponent all 1's
XExpMaxE = &XLen1[`LEN1-2:`NF1];
YExpMaxE = &YLen1[`LEN1-2:`NF1];
ZExpMaxE = &ZLen1[`LEN1-2:`NF1];
end
`FMT2: begin // if input is smallest precsion (`LEN2 - single or half)
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen2[`LEN2-2:`NF2] & ~XFracZero;
YOrigDenormE = ~|YLen2[`LEN2-2:`NF2] & ~YFracZero;
ZOrigDenormE = ~|ZLen2[`LEN2-2:`NF2] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen2[`LEN2-2:`NF2];
YExpNonzero = |YLen2[`LEN2-2:`NF2];
ZExpNonzero = |ZLen2[`LEN2-2:`NF2];
// is the exponent all 1's
XExpMaxE = &XLen2[`LEN2-2:`NF2];
YExpMaxE = &YLen2[`LEN2-2:`NF2];
ZExpMaxE = &ZLen2[`LEN2-2:`NF2];
end
default: begin
XOrigDenormE = 0;
YOrigDenormE = 0;
ZOrigDenormE = 0;
XExpNonzero = 0;
YExpNonzero = 0;
ZExpNonzero = 0;
XExpMaxE = 0;
YExpMaxE = 0;
ZExpMaxE = 0;
end
endcase
end
always_comb begin
case (FmtE)
`FMT: begin // if input is largest precision (`FLEN - ie quad or double)
// extract the sign bit
XSgnE = X[`FLEN-1];
YSgnE = Y[`FLEN-1];
ZSgnE = Z[`FLEN-1];
// extract the exponent
XExpE = X[`FLEN-2:`NF];
YExpE = Y[`FLEN-2:`NF];
ZExpE = Z[`FLEN-2:`NF];
// extract the fraction
XFracE = X[`NF-1:0];
YFracE = Y[`NF-1:0];
ZFracE = Z[`NF-1:0];
end
`FMT1: begin // if input is larger precsion (`LEN1 - double or single)
// extract the sign bit
XSgnE = XLen1[`LEN1-1];
YSgnE = YLen1[`LEN1-1];
ZSgnE = ZLen1[`LEN1-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// convert the larger precision's exponent to use the largest precision's bias
XExpE = XOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {XLen1[`LEN1-2], {`NE-`NE1{~XLen1[`LEN1-2]&~XExpZero|XExpMaxE}}, XLen1[`LEN1-3:`NF1]};
YExpE = YOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {YLen1[`LEN1-2], {`NE-`NE1{~YLen1[`LEN1-2]&~YExpZero|YExpMaxE}}, YLen1[`LEN1-3:`NF1]};
ZExpE = ZOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {ZLen1[`LEN1-2], {`NE-`NE1{~ZLen1[`LEN1-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`LEN1-3:`NF1]};
// extract the fraction and add the nessesary trailing zeros
XFracE = {XLen1[`NF1-1:0], (`NF-`NF1)'(0)};
YFracE = {YLen1[`NF1-1:0], (`NF-`NF1)'(0)};
ZFracE = {ZLen1[`NF1-1:0], (`NF-`NF1)'(0)};
end
`FMT2: begin // if input is smallest precsion (`LEN2 - single or half)
// exctract the sign bit
XSgnE = XLen2[`LEN2-1];
YSgnE = YLen2[`LEN2-1];
ZSgnE = ZLen2[`LEN2-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// convert the smallest precision's exponent to use the largest precision's bias
XExpE = XOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {XLen2[`LEN2-2], {`NE-`NE2{~XLen2[`LEN2-2]&~XExpZero|XExpMaxE}}, XLen2[`LEN2-3:`NF2]};
YExpE = YOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {YLen2[`LEN2-2], {`NE-`NE2{~YLen2[`LEN2-2]&~YExpZero|YExpMaxE}}, YLen2[`LEN2-3:`NF2]};
ZExpE = ZOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {ZLen2[`LEN2-2], {`NE-`NE2{~ZLen2[`LEN2-2]&~ZExpZero|ZExpMaxE}}, ZLen2[`LEN2-3:`NF2]};
// extract the fraction and add the nessesary trailing zeros
XFracE = {XLen2[`NF2-1:0], (`NF-`NF2)'(0)};
YFracE = {YLen2[`NF2-1:0], (`NF-`NF2)'(0)};
ZFracE = {ZLen2[`NF2-1:0], (`NF-`NF2)'(0)};
end
default: begin
XSgnE = 0;
YSgnE = 0;
ZSgnE = 0;
XExpE = 0;
YExpE = 0;
ZExpE = 0;
XFracE = 0;
YFracE = 0;
ZFracE = 0;
end
endcase
end
end else if (`FPSIZES == 4) begin // if all precsisons are supported - quad, double, single, and half
// quad | double | single | half
//-------------------------------------------------------------------
// `Q_LEN | `D_LEN | `S_LEN | `H_LEN length of floating point number
// `Q_NE | `D_NE | `S_NE | `H_NE length of exponent
// `Q_NF | `D_NF | `S_NF | `H_NF length of fraction
// `Q_BIAS | `D_BIAS | `S_BIAS | `H_BIAS exponent's bias value
// `Q_FMT | `D_FMT | `S_FMT | `H_FMT precision's format value - Q=11 D=01 S=00 H=10
logic [`D_LEN-1:0] XLen1, YLen1, ZLen1; // Remove NaN boxing or NaN, if not properly NaN boxed for double percision
logic [`S_LEN-1:0] XLen2, YLen2, ZLen2; // Remove NaN boxing or NaN, if not properly NaN boxed for single percision
logic [`H_LEN-1:0] XLen3, YLen3, ZLen3; // Remove NaN boxing or NaN, if not properly NaN boxed for half percision
logic YOrigDenormE; // the original value of XYZ is denormalized
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for double precision
assign XLen1 = &X[`Q_LEN-1:`D_LEN] ? X[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
assign YLen1 = &Y[`Q_LEN-1:`D_LEN] ? Y[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
assign ZLen1 = &Z[`Q_LEN-1:`D_LEN] ? Z[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for single precision
assign XLen2 = &X[`Q_LEN-1:`S_LEN] ? X[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
assign YLen2 = &Y[`Q_LEN-1:`S_LEN] ? Y[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
assign ZLen2 = &Z[`Q_LEN-1:`S_LEN] ? Z[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for half precision
assign XLen3 = &X[`Q_LEN-1:`H_LEN] ? X[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
assign YLen3 = &Y[`Q_LEN-1:`H_LEN] ? Y[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
assign ZLen3 = &Z[`Q_LEN-1:`H_LEN] ? Z[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
// There are 2 case statements
// - one for other singals and one for sgn/exp/frac
// - need two for the dependencies in the expoenent calculation
always_comb begin
case (FmtE)
2'b11: begin // if input is quad percision
// This is the original format so set OrigDenorm to 0
XOrigDenormE = 1'b0;
YOrigDenormE = 1'b0;
ZOrigDenormE = 1'b0;
// is the exponent non-zero
XExpNonzero = |X[`Q_LEN-2:`Q_NF];
YExpNonzero = |Y[`Q_LEN-2:`Q_NF];
ZExpNonzero = |Z[`Q_LEN-2:`Q_NF];
// is the exponent all 1's
XExpMaxE = &X[`Q_LEN-2:`Q_NF];
YExpMaxE = &Y[`Q_LEN-2:`Q_NF];
ZExpMaxE = &Z[`Q_LEN-2:`Q_NF];
end
2'b01: begin // if input is double percision
// is the exponent all 1's
XExpMaxE = &XLen1[`D_LEN-2:`D_NF];
YExpMaxE = &YLen1[`D_LEN-2:`D_NF];
ZExpMaxE = &ZLen1[`D_LEN-2:`D_NF];
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen1[`D_LEN-2:`D_NF] & ~XFracZero;
YOrigDenormE = ~|YLen1[`D_LEN-2:`D_NF] & ~YFracZero;
