mirror of
https://github.com/lowRISC/ibex.git
synced 2025-04-23 05:17:12 -04:00
These are used by the OpenTitan project to track the implementation of security countermeasures
378 lines
13 KiB
Systemverilog
378 lines
13 KiB
Systemverilog
// Copyright lowRISC contributors.
|
|
// Copyright 2018 ETH Zurich and University of Bologna, see also CREDITS.md.
|
|
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
/**
|
|
* Slow Multiplier and Division
|
|
*
|
|
* Baugh-Wooley multiplier and Long Division
|
|
*/
|
|
|
|
`include "prim_assert.sv"
|
|
|
|
module ibex_multdiv_slow
|
|
(
|
|
input logic clk_i,
|
|
input logic rst_ni,
|
|
input logic mult_en_i, // dynamic enable signal, for FSM control
|
|
input logic div_en_i, // dynamic enable signal, for FSM control
|
|
input logic mult_sel_i, // static decoder output, for data muxes
|
|
input logic div_sel_i, // static decoder output, for data muxes
|
|
input ibex_pkg::md_op_e operator_i,
|
|
input logic [1:0] signed_mode_i,
|
|
input logic [31:0] op_a_i,
|
|
input logic [31:0] op_b_i,
|
|
input logic [33:0] alu_adder_ext_i,
|
|
input logic [31:0] alu_adder_i,
|
|
input logic equal_to_zero_i,
|
|
input logic data_ind_timing_i,
|
|
|
|
output logic [32:0] alu_operand_a_o,
|
|
output logic [32:0] alu_operand_b_o,
|
|
|
|
input logic [33:0] imd_val_q_i[2],
|
|
output logic [33:0] imd_val_d_o[2],
|
|
output logic [1:0] imd_val_we_o,
|
|
|
|
input logic multdiv_ready_id_i,
|
|
|
|
output logic [31:0] multdiv_result_o,
|
|
|
|
output logic valid_o
|
|
);
|
|
|
|
import ibex_pkg::*;
|
|
|
|
typedef enum logic [2:0] {
|
|
MD_IDLE, MD_ABS_A, MD_ABS_B, MD_COMP, MD_LAST, MD_CHANGE_SIGN, MD_FINISH
|
|
} md_fsm_e;
|
|
md_fsm_e md_state_q, md_state_d;
|
|
|
|
logic [32:0] accum_window_q, accum_window_d;
|
|
logic unused_imd_val0;
|
|
logic [ 1:0] unused_imd_val1;
|
|
|
|
logic [32:0] res_adder_l;
|
|
logic [32:0] res_adder_h;
|
|
|
|
logic [ 4:0] multdiv_count_q, multdiv_count_d;
|
|
logic [32:0] op_b_shift_q, op_b_shift_d;
|
|
logic [32:0] op_a_shift_q, op_a_shift_d;
|
|
logic [32:0] op_a_ext, op_b_ext;
|
|
logic [32:0] one_shift;
|
|
logic [32:0] op_a_bw_pp, op_a_bw_last_pp;
|
|
logic [31:0] b_0;
|
|
logic sign_a, sign_b;
|
|
logic [32:0] next_quotient;
|
|
logic [31:0] next_remainder;
|
|
logic [31:0] op_numerator_q, op_numerator_d;
|
|
logic is_greater_equal;
|
|
logic div_change_sign, rem_change_sign;
|
|
logic div_by_zero_d, div_by_zero_q;
|
|
logic multdiv_hold;
|
|
logic multdiv_en;
|
|
|
|
// (accum_window_q + op_a_shift_q)
|
|
assign res_adder_l = alu_adder_ext_i[32:0];
|
|
// (accum_window_q + op_a_shift_q)>>1
|
|
assign res_adder_h = alu_adder_ext_i[33:1];
|
