mirror of
https://github.com/elastic/elasticsearch.git
synced 2025-06-28 17:34:17 -04:00
267 lines
5.3 KiB
Markdown
267 lines
5.3 KiB
Markdown
---
|
|
navigation_title: "Geo-distance"
|
|
mapped_pages:
|
|
- https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-geo-distance-query.html
|
|
---
|
|
|
|
# Geo-distance query [query-dsl-geo-distance-query]
|
|
|
|
|
|
Matches [`geo_point`](/reference/elasticsearch/mapping-reference/geo-point.md) and [`geo_shape`](/reference/elasticsearch/mapping-reference/geo-shape.md) values within a given distance of a geopoint.
|
|
|
|
|
|
## Example [geo-distance-query-ex]
|
|
|
|
Assume the following documents are indexed:
|
|
|
|
```console
|
|
PUT /my_locations
|
|
{
|
|
"mappings": {
|
|
"properties": {
|
|
"pin": {
|
|
"properties": {
|
|
"location": {
|
|
"type": "geo_point"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PUT /my_locations/_doc/1
|
|
{
|
|
"pin": {
|
|
"location": {
|
|
"lat": 40.12,
|
|
"lon": -71.34
|
|
}
|
|
}
|
|
}
|
|
|
|
PUT /my_geoshapes
|
|
{
|
|
"mappings": {
|
|
"properties": {
|
|
"pin": {
|
|
"properties": {
|
|
"location": {
|
|
"type": "geo_shape"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PUT /my_geoshapes/_doc/1
|
|
{
|
|
"pin": {
|
|
"location": {
|
|
"type" : "polygon",
|
|
"coordinates" : [[[13.0 ,51.5], [15.0, 51.5], [15.0, 54.0], [13.0, 54.0], [13.0 ,51.5]]]
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
Use a `geo_distance` filter to match `geo_point` values within a specified distance of another geopoint:
|
|
|
|
```console
|
|
GET /my_locations/_search
|
|
{
|
|
"query": {
|
|
"bool": {
|
|
"must": {
|
|
"match_all": {}
|
|
},
|
|
"filter": {
|
|
"geo_distance": {
|
|
"distance": "200km",
|
|
"pin.location": {
|
|
"lat": 40,
|
|
"lon": -70
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
Use the same filter to match `geo_shape` values within the given distance:
|
|
|
|
```console
|
|
GET my_geoshapes/_search
|
|
{
|
|
"query": {
|
|
"bool": {
|
|
"must": {
|
|
"match_all": {}
|
|
},
|
|
"filter": {
|
|
"geo_distance": {
|
|
"distance": "200km",
|
|
"pin.location": {
|
|
"lat": 40,
|
|
"lon": -70
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
To match both `geo_point` and `geo_shape` values, search both indices:
|
|
|
|
```console
|
|
GET my_locations,my_geoshapes/_search
|
|
{
|
|
"query": {
|
|
"bool": {
|
|
"must": {
|
|
"match_all": {}
|
|
},
|
|
"filter": {
|
|
"geo_distance": {
|
|
"distance": "200km",
|
|
"pin.location": {
|
|
"lat": 40,
|
|
"lon": -70
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
|
|
## Accepted formats [_accepted_formats]
|
|
|
|
In much the same way the `geo_point` type can accept different representations of the geo point, the filter can accept it as well:
|
|
|
|
|
|
### Lat lon as properties [_lat_lon_as_properties_3]
|
|
|
|
```console
|
|
GET /my_locations/_search
|
|
{
|
|
"query": {
|
|
"bool": {
|
|
"must": {
|
|
"match_all": {}
|
|
},
|
|
"filter": {
|
|
"geo_distance": {
|
|
"distance": "12km",
|
|
"pin.location": {
|
|
"lat": 40,
|
|
"lon": -70
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
|
|
### Lat lon as array [_lat_lon_as_array_3]
|
|
|
|
Format in `[lon, lat]`, note, the order of lon/lat here in order to conform with [GeoJSON](http://geojson.org/).
|
|
|
|
```console
|
|
GET /my_locations/_search
|
|
{
|
|
"query": {
|
|
"bool": {
|
|
"must": {
|
|
"match_all": {}
|
|
},
|
|
"filter": {
|
|
"geo_distance": {
|
|
"distance": "12km",
|
|
"pin.location": [ -70, 40 ]
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
|
|
### Lat lon as WKT string [_lat_lon_as_wkt_string_2]
|
|
|
|
Format in [Well-Known Text](https://docs.opengeospatial.org/is/12-063r5/12-063r5.html).
|
|
|
|
```console
|
|
GET /my_locations/_search
|
|
{
|
|
"query": {
|
|
"bool": {
|
|
"must": {
|
|
"match_all": {}
|
|
},
|
|
"filter": {
|
|
"geo_distance": {
|
|
"distance": "12km",
|
|
"pin.location": "POINT (-70 40)"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
|
|
### Geohash [_geohash_3]
|
|
|
|
```console
|
|
GET /my_locations/_search
|
|
{
|
|
"query": {
|
|
"bool": {
|
|
"must": {
|
|
"match_all": {}
|
|
},
|
|
"filter": {
|
|
"geo_distance": {
|
|
"distance": "12km",
|
|
"pin.location": "drm3btev3e86"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
|
|
## Options [_options_2]
|
|
|
|
The following are options allowed on the filter:
|
|
|
|
`distance`
|
|
: The radius of the circle centred on the specified location. Points which fall into this circle are considered to be matches. The `distance` can be specified in various units. See [Distance Units](/reference/elasticsearch/rest-apis/api-conventions.md#distance-units).
|
|
|
|
`distance_type`
|
|
: How to compute the distance. Can either be `arc` (default), or `plane` (faster, but inaccurate on long distances and close to the poles).
|
|
|
|
`_name`
|
|
: Optional name field to identify the query
|
|
|
|
`validation_method`
|
|
: Set to `IGNORE_MALFORMED` to accept geo points with invalid latitude or longitude, set to `COERCE` to additionally try and infer correct coordinates (default is `STRICT`).
|
|
|
|
|
|
## Multi location per document [_multi_location_per_document_2]
|
|
|
|
The `geo_distance` filter can work with multiple locations / points per document. Once a single location / point matches the filter, the document will be included in the filter.
|
|
|
|
|
|
## Ignore unmapped [_ignore_unmapped_2]
|
|
|
|
When set to `true` the `ignore_unmapped` option will ignore an unmapped field and will not match any documents for this query. This can be useful when querying multiple indexes which might have different mappings. When set to `false` (the default value) the query will throw an exception if the field is not mapped.
|
|
|