ZOrigDenormE = ~|ZLen1[`D_LEN-2:`D_NF] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen1[`D_LEN-2:`D_NF];
YExpNonzero = |YLen1[`D_LEN-2:`D_NF];
ZExpNonzero = |ZLen1[`D_LEN-2:`D_NF];
end
2'b00: begin // if input is single percision
// is the exponent all 1's
XExpMaxE = &XLen2[`S_LEN-2:`S_NF];
YExpMaxE = &YLen2[`S_LEN-2:`S_NF];
ZExpMaxE = &ZLen2[`S_LEN-2:`S_NF];
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen2[`S_LEN-2:`S_NF] & ~XFracZero;
YOrigDenormE = ~|YLen2[`S_LEN-2:`S_NF] & ~YFracZero;
ZOrigDenormE = ~|ZLen2[`S_LEN-2:`S_NF] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen2[`S_LEN-2:`S_NF];
YExpNonzero = |YLen2[`S_LEN-2:`S_NF];
ZExpNonzero = |ZLen2[`S_LEN-2:`S_NF];
end
2'b10: begin // if input is half percision
// is the exponent all 1's
XExpMaxE = &XLen3[`H_LEN-2:`H_NF];
YExpMaxE = &YLen3[`H_LEN-2:`H_NF];
ZExpMaxE = &ZLen3[`H_LEN-2:`H_NF];
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen3[`H_LEN-2:`H_NF] & ~XFracZero;
YOrigDenormE = ~|YLen3[`H_LEN-2:`H_NF] & ~YFracZero;
ZOrigDenormE = ~|ZLen3[`H_LEN-2:`H_NF] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen3[`H_LEN-2:`H_NF];
YExpNonzero = |YLen3[`H_LEN-2:`H_NF];
ZExpNonzero = |ZLen3[`H_LEN-2:`H_NF];
end
endcase
end
always_comb begin
case (FmtE)
2'b11: begin // if input is quad percision
// extract sign bit
XSgnE = X[`Q_LEN-1];
YSgnE = Y[`Q_LEN-1];
ZSgnE = Z[`Q_LEN-1];
// extract the exponent
XExpE = X[`Q_LEN-2:`Q_NF];
YExpE = Y[`Q_LEN-2:`Q_NF];
ZExpE = Z[`Q_LEN-2:`Q_NF];
// extract the fraction
XFracE = X[`Q_NF-1:0];
YFracE = Y[`Q_NF-1:0];
ZFracE = Z[`Q_NF-1:0];
end
2'b01: begin // if input is double percision
// extract sign bit
XSgnE = XLen1[`D_LEN-1];
YSgnE = YLen1[`D_LEN-1];
ZSgnE = ZLen1[`D_LEN-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// convert the double precsion exponent into quad precsion
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {XLen1[`D_LEN-2], {`Q_NE-`D_NE{~XLen1[`D_LEN-2]&~XExpZero|XExpMaxE}}, XLen1[`D_LEN-3:`D_NF]};
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {YLen1[`D_LEN-2], {`Q_NE-`D_NE{~YLen1[`D_LEN-2]&~YExpZero|YExpMaxE}}, YLen1[`D_LEN-3:`D_NF]};
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {ZLen1[`D_LEN-2], {`Q_NE-`D_NE{~ZLen1[`D_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`D_LEN-3:`D_NF]};
// extract the fraction and add the nessesary trailing zeros
XFracE = {XLen1[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
YFracE = {YLen1[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
ZFracE = {ZLen1[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
end
2'b00: begin // if input is single percision
// extract sign bit
XSgnE = XLen2[`S_LEN-1];
YSgnE = YLen2[`S_LEN-1];
ZSgnE = ZLen2[`S_LEN-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// convert the single precsion exponent into quad precsion
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {XLen2[`S_LEN-2], {`Q_NE-`S_NE{~XLen2[`S_LEN-2]&~XExpZero|XExpMaxE}}, XLen2[`S_LEN-3:`S_NF]};
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {YLen2[`S_LEN-2], {`Q_NE-`S_NE{~YLen2[`S_LEN-2]&~YExpZero|YExpMaxE}}, YLen2[`S_LEN-3:`S_NF]};
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {ZLen2[`S_LEN-2], {`Q_NE-`S_NE{~ZLen2[`S_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen2[`S_LEN-3:`S_NF]};
// extract the fraction and add the nessesary trailing zeros
XFracE = {XLen2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
YFracE = {YLen2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
ZFracE = {ZLen2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
end
2'b10: begin // if input is half percision
// extract sign bit
XSgnE = XLen3[`H_LEN-1];
YSgnE = YLen3[`H_LEN-1];
ZSgnE = ZLen3[`H_LEN-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// convert the half precsion exponent into quad precsion
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {XLen3[`H_LEN-2], {`Q_NE-`H_NE{~XLen3[`H_LEN-2]&~XExpZero|XExpMaxE}}, XLen3[`H_LEN-3:`H_NF]};
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {YLen3[`H_LEN-2], {`Q_NE-`H_NE{~YLen3[`H_LEN-2]&~YExpZero|YExpMaxE}}, YLen3[`H_LEN-3:`H_NF]};
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {ZLen3[`H_LEN-2], {`Q_NE-`H_NE{~ZLen3[`H_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen3[`H_LEN-3:`H_NF]};
// extract the fraction and add the nessesary trailing zeros
XFracE = {XLen3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
YFracE = {YLen3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
ZFracE = {ZLen3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
end
endcase
end
end
// is the exponent all 0's
assign XExpZero = ~XExpNonzero;
assign YExpZero = ~YExpNonzero;
assign ZExpZero = ~ZExpNonzero;
// is the fraction zero
assign XFracZero = ~|XFracE;
assign YFracZero = ~|YFracE;
assign ZFracZero = ~|ZFracE;
// add the assumed one (or zero if denormal or zero) to create the mantissa
assign XManE = {XExpNonzero, XFracE};
assign YManE = {YExpNonzero, YFracE};
assign ZManE = {ZExpNonzero, ZFracE};
unpackinput unpackinputZ (.In(Z), .FmtE, .Sgn(ZSgnE), .Exp(ZExpE), .Man(ZManE),
.NaN(ZNaNE), .SNaN(ZSNaNE), .Denorm(ZDenormE),
.Zero(ZZeroE), .Inf(ZInfE), .ExpMax(ZExpMaxE), .ExpZero(ZExpZero));
// is X normalized
assign XNormE = ~(XExpMaxE|XExpZero);
// is the input a NaN
// - force to be a NaN if it isn't properly Nan Boxed
assign XNaNE = XExpMaxE & ~XFracZero;
assign YNaNE = YExpMaxE & ~YFracZero;
assign ZNaNE = ZExpMaxE & ~ZFracZero;
// is the input a singnaling NaN
assign XSNaNE = XNaNE&~XFracE[`NF-1];
assign YSNaNE = YNaNE&~YFracE[`NF-1];
assign ZSNaNE = ZNaNE&~ZFracE[`NF-1];
// is the input denormalized
assign XDenormE = XExpZero & ~XFracZero;
assign YDenormE = YExpZero & ~YFracZero;
assign ZDenormE = ZExpZero & ~ZFracZero;
// is the input infinity
assign XInfE = XExpMaxE & XFracZero;
assign YInfE = YExpMaxE & YFracZero;
assign ZInfE = ZExpMaxE & ZFracZero;
// is the input zero
assign XZeroE = XExpZero & XFracZero;
assign YZeroE = YExpZero & YFracZero;
assign ZZeroE = ZExpZero & ZFracZero;
endmodule

