elasticsearch/docs/reference/inference/put-inference.asciidoc
István Zoltán Szabó e93892c0fd
[DOCS] Expands inference API docs (#104047)
Co-authored-by: David Kyle <david.kyle@elastic.co>
2024-01-09 15:46:46 +01:00

183 lines
No EOL
4.8 KiB
Text

[role="xpack"]
[[put-inference-api]]
=== Create {infer} API
experimental[]
Creates a model to perform an {infer} task.
IMPORTANT: The {infer} APIs enable you to use certain services, such as ELSER,
OpenAI, or Hugging Face, in your cluster. This is not the same feature that you
can use on an ML node with custom {ml} models. If you want to train and use your
own model, use the <<ml-df-trained-models-apis>>.
[discrete]
[[put-inference-api-request]]
==== {api-request-title}
`PUT /_inference/<task_type>/<model_id>`
[discrete]
[[put-inference-api-prereqs]]
==== {api-prereq-title}
* Requires the `manage` <<privileges-list-cluster,cluster privilege>>.
[discrete]
[[put-inference-api-desc]]
==== {api-description-title}
The create {infer} API enables you to create and configure an {infer} model to
perform a specific {infer} task.
The following services are available through the {infer} API:
* ELSER
* OpenAI
* Hugging Face
[discrete]
[[put-inference-api-path-params]]
==== {api-path-parms-title}
`<model_id>`::
(Required, string)
The unique identifier of the model.
`<task_type>`::
(Required, string)
The type of the {infer} task that the model will perform. Available task types:
* `sparse_embedding`,
* `text_embedding`.
[discrete]
[[put-inference-api-request-body]]
== {api-request-body-title}
`service`::
(Required, string)
The type of service supported for the specified task type.
Available services:
* `elser`: specify the `sparse_embedding` task type to use the ELSER service.
* `openai`: specify the `text_embedding` task type to use the OpenAI service.
* `hugging_face`: specify the `text_embedding` task type to use the Hugging Face service.
`service_settings`::
(Required, object)
Settings used to install the {infer} model. These settings are specific to the
`service` you specified.
+
.`service_settings` for `elser`
[%collapsible%closed]
=====
`num_allocations`:::
(Required, integer)
The number of model allocations to create.
`num_threads`:::
(Required, integer)
The number of threads to use by each model allocation.
=====
+
.`service_settings` for `openai`
[%collapsible%closed]
=====
`api_key`:::
(Required, string)
A valid API key of your OpenAI account. You can find your OpenAI API keys in
your OpenAI account under the
https://platform.openai.com/api-keys[API keys section].
IMPORTANT: You need to provide the API key only once, during the {infer} model
creation. The <<get-inference-api>> does not retrieve your API key. After
creating the {infer} model, you cannot change the associated API key. If you
want to use a different API key, delete the {infer} model and recreate it with
the same name and the updated API key.
`organization_id`:::
(Optional, string)
The unique identifier of your organization. You can find the Organization ID in
your OpenAI account under
https://platform.openai.com/account/organization[**Settings** > **Organizations**].
`url`:::
(Optional, string)
The URL endpoint to use for the requests. Can be changed for testing purposes.
Defaults to `https://api.openai.com/v1/embeddings`.
=====
`task_settings`::
(Optional, object)
Settings to configure the {infer} task. These settings are specific to the
`<task_type>` you specified.
+
.`task_settings` for `text_embedding`
[%collapsible%closed]
=====
`model`:::
(Optional, string)
The name of the model to use for the {infer} task. Refer to the
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings[OpenAI documentation]
for the list of available text embedding models.
=====
[discrete]
[[put-inference-api-example]]
==== {api-examples-title}
The following example shows how to create an {infer} model called
`my-elser-model` to perform a `sparse_embedding` task type.
[source,console]
------------------------------------------------------------
PUT _inference/sparse_embedding/my-elser-model
{
"service": "elser",
"service_settings": {
"num_allocations": 1,
"num_threads": 1
},
"task_settings": {}
}
------------------------------------------------------------
// TEST[skip:TBD]
Example response:
[source,console-result]
------------------------------------------------------------
{
"model_id": "my-elser-model",
"task_type": "sparse_embedding",
"service": "elser",
"service_settings": {
"num_allocations": 1,
"num_threads": 1
},
"task_settings": {}
}
------------------------------------------------------------
// NOTCONSOLE
The following example shows how to create an {infer} model called
`openai_embeddings` to perform a `text_embedding` task type.
[source,console]
------------------------------------------------------------
PUT _inference/text_embedding/openai_embeddings
{
"service": "openai",
"service_settings": {
"api_key": "<api_key>"
},
"task_settings": {
"model": "text-embedding-ada-002"
}
}
------------------------------------------------------------
// TEST[skip:TBD]