ibex/rtl/ibex_multdiv_slow.sv
Philipp Wagner 428d057c4a Rename ibex_[tracer_]define to ibex_[tracer_]pkg
This file doesn't contain defines any more, but a normal SV package.

The diff is best viewed without whitespace changes, as the reindents
cause a lof of diff noise.

Fixes lowrisc/ibex#173
2019-07-19 11:34:40 +01:00

298 lines
10 KiB
Systemverilog

// Copyright lowRISC contributors.
// Copyright 2018 ETH Zurich and University of Bologna.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
////////////////////////////////////////////////////////////////////////////////
// Engineer: Davide Schiavone - pschiavo@iis.ee.ethz.ch //
// //
// //
// Design Name: Slow Multiplier and Division //
// Project Name: ibex //
// Language: SystemVerilog //
// //
// Description: Baugh-Wooley multiplier and Long Division //
// //
////////////////////////////////////////////////////////////////////////////////
/**
* Slow Multiplier and Division
*
* Baugh-Wooley multiplier and Long Division
*/
module ibex_multdiv_slow (
input logic clk_i,
input logic rst_ni,
input logic mult_en_i,
input logic div_en_i,
input ibex_pkg::md_op_e operator_i,
input logic [1:0] signed_mode_i,
input logic [31:0] op_a_i,
input logic [31:0] op_b_i,
input logic [33:0] alu_adder_ext_i,
input logic [31:0] alu_adder_i,
input logic equal_to_zero,
output logic [32:0] alu_operand_a_o,
output logic [32:0] alu_operand_b_o,
output logic [31:0] multdiv_result_o,
output logic valid_o
);
import ibex_pkg::*;
logic [ 4:0] multdiv_state_q, multdiv_state_d, multdiv_state_m1;
typedef enum logic [2:0] {
MD_IDLE, MD_ABS_A, MD_ABS_B, MD_COMP, MD_LAST, MD_CHANGE_SIGN, MD_FINISH
} md_fsm_e;
md_fsm_e md_state_q, md_state_d;
logic [32:0] accum_window_q, accum_window_d;
logic [32:0] res_adder_l;
logic [32:0] res_adder_h;
logic [32:0] op_b_shift_q, op_b_shift_d;
logic [32:0] op_a_shift_q, op_a_shift_d;
logic [32:0] op_a_ext, op_b_ext;
logic [32:0] one_shift;
logic [32:0] op_a_bw_pp, op_a_bw_last_pp;
logic [31:0] b_0;
logic sign_a, sign_b;
logic [32:0] next_reminder, next_quotient;
logic [32:0] op_remainder;
logic [31:0] op_numerator_q, op_numerator_d;
logic is_greater_equal;
logic div_change_sign, rem_change_sign;
// (accum_window_q + op_a_shift_q)
assign res_adder_l = alu_adder_ext_i[32:0];
// (accum_window_q + op_a_shift_q)>>1
assign res_adder_h = alu_adder_ext_i[33:1];
always_comb begin
alu_operand_a_o = accum_window_q;
multdiv_result_o = div_en_i ? accum_window_q[31:0] : res_adder_l;
unique case(operator_i)
MD_OP_MULL: begin
alu_operand_b_o = op_a_bw_pp;
end
MD_OP_MULH: begin
alu_operand_b_o = (md_state_q == MD_LAST) ? op_a_bw_last_pp : op_a_bw_pp;
end
default: begin
unique case(md_state_q)
MD_IDLE: begin
// 0 - B = 0 iff B == 0
alu_operand_a_o = {32'h0 , 1'b1};
alu_operand_b_o = {~op_b_i, 1'b1};
end
MD_ABS_A: begin
// ABS(A) = 0 - A
alu_operand_a_o = {32'h0 , 1'b1};
alu_operand_b_o = {~op_a_i, 1'b1};
end
MD_ABS_B: begin
// ABS(B) = 0 - B
alu_operand_a_o = {32'h0 , 1'b1};
alu_operand_b_o = {~op_b_i, 1'b1};
end
MD_CHANGE_SIGN: begin
// ABS(Quotient) = 0 - Quotient (or Reminder)
alu_operand_a_o = {32'h0 , 1'b1};
alu_operand_b_o = {~accum_window_q[31:0], 1'b1};
end
default: begin
// Division
alu_operand_a_o = {accum_window_q[31:0], 1'b1}; // it contains the reminder
alu_operand_b_o = {~op_b_shift_q[31:0], 1'b1}; // -denominator two's compliment
end
endcase
end
endcase
end
// The adder in the ALU computes alu_operand_a_o + alu_operand_b_o which means
// Reminder - Divisor. If Reminder - Divisor >= 0, is_greater_equal is equal to 1,
// the next Reminder is Reminder - Divisor contained in res_adder_h and the
// Quotient multdiv_state_q-th bit is set to 1 using the shift register op_b_shift_q.
assign is_greater_equal = ((accum_window_q[31] ^ op_b_shift_q[31]) == 1'b0) ?
(res_adder_h[31] == 1'b0) : accum_window_q[31];
assign one_shift = {32'b0, 1'b1} << multdiv_state_q;
assign next_reminder = is_greater_equal ? res_adder_h : op_remainder;
assign next_quotient = is_greater_equal ? op_a_shift_q | one_shift : op_a_shift_q;