View file

@ -0,0 +1,301 @@
`include "wally-config.vh"
module unpackinput (
input logic [`FLEN-1:0] In, // inputs from register file
input logic [`FPSIZES/3:0] FmtE, // format signal 00 - single 01 - double 11 - quad 10 - half
output logic Sgn, // sign bits of XYZ
output logic [`NE-1:0] Exp, // exponents of XYZ (converted to largest supported precision)
output logic [`NF:0] Man, // mantissas of XYZ (converted to largest supported precision)
output logic NaN, // is XYZ a NaN
output logic SNaN, // is XYZ a signaling NaN
output logic Denorm, // is XYZ denormalized
output logic Zero, // is XYZ zero
output logic Inf, // is XYZ infinity
output logic ExpMax, // does In have the maximum exponent (NaN or Inf)
output logic ExpZero // is the exponent zero
);
logic [`NF-1:0] Frac; //Fraction of XYZ
logic ExpNonZero; // is the exponent of XYZ non-zero
logic FracZero; // is the fraction zero
if (`FPSIZES == 1) begin // if there is only one floating point format supported
// sign bit
assign Sgn = In[`FLEN-1];
// fraction (no assumed 1)
assign Frac = In[`NF-1:0];
// is the fraction zero
assign FracZero = ~|Frac;
// is the exponent non-zero
assign ExpNonZero = |Exp;
// is the input (in it's original format) denormalized
assign Denorm = ~ExpNonZero & ~FracZero;
// exponent
assign Exp = {In[`FLEN-2:`NF+1], In[`NF]|Denorm};
// is the exponent all 1's
assign ExpMax = &Exp;
end else if (`FPSIZES == 2) begin // if there are 2 floating point formats supported
//***need better names for these constants
// largest format | smaller format
//----------------------------------
// `FLEN | `LEN1 length of floating point number
// `NE | `NE1 length of exponent
// `NF | `NF1 length of fraction
// `BIAS | `BIAS1 exponent's bias value
// `FMT | `FMT1 precision's format value - Q=11 D=01 S=00 H=10
// Possible combinantions specified by spec:
// double and single
// single and half
// Not needed but can also handle:
// quad and double
// quad and single
// quad and half
// double and half
logic [`LEN1-1:0] Len1; // Remove NaN boxing or NaN, if not properly NaN boxed
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN
assign Len1 = &In[`FLEN-1:`LEN1] ? In[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
// choose sign bit depending on format - 1=larger precsion 0=smaller precision
assign Sgn = FmtE ? In[`FLEN-1] : Len1[`LEN1-1];
// extract the fraction, add trailing zeroes to the mantissa if nessisary
assign Frac = FmtE ? In[`NF-1:0] : {Len1[`NF1-1:0], (`NF-`NF1)'(0)};
// is the fraction zero
assign FracZero = ~|Frac;
// is the exponent non-zero
assign ExpNonZero = FmtE ? |In[`FLEN-2:`NF] : |Len1[`LEN1-2:`NF1];
// is the input (in it's original format) denormalized
assign Denorm = ~ExpNonZero & ~FracZero;
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// extract the exponent, converting the smaller exponent into the larger precision if nessisary
// - if the original precision had a denormal number convert the exponent value 1
assign Exp = FmtE ? {In[`FLEN-2:`NF+1], In[`NF]|Denorm} : {Len1[`LEN1-2], {`NE-`NE1{~Len1[`LEN1-2]}}, Len1[`LEN1-3:`NF1+1], Len1[`NF1]|Denorm};
// is the exponent all 1's
assign ExpMax = FmtE ? &In[`FLEN-2:`NF] : &Len1[`LEN1-2:`NF1];
end else if (`FPSIZES == 3) begin // three floating point precsions supported
//***need better names for these constants
// largest format | larger format | smallest format
//---------------------------------------------------
// `FLEN | `LEN1 | `LEN2 length of floating point number
// `NE | `NE1 | `NE2 length of exponent
// `NF | `NF1 | `NF2 length of fraction
// `BIAS | `BIAS1 | `BIAS2 exponent's bias value
// `FMT | `FMT1 | `FMT2 precision's format value - Q=11 D=01 S=00 H=10
// Possible combinantions specified by spec:
// quad and double and single
// double and single and half
// Not needed but can also handle:
// quad and double and half
// quad and single and half
logic [`LEN1-1:0] Len1; // Remove NaN boxing or NaN, if not properly NaN boxed for larger percision
logic [`LEN2-1:0] Len2; // Remove NaN boxing or NaN, if not properly NaN boxed for smallest precision
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for larger precision
assign Len1 = &In[`FLEN-1:`LEN1] ? In[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for smaller precision
assign Len2 = &In[`FLEN-1:`LEN2] ? In[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
// extract the sign bit
always_comb
case (FmtE)
`FMT: Sgn = In[`FLEN-1];
`FMT1: Sgn = Len1[`LEN1-1];
`FMT2: Sgn = Len2[`LEN2-1];
default: Sgn = 0;
endcase
// extract the fraction
always_comb
case (FmtE)
`FMT: Frac = In[`NF-1:0];
`FMT1: Frac = {Len1[`NF1-1:0], (`NF-`NF1)'(0)};
`FMT2: Frac = {Len2[`NF2-1:0], (`NF-`NF2)'(0)};
default: Frac = 0;
endcase
// is the fraction zero
assign FracZero = ~|Frac;
// is the exponent non-zero
always_comb
case (FmtE)
`FMT: ExpNonZero = |In[`FLEN-2:`NF]; // if input is largest precision (`FLEN - ie quad or double)
`FMT1: ExpNonZero = |Len1[`LEN1-2:`NF1]; // if input is larger precsion (`LEN1 - double or single)
`FMT2: ExpNonZero = |Len2[`LEN2-2:`NF2]; // if input is smallest precsion (`LEN2 - single or half)
default: ExpNonZero = 0;
endcase
// is the input (in it's original format) denormalized
assign Denorm = ~ExpNonZero & ~FracZero;
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// convert the larger precision's exponent to use the largest precision's bias
always_comb
case (FmtE)
`FMT: Exp = {In[`FLEN-2:`NF+1], In[`NF]|Denorm};
`FMT1: Exp = {Len1[`LEN1-2], {`NE-`NE1{~Len1[`LEN1-2]}}, Len1[`LEN1-3:`NF1+1], Len1[`NF1]|Denorm};
`FMT2: Exp = {Len2[`LEN2-2], {`NE-`NE2{~Len2[`LEN2-2]}}, Len2[`LEN2-3:`NF2+1], Len2[`NF2]|Denorm};
default: Exp = 0;
endcase
// is the exponent all 1's
always_comb
case (FmtE)
`FMT: ExpMax = &In[`FLEN-2:`NF];
`FMT1: ExpMax = &Len1[`LEN1-2:`NF1];
`FMT2: ExpMax = &Len2[`LEN2-2:`NF2];
default: ExpMax = 0;
endcase
end else if (`FPSIZES == 4) begin // if all precsisons are supported - quad, double, single, and half
// quad | double | single | half
//-------------------------------------------------------------------
// `Q_LEN | `D_LEN | `S_LEN | `H_LEN length of floating point number
// `Q_NE | `D_NE | `S_NE | `H_NE length of exponent
// `Q_NF | `D_NF | `S_NF | `H_NF length of fraction
// `Q_BIAS | `D_BIAS | `S_BIAS | `H_BIAS exponent's bias value
// `Q_FMT | `D_FMT | `S_FMT | `H_FMT precision's format value - Q=11 D=01 S=00 H=10
logic [`D_LEN-1:0] Len1; // Remove NaN boxing or NaN, if not properly NaN boxed for double percision
logic [`S_LEN-1:0] Len2; // Remove NaN boxing or NaN, if not properly NaN boxed for single percision
logic [`H_LEN-1:0] Len3; // Remove NaN boxing or NaN, if not properly NaN boxed for half percision
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for double precision
assign Len1 = &In[`Q_LEN-1:`D_LEN] ? In[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for single precision
assign Len2 = &In[`Q_LEN-1:`S_LEN] ? In[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for half precision
assign Len3 = &In[`Q_LEN-1:`H_LEN] ? In[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
// extract sign bit
always_comb
case (FmtE)
2'b11: Sgn = In[`Q_LEN-1];
2'b01: Sgn = Len1[`D_LEN-1];
2'b00: Sgn = Len2[`S_LEN-1];
2'b10: Sgn = Len3[`H_LEN-1];
endcase
// extract the fraction
always_comb
case (FmtE)
2'b11: Frac = In[`Q_NF-1:0];
2'b01: Frac = {Len1[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
2'b00: Frac = {Len2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
2'b10: Frac = {Len3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
endcase
// is the fraction zero
assign FracZero = ~|Frac;
// is the exponent non-zero
always_comb
case (FmtE)
2'b11: ExpNonZero = |In[`Q_LEN-2:`Q_NF];
2'b01: ExpNonZero = |Len1[`D_LEN-2:`D_NF];
2'b00: ExpNonZero = |Len2[`S_LEN-2:`S_NF];
2'b10: ExpNonZero = |Len3[`H_LEN-2:`H_NF];
endcase
// is the input (in it's original format) denormalized
assign Denorm = ~ExpNonZero & ~FracZero;
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// convert the double precsion exponent into quad precsion
always_comb
case (FmtE)
2'b11: Exp = {In[`Q_LEN-2:`Q_NF+1], In[`Q_NF]|Denorm};
2'b01: Exp = {Len1[`D_LEN-2], {`Q_NE-`D_NE{~Len1[`D_LEN-2]}}, Len1[`D_LEN-3:`D_NF+1], Len1[`D_NF]|Denorm};
2'b00: Exp = {Len2[`S_LEN-2], {`Q_NE-`S_NE{~Len2[`S_LEN-2]}}, Len2[`S_LEN-3:`S_NF+1], Len2[`S_NF]|Denorm};
2'b10: Exp = {Len3[`H_LEN-2], {`Q_NE-`H_NE{~Len3[`H_LEN-2]}}, Len3[`H_LEN-3:`H_NF+1], Len3[`H_NF]|Denorm};
endcase
// is the exponent all 1's
always_comb
case (FmtE)
2'b11: ExpMax = &In[`Q_LEN-2:`Q_NF];
2'b01: ExpMax = &Len1[`D_LEN-2:`D_NF];
2'b00: ExpMax = &Len2[`S_LEN-2:`S_NF];
2'b10: ExpMax = &Len3[`H_LEN-2:`H_NF];
endcase
end
// is the exponent all 0's
assign ExpZero = ~ExpNonZero;
// add the assumed one (or zero if denormal or zero) to create the mantissa
assign Man = {ExpNonZero, Frac};
// is the input a NaN
// - force to be a NaN if it isn't properly Nan Boxed
assign NaN = ExpMax & ~FracZero;
// is the input a singnaling NaN
assign SNaN = NaN&~Frac[`NF-1];
// is the input infinity
assign Inf = ExpMax & FracZero;
// is the input zero
assign Zero = ExpZero & FracZero;
endmodule

View file

@ -0,0 +1,15 @@
//leading zero counter i.e. priority encoder
module lzc #(parameter WIDTH=1) (
input logic [WIDTH-1:0] num,
output logic [$clog2(WIDTH+1)-1:0] ZeroCnt
);
/* verilator lint_off CMPCONST */
logic [$clog2(WIDTH+1)-1:0] i;
always_comb begin
i = 0;
while (~num[WIDTH-1-(32)'(i)] & $unsigned(i) <= $unsigned(($clog2(WIDTH+1))'(WIDTH-1))) i = i+1; // search for leading one
ZeroCnt = i;
end
/* verilator lint_on CMPCONST */
endmodule