|
|
|
/////////////////////
|
|
// ALU Operand MUX //
|
|
/////////////////////
|
|
|
|
// Intermediate value register shared with ALU
|
|
assign imd_val_d_o[0] = {1'b0,accum_window_d};
|
|
assign imd_val_we_o[0] = ~multdiv_hold;
|
|
assign accum_window_q = imd_val_q_i[0][32:0];
|
|
assign unused_imd_val0 = imd_val_q_i[0][33];
|
|
|
|
assign imd_val_d_o[1] = {2'b00, op_numerator_d};
|
|
assign imd_val_we_o[1] = multdiv_en;
|
|
assign op_numerator_q = imd_val_q_i[1][31:0];
|
|
assign unused_imd_val1 = imd_val_q_i[1][33:32];
|
|
|
|
always_comb begin
|
|
alu_operand_a_o = accum_window_q;
|
|
|
|
unique case (operator_i)
|
|
|
|
MD_OP_MULL: begin
|
|
alu_operand_b_o = op_a_bw_pp;
|
|
end
|
|
|
|
MD_OP_MULH: begin
|
|
alu_operand_b_o = (md_state_q == MD_LAST) ? op_a_bw_last_pp : op_a_bw_pp;
|
|
end
|
|
|
|
MD_OP_DIV,
|
|
MD_OP_REM: begin
|
|
unique case (md_state_q)
|
|
MD_IDLE: begin
|
|
// 0 - B = 0 iff B == 0
|
|
alu_operand_a_o = {32'h0 , 1'b1};
|
|
alu_operand_b_o = {~op_b_i, 1'b1};
|
|
end
|
|
MD_ABS_A: begin
|
|
// ABS(A) = 0 - A
|
|
alu_operand_a_o = {32'h0 , 1'b1};
|
|
alu_operand_b_o = {~op_a_i, 1'b1};
|
|
end
|
|
MD_ABS_B: begin
|
|
// ABS(B) = 0 - B
|
|
alu_operand_a_o = {32'h0 , 1'b1};
|
|
alu_operand_b_o = {~op_b_i, 1'b1};
|
|
end
|
|
MD_CHANGE_SIGN: begin
|
|
// ABS(Quotient) = 0 - Quotient (or Reminder)
|
|
alu_operand_a_o = {32'h0 , 1'b1};
|
|
alu_operand_b_o = {~accum_window_q[31:0], 1'b1};
|
|
end
|
|
default: begin
|
|
// Division
|
|
alu_operand_a_o = {accum_window_q[31:0], 1'b1}; // it contains the remainder
|
|
alu_operand_b_o = {~op_b_shift_q[31:0], 1'b1}; // -denominator two's compliment
|
|
end
|
|
endcase
|
|
end
|
|
default: begin
|
|
alu_operand_a_o = accum_window_q;
|
|
alu_operand_b_o = {~op_b_shift_q[31:0], 1'b1};
|
|
end
|
|
endcase
|
|
end
|
|
|
|
// Multiplier partial product calculation
|
|
assign b_0 = {32{op_b_shift_q[0]}};
|
|
assign op_a_bw_pp = { ~(op_a_shift_q[32] & op_b_shift_q[0]), (op_a_shift_q[31:0] & b_0) };
|
|
assign op_a_bw_last_pp = { (op_a_shift_q[32] & op_b_shift_q[0]), ~(op_a_shift_q[31:0] & b_0) };
|
|
|
|
// Sign extend the input operands
|
|
assign sign_a = op_a_i[31] & signed_mode_i[0];
|
|
assign sign_b = op_b_i[31] & signed_mode_i[1];
|
|
|
|
assign op_a_ext = {sign_a, op_a_i};
|
|
assign op_b_ext = {sign_b, op_b_i};
|
|
|
|
// Divider calculations
|
|
|
|
// The adder in the ALU computes Remainder - Divisor. If Remainder - Divisor >= 0,
|
|
// is_greater_equal is true, the next Remainder is the subtraction result and the Quotient
|
|
// multdiv_count_q-th bit is set to 1.
|
|
assign is_greater_equal = (accum_window_q[31] == op_b_shift_q[31]) ?