assign b_0 = {32{op_b_shift_q[0]}};
// build the partial product
assign op_a_bw_pp = { ~(op_a_shift_q[32] & op_b_shift_q[0]), (op_a_shift_q[31:0] & b_0) };
assign op_a_bw_last_pp = { (op_a_shift_q[32] & op_b_shift_q[0]), ~(op_a_shift_q[31:0] & b_0) };
assign sign_a = op_a_i[31] & signed_mode_i[0];
assign sign_b = op_b_i[31] & signed_mode_i[1];
assign op_a_ext = {sign_a, op_a_i};
assign op_b_ext = {sign_b, op_b_i};
// division
assign op_remainder = accum_window_q[32:0];
assign multdiv_state_m1 = multdiv_state_q - 5'h1;
assign div_change_sign = sign_a ^ sign_b;
assign rem_change_sign = sign_a;
always_ff @(posedge clk_i or negedge rst_ni) begin : proc_multdiv_state_q
if (!rst_ni) begin
multdiv_state_q <= 5'h0;
accum_window_q <= 33'h0;
op_b_shift_q <= 33'h0;
op_a_shift_q <= 33'h0;
op_numerator_q <= 32'h0;
md_state_q <= MD_IDLE;
end else begin
multdiv_state_q <= multdiv_state_d;
accum_window_q <= accum_window_d;
op_b_shift_q <= op_b_shift_d;
op_a_shift_q <= op_a_shift_d;
op_numerator_q <= op_numerator_d;
md_state_q <= md_state_d;
end
end
always_comb begin
multdiv_state_d = multdiv_state_q;
accum_window_d = accum_window_q;
op_b_shift_d = op_b_shift_q;
op_a_shift_d = op_a_shift_q;
op_numerator_d = op_numerator_q;
md_state_d = md_state_q;
if (mult_en_i || div_en_i) begin
unique case(md_state_q)
MD_IDLE: begin
unique case(operator_i)
MD_OP_MULL: begin
op_a_shift_d = op_a_ext << 1;
accum_window_d = { ~(op_a_ext[32] & op_b_i[0]),
op_a_ext[31:0] & {32{op_b_i[0]}} };
op_b_shift_d = op_b_ext >> 1;
md_state_d = MD_COMP;
end
MD_OP_MULH: begin
op_a_shift_d = op_a_ext;
accum_window_d = { 1'b1, ~(op_a_ext[32] & op_b_i[0]),
op_a_ext[31:1] & {31{op_b_i[0]}} };
op_b_shift_d = op_b_ext >> 1;
md_state_d = MD_COMP;
end
MD_OP_DIV: begin
// Check if the Denominator is 0
// quotient for division by 0
accum_window_d = {33{1'b1}};
md_state_d = equal_to_zero ? MD_FINISH : MD_ABS_A;
end
default: begin
// Check if the Denominator is 0
// reminder for division by 0
accum_window_d = op_a_ext;
md_state_d = equal_to_zero ? MD_FINISH : MD_ABS_A;
end
endcase
multdiv_state_d = 5'd31;
end
MD_ABS_A: begin
// quotient
op_a_shift_d = '0;
// A abs value
op_numerator_d = sign_a ? alu_adder_i : op_a_i;
md_state_d = MD_ABS_B;
end
MD_ABS_B: begin
// reminder
accum_window_d = { 32'h0, op_numerator_q[31]};
// B abs value
op_b_shift_d = sign_b ? alu_adder_i : op_b_i;
md_state_d = MD_COMP;
end
MD_COMP: begin
multdiv_state_d = multdiv_state_m1;
unique case(operator_i)
MD_OP_MULL: begin
accum_window_d = res_adder_l;
op_a_shift_d = op_a_shift_q << 1;
op_b_shift_d = op_b_shift_q >> 1;
end
MD_OP_MULH: begin
accum_window_d = res_adder_h;
op_a_shift_d = op_a_shift_q;
op_b_shift_d = op_b_shift_q >> 1;
end
default: begin
accum_window_d = {next_reminder[31:0], op_numerator_q[multdiv_state_m1]};
op_a_shift_d = next_quotient;
end
endcase
md_state_d = (multdiv_state_q == 5'd1) ? MD_LAST : MD_COMP;
end
MD_LAST: begin
unique case(operator_i)
MD_OP_MULL: begin
accum_window_d = res_adder_l;
md_state_d = MD_IDLE;
end
MD_OP_MULH: begin
accum_window_d = res_adder_l;
md_state_d = MD_IDLE;
end
MD_OP_DIV: begin
// this time we save the quotient in accum_window_q since we do not need anymore the
// reminder
accum_window_d = next_quotient;
md_state_d = MD_CHANGE_SIGN;
end
default: begin
// this time we do not save the quotient anymore since we need only the reminder
accum_window_d = {1'b0, next_reminder[31:0]};
md_state_d = MD_CHANGE_SIGN;
end
endcase
end
MD_CHANGE_SIGN: begin
md_state_d = MD_FINISH;
unique case(operator_i)
MD_OP_DIV:
accum_window_d = (div_change_sign) ? alu_adder_i : accum_window_q;
default:
accum_window_d = (rem_change_sign) ? alu_adder_i : accum_window_q;
endcase
end
MD_FINISH: begin
md_state_d = MD_IDLE;
end
default: begin
md_state_d = md_fsm_e'(1'bX);
end
endcase // md_state_q
end
end
assign valid_o = (md_state_q == MD_FINISH) |
(md_state_q == MD_LAST &
(operator_i == MD_OP_MULL |
operator_i == MD_OP_MULH));
endmodule // ibex_mult