View file

@ -65,7 +65,7 @@ module hazard(
assign StallFCause = CSRWritePendingDEM & ~(TrapM | RetM | BPPredWrongE);
// stall in decode if instruction is a load/mul/csr dependent on previous
assign StallDCause = (LoadStallD | StoreStallD | MDUStallD | CSRRdStallD | FPUStallD | FStallD) & ~(TrapM | RetM | BPPredWrongE);
assign StallECause = (DivBusyE | FDivBusyE) & ~(TrapM);
assign StallECause = (DivBusyE | FDivBusyE) & ~(TrapM); // *** can we move to decode stage (KP?)
// WFI terminates if any enabled interrupt is pending, even if global interrupts are disabled. It could also terminate with TW trap
assign StallMCause = wfiM & (~TrapM & ~IntPendingM);
assign StallWCause = LSUStallM | IFUStallF;

View file

@ -30,6 +30,15 @@
`include "wally-config.vh"
module donedet #(parameter WIDTH=64) (
input logic [WIDTH-1:0] a, b,
output logic eq);
//assign eq = (a+b == 0); // gives good speed but 3x necessary area
// See CMOS VLSI Design 4th Ed. p. 463 K = A+B for K = 0
assign eq = ((a ^ b) == {a[WIDTH-2:0], 1'b0} | {b[WIDTH-2:0], 1'b0});
endmodule
module comparator_sub #(parameter WIDTH=64) (
input logic [WIDTH-1:0] a, b,
output logic [2:0] flags);

View file

@ -99,13 +99,14 @@ module privileged (
logic STATUS_MIE, STATUS_SIE;
logic [11:0] MIP_REGW, MIE_REGW;
logic [1:0] NextPrivilegeModeM;
logic DelegateM;
///////////////////////////////////////////
// track the current privilege level
///////////////////////////////////////////
privmode privmode(.clk, .reset, .StallW, .TrapM, .mretM, .sretM, .InterruptM, .CauseM,
.MEDELEG_REGW, .MIDELEG_REGW, .STATUS_MPP, .STATUS_SPP, .NextPrivilegeModeM, .PrivilegeModeW);
privmode privmode(.clk, .reset, .StallW, .TrapM, .mretM, .sretM, .DelegateM,
.STATUS_MPP, .STATUS_SPP, .NextPrivilegeModeM, .PrivilegeModeW);
///////////////////////////////////////////
// decode privileged instructions
@ -158,11 +159,11 @@ module privileged (
.LoadPageFaultM, .StoreAmoPageFaultM,
.mretM, .sretM,
.PrivilegeModeW,
.MIP_REGW, .MIE_REGW, .MIDELEG_REGW,
.MIP_REGW, .MIE_REGW, .MIDELEG_REGW, .MEDELEG_REGW,
.STATUS_MIE, .STATUS_SIE,
.InstrValidM, .CommittedM,
.TrapM, .RetM,
.InterruptM, .IntPendingM,
.InterruptM, .IntPendingM, .DelegateM,
.CauseM);
endmodule

View file

@ -33,25 +33,18 @@
module privmode (
input logic clk, reset,
input logic StallW, TrapM, mretM, sretM, InterruptM,
input logic [`LOG_XLEN-1:0] CauseM,
input logic [`XLEN-1:0] MEDELEG_REGW,
input logic [11:0] MIDELEG_REGW,
input logic StallW, TrapM, mretM, sretM,
input logic DelegateM,
input logic [1:0] STATUS_MPP,
input logic STATUS_SPP,
output logic [1:0] NextPrivilegeModeM, PrivilegeModeW
);
if (`U_SUPPORTED) begin:privmode
logic md;
// get bits of DELEG registers based on CAUSE
assign md = InterruptM ? MIDELEG_REGW[CauseM[3:0]] : MEDELEG_REGW[CauseM];
// PrivilegeMode FSM
always_comb begin
if (TrapM) begin // Change privilege based on DELEG registers (see 3.1.8)
if (`S_SUPPORTED & md & (PrivilegeModeW == `U_MODE | PrivilegeModeW == `S_MODE))
if (`S_SUPPORTED & DelegateM)
NextPrivilegeModeM = `S_MODE;
else NextPrivilegeModeM = `M_MODE;
end else if (mretM) NextPrivilegeModeM = STATUS_MPP;

View file

@ -39,11 +39,12 @@ module trap (
(* mark_debug = "true" *) input logic LoadPageFaultM, StoreAmoPageFaultM,
(* mark_debug = "true" *) input logic mretM, sretM,
input logic [1:0] PrivilegeModeW,
(* mark_debug = "true" *) input logic [11:0] MIP_REGW, MIE_REGW, MIDELEG_REGW,
(* mark_debug = "true" *) input logic [11:0] MIP_REGW, MIE_REGW, MIDELEG_REGW,
input logic [`XLEN-1:0] MEDELEG_REGW,
input logic STATUS_MIE, STATUS_SIE,
input logic InstrValidM, CommittedM,
output logic TrapM, RetM,
output logic InterruptM, IntPendingM,
output logic InterruptM, IntPendingM, DelegateM,
output logic [`LOG_XLEN-1:0] CauseM
);
@ -63,6 +64,8 @@ module trap (
assign IntPendingM = |PendingIntsM;
assign ValidIntsM = {12{MIntGlobalEnM}} & PendingIntsM & ~MIDELEG_REGW | {12{SIntGlobalEnM}} & PendingIntsM & MIDELEG_REGW;
assign InterruptM = (|ValidIntsM) && InstrValidM && ~(CommittedM); // *** RT. CommittedM is a temporary hack to prevent integer division from having an interrupt during divide.
assign DelegateM = (InterruptM ? MIDELEG_REGW[CauseM[3:0]] : MEDELEG_REGW[CauseM]) &
(PrivilegeModeW == `U_MODE | PrivilegeModeW == `S_MODE);
///////////////////////////////////////////
// Trigger Traps and RET

View file

@ -1,13 +1,16 @@
all: sqrttestgen testgen
all: sqrttestgen testgen qst2
sqrttestgen: sqrttestgen.c
gcc sqrttestgen.c -lm -o sqrttestgen
testgen: testgen.c
gcc testgen.c -lm -o testgen
qst2: qst2.c
gcc qst2.c -lm -o qst2
gcc -lm -o testgen testgen.c
./testgen
exptestgen: exptestgen.c
gcc -lm -o exptestgen exptestgen.c
./exptestgen