|
|
~res_adder_h[31] : accum_window_q[31];
|
|
|
|
assign one_shift = {32'b0, 1'b1} << multdiv_count_q;
|
|
|
|
assign next_remainder = is_greater_equal ? res_adder_h[31:0] : accum_window_q[31:0];
|
|
assign next_quotient = is_greater_equal ? op_a_shift_q | one_shift : op_a_shift_q;
|
|
|
|
assign div_change_sign = (sign_a ^ sign_b) & ~div_by_zero_q;
|
|
assign rem_change_sign = sign_a;
|
|
|
|
always_comb begin
|
|
multdiv_count_d = multdiv_count_q;
|
|
accum_window_d = accum_window_q;
|
|
op_b_shift_d = op_b_shift_q;
|
|
op_a_shift_d = op_a_shift_q;
|
|
op_numerator_d = op_numerator_q;
|
|
md_state_d = md_state_q;
|
|
multdiv_hold = 1'b0;
|
|
div_by_zero_d = div_by_zero_q;
|
|
if (mult_sel_i || div_sel_i) begin
|
|
unique case (md_state_q)
|
|
MD_IDLE: begin
|
|
unique case (operator_i)
|
|
MD_OP_MULL: begin
|
|
op_a_shift_d = op_a_ext << 1;
|
|
accum_window_d = { ~(op_a_ext[32] & op_b_i[0]),
|
|
op_a_ext[31:0] & {32{op_b_i[0]}} };
|
|
op_b_shift_d = op_b_ext >> 1;
|
|
// Proceed with multiplication by 0/1 in data-independent time mode
|
|
// SEC_CM: CORE.DATA_REG_SW.SCA
|
|
md_state_d = (!data_ind_timing_i && ((op_b_ext >> 1) == 0)) ? MD_LAST : MD_COMP;
|
|
end
|
|
MD_OP_MULH: begin
|
|
op_a_shift_d = op_a_ext;
|
|
accum_window_d = { 1'b1, ~(op_a_ext[32] & op_b_i[0]),
|
|
op_a_ext[31:1] & {31{op_b_i[0]}} };
|
|
op_b_shift_d = op_b_ext >> 1;
|
|
md_state_d = MD_COMP;
|
|
end
|
|
MD_OP_DIV: begin
|
|
// Check if the denominator is 0
|
|
// quotient for division by 0 is specified to be -1
|
|
// Note with data-independent time option, the full divide operation will proceed as
|
|
// normal and will naturally return -1
|
|
accum_window_d = {33{1'b1}};
|
|
// SEC_CM: CORE.DATA_REG_SW.SCA
|
|
md_state_d = (!data_ind_timing_i && equal_to_zero_i) ? MD_FINISH : MD_ABS_A;
|
|
// Record that this is a div by zero to stop the sign change at the end of the
|
|
// division (in data_ind_timing mode).
|
|
div_by_zero_d = equal_to_zero_i;
|
|
end
|
|
MD_OP_REM: begin
|
|
// Check if the denominator is 0
|
|
// remainder for division by 0 is specified to be the numerator (operand a)
|
|
// Note with data-independent time option, the full divide operation will proceed as
|
|
// normal and will naturally return operand a
|
|
accum_window_d = op_a_ext;
|
|
// SEC_CM: CORE.DATA_REG_SW.SCA
|
|
md_state_d = (!data_ind_timing_i && equal_to_zero_i) ? MD_FINISH : MD_ABS_A;
|
|
end
|
|
default:;
|
|
endcase
|
|
multdiv_count_d = 5'd31;
|
|
end
|
|
|
|
MD_ABS_A: begin
|
|
// quotient
|
|
op_a_shift_d = '0;
|
|
// A abs value
|
|
op_numerator_d = sign_a ? alu_adder_i : op_a_i;
|
|
md_state_d = MD_ABS_B;
|
|
end
|
|
|
|
MD_ABS_B: begin
|
|
// remainder
|
|
accum_window_d = {32'h0, op_numerator_q[31]};
|
|
// B abs value
|
|
op_b_shift_d = sign_b ? {1'b0, alu_adder_i} : {1'b0, op_b_i};
|
|
md_state_d = MD_COMP;
|
|
end
|
|
|
|
MD_COMP: begin
|
|
multdiv_count_d = multdiv_count_q - 5'h1;
|
|
unique case (operator_i)
|
|
MD_OP_MULL: begin
|
|
accum_window_d = res_adder_l;
|
|
op_a_shift_d = op_a_shift_q << 1;
|
|
op_b_shift_d = op_b_shift_q >> 1;
|
|
// Multiplication is complete once op_b is zero, unless in data_ind_timing mode where
|
|
// the maximum possible shift-add operations will be completed regardless of op_b
|
|
// SEC_CM: CORE.DATA_REG_SW.SCA
|
|
md_state_d = ((!data_ind_timing_i && (op_b_shift_d == 0)) ||
