elasticsearch/docs/reference/enrich-processor/fingerprint-processor.md
Colleen McGinnis 9bcd59596d
[docs] Prepare for docs-assembler (#125118)
* reorg files for docs-assembler and create toc.yml files

* fix build error, add redirects

* only toc

* move images
2025-03-20 12:09:12 -05:00

2.8 KiB
Raw Blame History

navigation_title mapped_pages
Fingerprint
https://www.elastic.co/guide/en/elasticsearch/reference/current/fingerprint-processor.html

Fingerprint processor [fingerprint-processor]

Computes a hash of the documents content. You can use this hash for content fingerprinting.

$$$fingerprint-options$

Name Required Default Description
fields yes n/a Array of fields to include inthe fingerprint. For objects, the processor hashes both the field key andvalue. For other fields, the processor hashes only the field value.
target_field no fingerprint Output field for the fingerprint.
salt no Salt value for the hash function.
method no SHA-1 The hash method used tocompute the fingerprint. Must be one of MD5, SHA-1, SHA-256, SHA-512, orMurmurHash3.
ignore_missing no false If true, the processorignores any missing fields. If all fields are missing, the processor silentlyexits without modifying the document.
description no - Description of the processor. Useful for describing the purpose of the processor or its configuration.
if no - Conditionally execute the processor. See Conditionally run a processor.
ignore_failure no false Ignore failures for the processor. See Handling pipeline failures.
on_failure no - Handle failures for the processor. See Handling pipeline failures.
tag no - Identifier for the processor. Useful for debugging and metrics.

Example [fingerprint-processor-ex]

The following example illustrates the use of the fingerprint processor:

POST _ingest/pipeline/_simulate
{
  "pipeline": {
    "processors": [
      {
        "fingerprint": {
          "fields": ["user"]
        }
      }
    ]
  },
  "docs": [
    {
      "_source": {
        "user": {
          "last_name": "Smith",
          "first_name": "John",
          "date_of_birth": "1980-01-15",
          "is_active": true
        }
      }
    }
  ]
}

Which produces the following result:

{
  "docs": [
    {
      "doc": {
        ...
        "_source": {
          "fingerprint" : "WbSUPW4zY1PBPehh2AA/sSxiRjw=",
          "user" : {
            "last_name" : "Smith",
            "first_name" : "John",
            "date_of_birth" : "1980-01-15",
            "is_active" : true
          }
        }
      }
    }
  ]
}