View file

@ -111,7 +111,6 @@ module testbenchfp;
logic FmaRdXZero, FmaRdYZero, FmaRdZZero;
logic FmaRnmXZero, FmaRnmYZero, FmaRnmZZero;
logic XExpMax, YExpMax, ZExpMax; // is the input's exponent all ones
logic ZOrigDenorm, FmaRneZOrigDenorm, FmaRzZOrigDenorm, FmaRuZOrigDenorm, FmaRdZOrigDenorm, FmaRnmZOrigDenorm; // is the original precision dnormalized
// in-between FMA signals
logic Mult;
@ -682,7 +681,7 @@ module testbenchfp;
.XSgnE(FmaRneXSgn), .YSgnE(FmaRneYSgn), .ZSgnE(FmaRneZSgn),
.XExpE(FmaRneXExp), .YExpE(FmaRneYExp), .ZExpE(FmaRneZExp),
.XManE(FmaRneXMan), .YManE(FmaRneYMan), .ZManE(FmaRneZMan),
.XNaNE(FmaRneXNaN), .YNaNE(FmaRneYNaN), .ZNaNE(FmaRneZNaN), .ZOrigDenormE(FmaRneZOrigDenorm),
.XNaNE(FmaRneXNaN), .YNaNE(FmaRneYNaN), .ZNaNE(FmaRneZNaN),
.XSNaNE(FmaRneXSNaN), .YSNaNE(FmaRneYSNaN), .ZSNaNE(FmaRneZSNaN),
.XDenormE(FmaRneXDenorm), .YDenormE(FmaRneYDenorm), .ZDenormE(FmaRneZDenorm),
.XZeroE(FmaRneXZero), .YZeroE(FmaRneYZero), .ZZeroE(FmaRneZZero),
@ -692,7 +691,7 @@ module testbenchfp;
.XSgnE(FmaRzXSgn), .YSgnE(FmaRzYSgn), .ZSgnE(FmaRzZSgn), .FmaModFmt,
.XExpE(FmaRzXExp), .YExpE(FmaRzYExp), .ZExpE(FmaRzZExp),
.XManE(FmaRzXMan), .YManE(FmaRzYMan), .ZManE(FmaRzZMan),
.XNaNE(FmaRzXNaN), .YNaNE(FmaRzYNaN), .ZNaNE(FmaRzZNaN), .ZOrigDenormE(FmaRzZOrigDenorm),
.XNaNE(FmaRzXNaN), .YNaNE(FmaRzYNaN), .ZNaNE(FmaRzZNaN),
.XSNaNE(FmaRzXSNaN), .YSNaNE(FmaRzYSNaN), .ZSNaNE(FmaRzZSNaN),
.XDenormE(FmaRzXDenorm), .YDenormE(FmaRzYDenorm), .ZDenormE(FmaRzZDenorm),
.XZeroE(FmaRzXZero), .YZeroE(FmaRzYZero), .ZZeroE(FmaRzZZero),
@ -702,7 +701,7 @@ module testbenchfp;
.XSgnE(FmaRuXSgn), .YSgnE(FmaRuYSgn), .ZSgnE(FmaRuZSgn), .FmaModFmt,
.XExpE(FmaRuXExp), .YExpE(FmaRuYExp), .ZExpE(FmaRuZExp),
.XManE(FmaRuXMan), .YManE(FmaRuYMan), .ZManE(FmaRuZMan),
.XNaNE(FmaRuXNaN), .YNaNE(FmaRuYNaN), .ZNaNE(FmaRuZNaN), .ZOrigDenormE(FmaRuZOrigDenorm),
.XNaNE(FmaRuXNaN), .YNaNE(FmaRuYNaN), .ZNaNE(FmaRuZNaN),
.XSNaNE(FmaRuXSNaN), .YSNaNE(FmaRuYSNaN), .ZSNaNE(FmaRuZSNaN),
.XDenormE(FmaRuXDenorm), .YDenormE(FmaRuYDenorm), .ZDenormE(FmaRuZDenorm),
.XZeroE(FmaRuXZero), .YZeroE(FmaRuYZero), .ZZeroE(FmaRuZZero),
@ -712,7 +711,7 @@ module testbenchfp;
.XSgnE(FmaRdXSgn), .YSgnE(FmaRdYSgn), .ZSgnE(FmaRdZSgn), .FmaModFmt,
.XExpE(FmaRdXExp), .YExpE(FmaRdYExp), .ZExpE(FmaRdZExp),
.XManE(FmaRdXMan), .YManE(FmaRdYMan), .ZManE(FmaRdZMan),
.XNaNE(FmaRdXNaN), .YNaNE(FmaRdYNaN), .ZNaNE(FmaRdZNaN), .ZOrigDenormE(FmaRdZOrigDenorm),
.XNaNE(FmaRdXNaN), .YNaNE(FmaRdYNaN), .ZNaNE(FmaRdZNaN),
.XSNaNE(FmaRdXSNaN), .YSNaNE(FmaRdYSNaN), .ZSNaNE(FmaRdZSNaN),
.XDenormE(FmaRdXDenorm), .YDenormE(FmaRdYDenorm), .ZDenormE(FmaRdZDenorm),
.XZeroE(FmaRdXZero), .YZeroE(FmaRdYZero), .ZZeroE(FmaRdZZero),
@ -721,7 +720,7 @@ module testbenchfp;
readfmavectors readfmarnmvectors (.clk, .TestVector(FmaRnmVectors[VectorNum]), .Ans(FmaRnmAns), .AnsFlg(FmaRnmAnsFlg),
.XSgnE(FmaRnmXSgn), .YSgnE(FmaRnmYSgn), .ZSgnE(FmaRnmZSgn), .FmaModFmt,
.XExpE(FmaRnmXExp), .YExpE(FmaRnmYExp), .ZExpE(FmaRnmZExp),
.XManE(FmaRnmXMan), .YManE(FmaRnmYMan), .ZManE(FmaRnmZMan), .ZOrigDenormE(FmaRnmZOrigDenorm),
.XManE(FmaRnmXMan), .YManE(FmaRnmYMan), .ZManE(FmaRnmZMan),
.XNaNE(FmaRnmXNaN), .YNaNE(FmaRnmYNaN), .ZNaNE(FmaRnmZNaN),
.XSNaNE(FmaRnmXSNaN), .YSNaNE(FmaRnmYSNaN), .ZSNaNE(FmaRnmZSNaN),
.XDenormE(FmaRnmXDenorm), .YDenormE(FmaRnmYDenorm), .ZDenormE(FmaRnmZDenorm),
@ -731,7 +730,7 @@ module testbenchfp;
readvectors readvectors (.clk, .Fmt(FmtVal), .ModFmt, .TestVector(TestVectors[VectorNum]), .VectorNum, .Ans(Ans), .AnsFlg(AnsFlg), .SrcA,
.XSgnE(XSgn), .YSgnE(YSgn), .ZSgnE(ZSgn), .Unit (UnitVal),
.XExpE(XExp), .YExpE(YExp), .ZExpE(ZExp), .TestNum, .OpCtrl(OpCtrlVal),
.XManE(XMan), .YManE(YMan), .ZManE(ZMan), .ZOrigDenormE(ZOrigDenorm), .XOrigDenormE(XOrigDenorm),
.XManE(XMan), .YManE(YMan), .ZManE(ZMan),
.XNaNE(XNaN), .YNaNE(YNaN), .ZNaNE(ZNaN),
.XSNaNE(XSNaN), .YSNaNE(YSNaN), .ZSNaNE(ZSNaN),
.XDenormE(XDenorm), .YDenormE(YDenorm), .ZDenormE(ZDenorm),
@ -757,13 +756,12 @@ module testbenchfp;
fma1 fma1rne(.XSgnE(FmaRneXSgn), .YSgnE(FmaRneYSgn), .ZSgnE(FmaRneZSgn),
.XExpE(FmaRneXExp), .YExpE(FmaRneYExp), .ZExpE(FmaRneZExp),
.XManE(FmaRneXMan), .YManE(FmaRneYMan), .ZManE(FmaRneZMan),
.XDenormE(FmaRneXDenorm), .YDenormE(FmaRneYDenorm), .ZDenormE(FmaRneZDenorm),
.XZeroE(FmaRneXZero), .YZeroE(FmaRneYZero), .ZZeroE(FmaRneZZero),
.FOpCtrlE(3'b0), .FmtE(FmaModFmt), .SumE(FmaRneSum), .NegSumE(FmaRneNegSum), .InvZE(FmaRneInvZ),
.NormCntE(FmaRneNormCnt), .ZSgnEffE(FmaRneZSgnEff), .PSgnE(FmaRnePSgn),
.ProdExpE(FmaRneProdExp), .AddendStickyE(FmaRneAddendSticky), .KillProdE(FmaRneSumKillProd));
fma2 fma2rne(.XSgnM(FmaRneXSgn), .YSgnM(FmaRneYSgn),
.ZExpM(FmaRneZExp), .ZOrigDenormM(FmaRneZOrigDenorm),
.ZExpM(FmaRneZExp), .ZDenormM(FmaRneZDenorm),
.XManM(FmaRneXMan), .YManM(FmaRneYMan), .ZManM(FmaRneZMan),
.XNaNM(FmaRneXNaN), .YNaNM(FmaRneYNaN), .ZNaNM(FmaRneZNaN),
.XZeroM(FmaRneXZero), .YZeroM(FmaRneYZero), .ZZeroM(FmaRneZZero),
@ -776,13 +774,12 @@ module testbenchfp;
fma1 fma1rz(.XSgnE(FmaRzXSgn), .YSgnE(FmaRzYSgn), .ZSgnE(FmaRzZSgn),
.XExpE(FmaRzXExp), .YExpE(FmaRzYExp), .ZExpE(FmaRzZExp),
.XManE(FmaRzXMan), .YManE(FmaRzYMan), .ZManE(FmaRzZMan),
.XDenormE(FmaRzXDenorm), .YDenormE(FmaRzYDenorm), .ZDenormE(FmaRzZDenorm),
.XZeroE(FmaRzXZero), .YZeroE(FmaRzYZero), .ZZeroE(FmaRzZZero),
.FOpCtrlE(3'b0), .FmtE(FmaModFmt), .SumE(FmaRzSum), .NegSumE(FmaRzNegSum), .InvZE(FmaRzInvZ),
.NormCntE(FmaRzNormCnt), .ZSgnEffE(FmaRzZSgnEff), .PSgnE(FmaRzPSgn),
.ProdExpE(FmaRzProdExp), .AddendStickyE(FmaRzAddendSticky), .KillProdE(FmaRzSumKillProd));
fma2 fma2rz(.XSgnM(FmaRzXSgn), .YSgnM(FmaRzYSgn),
.ZExpM(FmaRzZExp), .ZOrigDenormM(FmaRzZOrigDenorm),
.ZExpM(FmaRzZExp), .ZDenormM(FmaRzZDenorm),
.XManM(FmaRzXMan), .YManM(FmaRzYMan), .ZManM(FmaRzZMan),
.XNaNM(FmaRzXNaN), .YNaNM(FmaRzYNaN), .ZNaNM(FmaRzZNaN),
.XZeroM(FmaRzXZero), .YZeroM(FmaRzYZero), .ZZeroM(FmaRzZZero),
@ -795,13 +792,12 @@ module testbenchfp;
fma1 fma1ru(.XSgnE(FmaRuXSgn), .YSgnE(FmaRuYSgn), .ZSgnE(FmaRuZSgn),
.XExpE(FmaRuXExp), .YExpE(FmaRuYExp), .ZExpE(FmaRuZExp),
.XManE(FmaRuXMan), .YManE(FmaRuYMan), .ZManE(FmaRuZMan),
.XDenormE(FmaRuXDenorm), .YDenormE(FmaRuYDenorm), .ZDenormE(FmaRuZDenorm),
.XZeroE(FmaRuXZero), .YZeroE(FmaRuYZero), .ZZeroE(FmaRuZZero),
.FOpCtrlE(3'b0), .FmtE(FmaModFmt), .SumE(FmaRuSum), .NegSumE(FmaRuNegSum), .InvZE(FmaRuInvZ),
.NormCntE(FmaRuNormCnt), .ZSgnEffE(FmaRuZSgnEff), .PSgnE(FmaRuPSgn),
.ProdExpE(FmaRuProdExp), .AddendStickyE(FmaRuAddendSticky), .KillProdE(FmaRuSumKillProd));
fma2 fma2ru(.XSgnM(FmaRuXSgn), .YSgnM(FmaRuYSgn),
.ZExpM(FmaRuZExp), .ZOrigDenormM(FmaRuZOrigDenorm),