|
|
(multdiv_count_q == 5'd1)) ? MD_LAST : MD_COMP;
|
|
end
|
|
MD_OP_MULH: begin
|
|
accum_window_d = res_adder_h;
|
|
op_a_shift_d = op_a_shift_q;
|
|
op_b_shift_d = op_b_shift_q >> 1;
|
|
md_state_d = (multdiv_count_q == 5'd1) ? MD_LAST : MD_COMP;
|
|
end
|
|
MD_OP_DIV,
|
|
MD_OP_REM: begin
|
|
accum_window_d = {next_remainder[31:0], op_numerator_q[multdiv_count_d]};
|
|
op_a_shift_d = next_quotient;
|
|
md_state_d = (multdiv_count_q == 5'd1) ? MD_LAST : MD_COMP;
|
|
end
|
|
default: ;
|
|
endcase
|
|
end
|
|
|
|
MD_LAST: begin
|
|
unique case (operator_i)
|
|
MD_OP_MULL: begin
|
|
accum_window_d = res_adder_l;
|
|
|
|
// Note no state transition will occur if multdiv_hold is set
|
|
md_state_d = MD_IDLE;
|
|
multdiv_hold = ~multdiv_ready_id_i;
|
|
end
|
|
MD_OP_MULH: begin
|
|
accum_window_d = res_adder_l;
|
|
md_state_d = MD_IDLE;
|
|
|
|
// Note no state transition will occur if multdiv_hold is set
|
|
md_state_d = MD_IDLE;
|
|
multdiv_hold = ~multdiv_ready_id_i;
|
|
end
|
|
MD_OP_DIV: begin
|
|
// this time we save the quotient in accum_window_q since we do not need anymore the
|
|
// remainder
|
|
accum_window_d = next_quotient;
|
|
md_state_d = MD_CHANGE_SIGN;
|
|
end
|
|
MD_OP_REM: begin
|
|
// this time we do not save the quotient anymore since we need only the remainder
|
|
accum_window_d = {1'b0, next_remainder[31:0]};
|
|
md_state_d = MD_CHANGE_SIGN;
|
|
end
|
|
default: ;
|
|
endcase
|
|
end
|
|
|
|
MD_CHANGE_SIGN: begin
|
|
md_state_d = MD_FINISH;
|
|
unique case (operator_i)
|
|
MD_OP_DIV:
|
|
accum_window_d = div_change_sign ? {1'b0,alu_adder_i} : accum_window_q;
|
|
MD_OP_REM:
|
|
accum_window_d = rem_change_sign ? {1'b0,alu_adder_i} : accum_window_q;
|
|
default: ;
|
|
endcase
|
|
end
|
|
|
|
MD_FINISH: begin
|
|
// Note no state transition will occur if multdiv_hold is set
|
|
md_state_d = MD_IDLE;
|
|
multdiv_hold = ~multdiv_ready_id_i;
|
|
end
|
|
|
|
default: begin
|
|
md_state_d = MD_IDLE;
|
|
end
|
|
endcase // md_state_q
|
|
end // (mult_sel_i || div_sel_i)
|
|
end
|
|
|
|
//////////////////////////////////////////
|
|
// Mutliplier / Divider state registers //
|
|
//////////////////////////////////////////
|
|
|
|
assign multdiv_en = (mult_en_i | div_en_i) & ~multdiv_hold;
|
|
|
|
always_ff @(posedge clk_i or negedge rst_ni) begin
|
|
if (!rst_ni) begin
|
|
multdiv_count_q <= 5'h0;
|
|
op_b_shift_q <= 33'h0;
|
|
op_a_shift_q <= 33'h0;
|
|
md_state_q <= MD_IDLE;
|
|
div_by_zero_q <= 1'b0;
|
|
end else if (multdiv_en) begin
|
|
multdiv_count_q <= multdiv_count_d;
|
|
op_b_shift_q <= op_b_shift_d;
|
|
op_a_shift_q <= op_a_shift_d;
|
|
md_state_q <= md_state_d;
|
|
div_by_zero_q <= div_by_zero_d;
|
|
end
|
|
end
|
|
|
|
/////////////
|
|
// Outputs //
|
|
/////////////
|
|
|
|
assign valid_o = (md_state_q == MD_FINISH) |
|
|
(md_state_q == MD_LAST &
|
|
(operator_i == MD_OP_MULL |
|
|
operator_i == MD_OP_MULH));
|
|
|
|
assign multdiv_result_o = div_en_i ? accum_window_q[31:0] : res_adder_l[31:0];
|
|
|
|
////////////////
|
|
// Assertions //
|
|
////////////////
|
|
|
|
// State must be valid.
|
|
`ASSERT(IbexMultDivStateValid, md_state_q inside {
|
|
MD_IDLE, MD_ABS_A, MD_ABS_B, MD_COMP, MD_LAST, MD_CHANGE_SIGN, MD_FINISH
|
|
}, clk_i, !rst_ni)
|
|
|
|
`ifdef FORMAL
|
|
`ifdef YOSYS
|
|
`include "formal_tb_frag.svh"
|
|
`endif
|
|
`endif
|
|
|
|
endmodule
|