.ZExpM(FmaRuZExp), .ZDenormM(FmaRuZDenorm),
.XManM(FmaRuXMan), .YManM(FmaRuYMan), .ZManM(FmaRuZMan),
.XNaNM(FmaRuXNaN), .YNaNM(FmaRuYNaN), .ZNaNM(FmaRuZNaN),
.XZeroM(FmaRuXZero), .YZeroM(FmaRuYZero), .ZZeroM(FmaRuZZero),
@ -813,14 +809,13 @@ module testbenchfp;
.FMAFlgM(FmaRuResFlg), .FMAResM(FmaRuRes), .Mult(1'b0));
fma1 fma1rd(.XSgnE(FmaRdXSgn), .YSgnE(FmaRdYSgn), .ZSgnE(FmaRdZSgn),
.XExpE(FmaRdXExp), .YExpE(FmaRdYExp), .ZExpE(FmaRdZExp),
.XManE(FmaRdXMan), .YManE(FmaRdYMan), .ZManE(FmaRdZMan),
.XDenormE(FmaRdXDenorm), .YDenormE(FmaRdYDenorm), .ZDenormE(FmaRdZDenorm),
.XManE(FmaRdXMan), .YManE(FmaRdYMan), .ZManE(FmaRdZMan),
.XZeroE(FmaRdXZero), .YZeroE(FmaRdYZero), .ZZeroE(FmaRdZZero),
.FOpCtrlE(3'b0), .FmtE(FmaModFmt), .SumE(FmaRdSum), .NegSumE(FmaRdNegSum), .InvZE(FmaRdInvZ),
.NormCntE(FmaRdNormCnt), .ZSgnEffE(FmaRdZSgnEff), .PSgnE(FmaRdPSgn),
.ProdExpE(FmaRdProdExp), .AddendStickyE(FmaRdAddendSticky), .KillProdE(FmaRdSumKillProd));
fma2 fma2rd(.XSgnM(FmaRdXSgn), .YSgnM(FmaRdYSgn),
.ZExpM(FmaRdZExp), .ZOrigDenormM(FmaRdZOrigDenorm),
.ZExpM(FmaRdZExp), .ZDenormM(FmaRdZDenorm),
.XManM(FmaRdXMan), .YManM(FmaRdYMan), .ZManM(FmaRdZMan),
.XNaNM(FmaRdXNaN), .YNaNM(FmaRdYNaN), .ZNaNM(FmaRdZNaN),
.XZeroM(FmaRdXZero), .YZeroM(FmaRdYZero), .ZZeroM(FmaRdZZero),
@ -833,13 +828,12 @@ module testbenchfp;
fma1 fma1rnm(.XSgnE(FmaRnmXSgn), .YSgnE(FmaRnmYSgn), .ZSgnE(FmaRnmZSgn),
.XExpE(FmaRnmXExp), .YExpE(FmaRnmYExp), .ZExpE(FmaRnmZExp),
.XManE(FmaRnmXMan), .YManE(FmaRnmYMan), .ZManE(FmaRnmZMan),
.XDenormE(FmaRnmXDenorm), .YDenormE(FmaRnmYDenorm), .ZDenormE(FmaRnmZDenorm),
.XZeroE(FmaRnmXZero), .YZeroE(FmaRnmYZero), .ZZeroE(FmaRnmZZero),
.FOpCtrlE(3'b0), .FmtE(FmaModFmt), .SumE(FmaRnmSum), .NegSumE(FmaRnmNegSum), .InvZE(FmaRnmInvZ),
.NormCntE(FmaRnmNormCnt), .ZSgnEffE(FmaRnmZSgnEff), .PSgnE(FmaRnmPSgn),
.ProdExpE(FmaRnmProdExp), .AddendStickyE(FmaRnmAddendSticky), .KillProdE(FmaRnmSumKillProd));
fma2 fma2rnm(.XSgnM(FmaRnmXSgn), .YSgnM(FmaRnmYSgn),
.ZExpM(FmaRnmZExp), .ZOrigDenormM(FmaRnmZOrigDenorm),
.ZExpM(FmaRnmZExp), .ZDenormM(FmaRnmZDenorm),
.XManM(FmaRnmXMan), .YManM(FmaRnmYMan), .ZManM(FmaRnmZMan),
.XNaNM(FmaRnmXNaN), .YNaNM(FmaRnmYNaN), .ZNaNM(FmaRnmZNaN),
.XZeroM(FmaRnmXZero), .YZeroM(FmaRnmYZero), .ZZeroM(FmaRnmZZero),
@ -852,12 +846,11 @@ module testbenchfp;
fma1 fma1(.XSgnE(XSgn), .YSgnE(YSgn), .ZSgnE(ZSgn),
.XExpE(XExp), .YExpE(YExp), .ZExpE(ZExp),
.XManE(XMan), .YManE(YMan), .ZManE(ZMan),
.XDenormE(XDenorm), .YDenormE(YDenorm), .ZDenormE(ZDenorm),
.XZeroE(XZero), .YZeroE(YZero), .ZZeroE(ZZero),
.FOpCtrlE(OpCtrlVal), .FmtE(ModFmt), .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
.ProdExpE, .AddendStickyE, .KillProdE);
fma2 fma2(.XSgnM(XSgn), .YSgnM(YSgn),
.ZExpM(ZExp), .ZOrigDenormM(ZOrigDenorm),
.ZExpM(ZExp), .ZDenormM(ZDenorm),
.XManM(XMan), .YManM(YMan), .ZManM(ZMan),
.XNaNM(XNaN), .YNaNM(YNaN), .ZNaNM(ZNaN),
.XZeroM(XZero), .YZeroM(YZero), .ZZeroM(ZZero),
@ -870,7 +863,7 @@ module testbenchfp;
// .XNaNE(XNaN), .XSNaNE(XSNaN), .FrmE(FrmVal), .FmtE(ModFmt), .CvtFpResE(CvtFpRes), .CvtFpFlgE(CvtFpFlg));
fcvt fcvt (.XSgnE(XSgn), .XExpE(XExp), .XManE(XMan), .ForwardedSrcAE(SrcA), .FWriteIntE(WriteIntVal),
.XZeroE(XZero), .XOrigDenormE(XOrigDenorm), .FOpCtrlE(OpCtrlVal),
.XZeroE(XZero), .XDenormE(XDenorm), .FOpCtrlE(OpCtrlVal),
.XInfE(XInf), .XNaNE(XNaN), .XSNaNE(XSNaN), .FrmE(FrmVal), .FmtE(ModFmt),
.CvtResE(CvtRes), .CvtIntResE(CvtIntRes), .CvtFlgE(CvtFlg));
fcmp fcmp (.FmtE(ModFmt), .FOpCtrlE(OpCtrlVal), .XSgnE(XSgn), .YSgnE(YSgn), .XExpE(XExp), .YExpE(YExp),
@ -1174,13 +1167,13 @@ end
///////////////////////////////////////////////////////////////////////////////////////////////
// check if the non-fma test is correct
if(~((Res === Ans | NaNGood | NaNGood === 1'bx) & (ResFlg === AnsFlg | AnsFlg === 5'bx))&(UnitVal !== `CVTINTUNIT)) begin
if(~((Res === Ans | NaNGood | NaNGood === 1'bx) & (ResFlg === AnsFlg | AnsFlg === 5'bx))&(UnitVal !== `CVTINTUNIT)&(UnitVal !== `CMPUNIT)) begin
errors += 1;
$display("There is an error in %s", Tests[TestNum]);
$display("inputs: %h %h %h\nSrcA: %h\n Res: %h %h\n Ans: %h %h", X, Y, Z, SrcA, Res, ResFlg, Ans, AnsFlg);
$stop;
end
// TestFloat sets the result to all 1's when there is an invalid result, however in
// http://www.jhauser.us/arithmetic/TestFloat-3/doc/TestFloat-general.html it says
// for an unsigned integer result 0 is also okay
@ -1295,7 +1288,6 @@ module readfmavectors (
input logic [1:0] FmaFmt, // the format of the FMA inputs
input logic [`FLEN*4+7:0] TestVector, // the test vector
output logic [`FLEN-1:0] Ans, // the correct answer
output logic ZOrigDenormE, // is z denormalized in it's original precision
output logic [4:0] AnsFlg, // the correct flag
output logic XSgnE, YSgnE, ZSgnE, // sign bits of XYZ
output logic [`NE-1:0] XExpE, YExpE, ZExpE, // exponents of XYZ (converted to largest supported precision)
@ -1309,7 +1301,6 @@ module readfmavectors (
);
logic XNormE, XExpMaxE; // signals the unpacker outputs but isn't used in FMA
logic XOrigDenormE;
// apply test vectors on rising edge of clk
// Format of vectors Inputs(1/2/3)_AnsFlg
always @(posedge clk) begin
@ -1343,10 +1334,10 @@ module readfmavectors (
endcase
end
unpack unpack(.X, .Y, .Z, .FmtE(FmaModFmt), .XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XOrigDenormE,
unpack unpack(.X, .Y, .Z, .FmtE(FmaModFmt), .XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XDenormE,
.XManE, .YManE, .ZManE, .XNormE, .XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE,
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE,
.XExpMaxE, .ZOrigDenormE);
.XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE,
.XExpMaxE, .ZDenormE);
endmodule
@ -1386,7 +1377,6 @@ module readvectors (
output logic XZeroE, YZeroE, ZZeroE, // is XYZ zero
output logic XInfE, YInfE, ZInfE, // is XYZ infinity
output logic XNormE, XExpMaxE,
output logic ZOrigDenormE, XOrigDenormE,
output logic [`FLEN-1:0] X, Y, Z
);
@ -1470,7 +1460,7 @@ module readvectors (
Ans = TestVector[8];
end
2'b10: begin // half
X = {{`FLEN-`H_LEN{1'b1}}, TestVector[12+3*(`H_LEN)-1:12+(`H_LEN)]};
X = {{`FLEN-`H_LEN{1'b1}}, TestVector[12+2*(`H_LEN)-1:12+(`H_LEN)]};
Y = {{`FLEN-`H_LEN{1'b1}}, TestVector[12+(`H_LEN)-1:12]};
Ans = TestVector[8];
end
@ -1672,5 +1662,5 @@ module readvectors (
unpack unpack(.X, .Y, .Z, .FmtE(ModFmt), .XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE,
.XManE, .YManE, .ZManE, .XNormE, .XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE,
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE,
.XExpMaxE, .ZOrigDenormE, .XOrigDenormE);
.XExpMaxE);
endmodule

View file

@ -1,29 +1,3 @@
///////////////////////////////////////////
// tests.vh
//
// Written: David_Harris@hmc.edu 7 October 2021
// Modified:
//
// Purpose: List of tests to apply
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`define PATH "../../tests/fp/vectors/"
`define ADD_OPCTRL 3'b110
`define MUL_OPCTRL 3'b100

View file

@ -5,6 +5,7 @@ from operator import index
import subprocess
import csv
import re
from matplotlib.cbook import flatten
import matplotlib.pyplot as plt
import matplotlib.lines as lines
import matplotlib.axes as axes
@ -13,6 +14,7 @@ from collections import namedtuple
def synthsfromcsv(filename):
Synth = namedtuple("Synth", "module tech width freq delay area lpower denergy")
with open(filename, newline='') as csvfile:
csvreader = csv.reader(csvfile)
global allSynths
@ -29,7 +31,7 @@ def synthsintocsv():
''' writes a CSV with one line for every available synthesis
each line contains the module, tech, width, target freq, and resulting metrics
'''
print("This takes a moment...")
bashCommand = "find . -path '*runs/ppa*rv32e*' -prune"
output = subprocess.check_output(['bash','-c', bashCommand])
allSynths = output.decode("utf-8").split('\n')[:-1]
@ -90,22 +92,14 @@ def cleanup():
def getVals(tech, module, var, freq=None):
''' for a specified tech, module, and variable/metric
returns a list of values for that metric in ascending width order with the appropriate units
works at a specified target frequency or if none is given, uses the synthesis with the min delay for each width
returns a list of values for that metric in ascending width order
works at a specified target frequency or if none is given, uses the synthesis with the best achievable delay for each width
'''
if (var == 'delay'):
units = " (ns)"
elif (var == 'area'):
units = " (sq microns)"
elif (var == 'lpower'):
units = " (nW)"
elif (var == 'denergy'):
units = " (pJ)"
global widths
metric = []
widthL = []
if (freq != None):
for oneSynth in allSynths:
if (oneSynth.freq == freq) & (oneSynth.tech == tech) & (oneSynth.module == module):
@ -118,7 +112,7 @@ def getVals(tech, module, var, freq=None):
m = 100000 # large number to start
for oneSynth in allSynths:
if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == module):
if (oneSynth.delay < m):
if (oneSynth.delay < m) & (1000/oneSynth.delay > oneSynth.freq):
m = oneSynth.delay
osdict = oneSynth._asdict()
met = osdict[var]
@ -127,10 +121,12 @@ def getVals(tech, module, var, freq=None):
if ('flop' in module) & (var == 'area'):
metric = [m/2 for m in metric] # since two flops in each module
if (var == 'denergy'):
metric = [m*1000 for m in metric] # more practical units for regression coefs
return metric, units
return metric
def genLegend(fits, coefs, r2, techcolor):
def genLegend(fits, coefs, r2, spec):
''' generates a list of two legend elements
labels line with fit equation and dots with tech and r squared of the fit
'''
@ -155,12 +151,11 @@ def genLegend(fits, coefs, r2, techcolor):
eq += " + " + coefsr[ind] + "*Nlog2(N)"
ind += 1
tech, c, m = techcolor
legend_elements = [lines.Line2D([0], [0], color=c, label=eq),
lines.Line2D([0], [0], color=c, ls='', marker=m, label=tech +' $R^2$='+ str(round(r2, 4)))]
legend_elements = [lines.Line2D([0], [0], color=spec.color, label=eq),
lines.Line2D([0], [0], color=spec.color, ls='', marker=spec.shape, label=spec.tech +' $R^2$='+ str(round(r2, 4)))]
return legend_elements
def oneMetricPlot(module, var, freq=None, ax=None, fits='clsgn'):
def oneMetricPlot(module, var, freq=None, ax=None, fits='clsgn', norm=True, color=None):
''' module: string module name
freq: int freq (MHz)
var: string delay, area, lpower, or denergy
@ -175,30 +170,45 @@ def oneMetricPlot(module, var, freq=None, ax=None, fits='clsgn'):
singlePlot = False
fullLeg = []
global techcolors
global techSpecs
global widths
for combo in techcolors:
tech, c, m = combo
metric, units = getVals(tech, module, var, freq=freq)
if len(metric) == 5:
xp, pred, leg = regress(widths, metric, combo, fits)
fullLeg += leg
ax.scatter(widths, metric, color=c, marker=m)
global norms
for spec in techSpecs:
metric = getVals(spec.tech, module, var, freq=freq)
if norm:
techdict = spec._asdict()
norm = techdict[var]
metric = [m/norm for m in metric] # comment out to not normalize
if len(metric) == 5:
xp, pred, leg = regress(widths, metric, spec, fits)
fullLeg += leg
c = color if color else spec.color
ax.scatter(widths, metric, color=c, marker=spec.shape)
ax.plot(xp, pred, color=c)
ax.legend(handles=fullLeg)
ax.set_xticks(widths)
ax.set_xlabel("Width (bits)")
ax.set_ylabel(str.title(var) + units)
if norm:
ylabeldic = {"lpower": "Normalized Leakage Power", "denergy": "Normalized Dynamic Energy", "area": "INVx1 Areas", "delay": "FO4 Delays"}
else:
ylabeldic = {"lpower": "Leakage Power (nW)", "denergy": "Dynamic Energy (nJ)", "area": "Area (sq microns)", "delay": "Delay (ns)"}
ax.set_ylabel(ylabeldic[var])
if singlePlot:
titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (best delay)"
titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (best achievable delay)"
ax.set_title(module + titleStr)
plt.show()
plt.savefig('./plots/PPA/'+ module + '_' + var + '.png')
# plt.show()
def regress(widths, var, techcolor, fits='clsgn'):
def regress(widths, var, spec, fits='clsgn'):
''' fits a curve to the given points
returns lists of x and y values to plot that curve and legend elements with the equation
'''
@ -217,9 +227,9 @@ def regress(widths, var, techcolor, fits='clsgn'):
coefs = coefsResid[0]
try:
resid = coefsResid[1][0]
r2 = 1 - resid / (y.size * y.var())
except:
resid = 0
r2 = 1 - resid / (y.size * y.var())
r2 = 0
xp = np.linspace(8, 140, 200)
pred = []
@ -227,7 +237,7 @@ def regress(widths, var, techcolor, fits='clsgn'):
n = [func(x) for func in funcArr]
pred += [sum(np.multiply(coefs, n))]
leg = genLegend(fits, coefs, r2, techcolor)
leg = genLegend(fits, coefs, r2, spec)
return xp, pred, leg
@ -244,7 +254,7 @@ def makeCoefTable(tech):
for comb in [['delay', 5000], ['area', 5000], ['area', 10]]:
var = comb[0]
freq = comb[1]
metric, units = getVals(tech, mod, freq, var)
metric = getVals(tech, mod, freq, var)
global widths
coefs, r2, funcArr = regress(widths, metric)
row = [mod] + comb + np.ndarray.tolist(coefs) + [r2]
@ -329,7 +339,8 @@ def freqPlot(tech, mod, width):
ax3.set_ylabel('Area * Delay')
ax4.set_ylabel('Area * $Delay^2$')
ax1.set_title(mod + '_' + str(width))
plt.show()
plt.savefig('./plots/freqBuckshot/' + mod + '/' + str(width) + '.png')
# plt.show()
def squareAreaDelay(tech, mod, width):
''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width
@ -343,30 +354,69 @@ def squareAreaDelay(tech, mod, width):
delaysL[ind] += [oneSynth.delay]
areasL[ind] += [oneSynth.area]
fig = plt.figure()
ax = fig.add_subplot(111)
f, (ax1) = plt.subplots(1, 1)
ax2 = ax1.twinx()
for ind in [0,1]:
areas = areasL[ind]
delays = delaysL[ind]
freqs = freqsL[ind]
targets = freqsL[ind]
targets = [1000/f for f in targets]
if ('flop' in mod): areas = [m/2 for m in areas] # since two flops in each module
freqs, delays, areas = noOutliers(freqs, delays, areas) # comment out to see all syntheses
targets, delays, areas = noOutliers(targets, delays, areas) # comment out to see all
if not ind:
achievedDelays = delays
c = 'blue' if ind else 'green'
plt.scatter(delays, areas, color=c)
legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='o', label='timing achieved'),
lines.Line2D([0], [0], color='blue', ls='', marker='o', label='slack violated')]
plt.legend(handles=legend_elements)
ax1.scatter(targets, delays, marker='^', color=c)
ax2.scatter(targets, areas, marker='s', color=c)
plt.xlabel("Delay Achieved (ns)")
plt.ylabel('Area (sq microns)')
plt.title(mod + '_' + str(width))
ax.set_aspect(1./ax.get_data_ratio())
plt.show()
bestAchieved = min(achievedDelays)
legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='^', label='delay (timing achieved)'),
lines.Line2D([0], [0], color='green', ls='', marker='s', label='area (timing achieved)'),
lines.Line2D([0], [0], color='blue', ls='', marker='^', label='delay (timing violated)'),
lines.Line2D([0], [0], color='blue', ls='', marker='s', label='area (timing violated)')]
ax2.legend(handles=legend_elements, loc='upper left')
ax1.set_xlabel("Delay Targeted (ns)")
ax1.set_ylabel("Delay Achieved (ns)")
ax2.set_ylabel('Area (sq microns)')
ax1.set_title(mod + '_' + str(width))
squarify(f)
xvals = np.array(ax1.get_xlim())
frac = (min(flatten(delaysL))-xvals[0])/(xvals[1]-xvals[0])
areaLowerLim = min(flatten(areasL))-100
areaUpperLim = max(flatten(areasL))/frac + areaLowerLim
ax2.set_ylim([areaLowerLim, areaUpperLim])
ax1.plot(xvals, xvals, ls="--", c=".3")
ax1.hlines(y=bestAchieved, xmin=xvals[0], xmax=xvals[1], color="black", ls='--')
plt.savefig('./plots/squareareadelay_' + mod + '_' + str(width) + '.png')
# plt.show()
def squarify(fig):
''' helper function for squareAreaDelay()
forces matplotlib figure to be a square
'''
w, h = fig.get_size_inches()
if w > h:
t = fig.subplotpars.top
b = fig.subplotpars.bottom
axs = h*(t-b)
l = (1.-axs/w)/2
fig.subplots_adjust(left=l, right=1-l)
else:
t = fig.subplotpars.right
b = fig.subplotpars.left
axs = w*(t-b)
l = (1.-axs/h)/2
fig.subplots_adjust(bottom=l, top=1-l)
def adprodpow(areas, delays, pow):
''' for each value in [areas] returns area*delay^pow
@ -378,33 +428,63 @@ def adprodpow(areas, delays, pow):
return result
def plotPPA(mod, freq=None):
def plotPPA(mod, freq=None, norm=True):
''' for the module specified, plots width vs delay, area, leakage power, and dynamic energy with fits
if no freq specified, uses the synthesis with min delay for each width
if no freq specified, uses the synthesis with best achievable delay for each width
overlays data from both techs
'''
fig, axs = plt.subplots(2, 2)
oneMetricPlot(mod, 'delay', ax=axs[0,0], fits='cg', freq=freq)
oneMetricPlot(mod, 'area', ax=axs[0,1], fits='s', freq=freq)
oneMetricPlot(mod, 'lpower', ax=axs[1,0], fits='s', freq=freq)
oneMetricPlot(mod, 'denergy', ax=axs[1,1], fits='s', freq=freq)
titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (best delay)"
global fitDict
modFit = fitDict[mod]
oneMetricPlot(mod, 'delay', ax=axs[0,0], fits=modFit[0], freq=freq, norm=norm)
oneMetricPlot(mod, 'area', ax=axs[0,1], fits=modFit[1], freq=freq, norm=norm)
oneMetricPlot(mod, 'lpower', ax=axs[1,0], fits=modFit[1], freq=freq, norm=norm)
oneMetricPlot(mod, 'denergy', ax=axs[1,1], fits=modFit[1], freq=freq, norm=norm)
titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (best achievable delay)"
n = 'normalized' if norm else 'unnormalized'
saveStr = './plots/PPA/'+ n + '/' + mod + '.png'
plt.suptitle(mod + titleStr)
plt.show()
plt.savefig(saveStr)
# plt.show()
def plotBestAreas():
global fitDict
fig, axs = plt.subplots(1, 1)
mods = ['priorityencoder', 'add', 'csa', 'shiftleft', 'comparator', 'flop']
colors = ['red', 'orange', 'yellow', 'green', 'blue', 'purple']
legend_elements = []
for i in range(len(mods)):
oneMetricPlot(mods[i], 'area', ax=axs, freq=10, norm=False, color=colors[i])
legend_elements += [lines.Line2D([0], [0], color=colors[i], ls='', marker='o', label=mods[i])]
plt.suptitle('Optimized Areas (target freq 10MHz)')
plt.legend(handles=legend_elements)
plt.savefig('./plots/bestareas.png')
# plt.show()
if __name__ == '__main__':
# set up stuff, global variables
Synth = namedtuple("Synth", "module tech width freq delay area lpower denergy")
techcolors = [['sky90', 'green', 'o'], ['tsmc28', 'blue', '^']] # add another list here for gf32
widths = [8, 16, 32, 64, 128]
# fitDict in progress
fitDict = {'add': ['gl', 'lg'], 'mult': ['clg', 's'], 'comparator': ['clsgn', 'clsgn'], 'csa': ['clsgn', 'clsgn'], 'shiftleft': ['clsgn', 'clsgn'], 'flop': ['cl', 'cl'], 'priorityencoder': ['clsgn', 'clsgn']}
TechSpec = namedtuple("TechSpec", "tech color shape delay area lpower denergy")
techSpecs = [['sky90', 'green', 'o', 43.2e-3, 1.96, 1.98, 1], ['gf32', 'purple', 's', 15e-3, .351, .3116, 1], ['tsmc28', 'blue', '^', 12.2e-3, .252, 1.09, 1]]
techSpecs = [TechSpec(*t) for t in techSpecs]
# cleanup()
# synthsintocsv() # slow, run only when new synth runs to add to csv
synthsfromcsv('ppaData.csv') # your csv here!
### examples
# ### examples
# squareAreaDelay('sky90', 'add', 32)
# oneMetricPlot('add', 'delay')
# freqPlot('sky90', 'comparator', 16)
# plotPPA('add')
squareAreaDelay('sky90', 'comparator', 16)
plotBestAreas()
mods = ['priorityencoder', 'add', 'csa', 'shiftleft', 'comparator', 'flop', 'mult']
for mod in mods:
plotPPA(mod, norm=False)
plotPPA(mod)
for w in [8, 16, 32, 64, 128]:
freqPlot('sky90', mod, w)

File diff suppressed because it is too large Load diff