ibex/rtl/ibex_decoder.sv
Alex Bradbury 27e68bd76e Convert from Solderpad to standard Apache 2.0 license
This change has been informed by advice from the lowRISC legal
committee.

The Solderpad 0.51 license states "the Licensor permits any Work
licensed under this License, at the option of the Licensee, to be
treated as licensed under the Apache License Version 2.0". We use this
freedom to convert license markings to Apache 2.0. This commit ensures
that we retain all authorship and copyright attribution information.
2019-04-26 15:05:17 +01:00

578 lines
20 KiB
Systemverilog

// Copyright lowRISC contributors.
// Copyright 2018 ETH Zurich and University of Bologna.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
////////////////////////////////////////////////////////////////////////////////
// Engineer Andreas Traber - atraber@iis.ee.ethz.ch //
// //
// Additional contributions by: //
// Matthias Baer - baermatt@student.ethz.ch //
// Igor Loi - igor.loi@unibo.it //
// Sven Stucki - svstucki@student.ethz.ch //
// Davide Schiavone - pschiavo@iis.ee.ethz.ch //
// Markus Wegmann - markus.wegmann@technokrat.ch //
// //
// Design Name: Decoder //
// Project Name: ibex //
// Language: SystemVerilog //
// //
// Description: Decoder //
// //
////////////////////////////////////////////////////////////////////////////////
`include "ibex_config.sv"
import ibex_defines::*;
module ibex_decoder
#(
parameter RV32M = 1
)
(
// singals running to/from controller
input logic deassert_we_i, // deassert we, we are stalled or not active
input logic data_misaligned_i, // misaligned data load/store in progress
input logic branch_mux_i,
input logic jump_mux_i,
output logic illegal_insn_o, // illegal instruction encountered
output logic ebrk_insn_o, // trap instruction encountered
output logic mret_insn_o, // return from exception instruction encountered
output logic ecall_insn_o, // environment call (syscall) instruction encountered
output logic pipe_flush_o, // pipeline flush is requested
// from IF/ID pipeline
input logic [31:0] instr_rdata_i, // instruction read from instr memory/cache
input logic illegal_c_insn_i, // compressed instruction decode failed
// ALU signals
output logic [ALU_OP_WIDTH-1:0] alu_operator_o, // ALU operation selection
output logic [2:0] alu_op_a_mux_sel_o, // operand a selection: reg value, PC, immediate or zero
output logic [2:0] alu_op_b_mux_sel_o, // oNOperand b selection: reg value or immediate
output logic [0:0] imm_a_mux_sel_o, // immediate selection for operand a
output logic [3:0] imm_b_mux_sel_o, // immediate selection for operand b
// MUL, DIV related control signals
output logic mult_int_en_o, // perform integer multiplication
output logic div_int_en_o, // perform integer division or reminder
output logic [1:0] multdiv_operator_o,
output logic [1:0] multdiv_signed_mode_o,
// register file related signals
output logic regfile_we_o, // write enable for regfile
// CSR manipulation
output logic csr_access_o, // access to CSR
output logic [1:0] csr_op_o, // operation to perform on CSR
output logic csr_status_o, // access to xstatus CSR
// LD/ST unit signals
output logic data_req_o, // start transaction to data memory
output logic data_we_o, // data memory write enable
output logic [1:0] data_type_o, // data type on data memory: byte, half word or word
output logic data_sign_extension_o, // sign extension on read data from data memory
output logic [1:0] data_reg_offset_o, // offset in byte inside register for stores
// jump/branches
output logic jump_in_id_o, // jump is being calculated in ALU
output logic branch_in_id_o
);
// write enable/request control
logic regfile_we;
logic data_req;
logic mult_int_en;
logic div_int_en;
logic branch_in_id;
logic jump_in_id;
logic [1:0] csr_op;
logic csr_illegal;
/////////////////////////////////////////////
// ____ _ //
// | _ \ ___ ___ ___ __| | ___ _ __ //
// | | | |/ _ \/ __/ _ \ / _` |/ _ \ '__| //
// | |_| | __/ (_| (_) | (_| | __/ | //
// |____/ \___|\___\___/ \__,_|\___|_| //
// //
/////////////////////////////////////////////
always_comb
begin
jump_in_id = 1'b0;
branch_in_id = 1'b0;
alu_operator_o = ALU_SLTU;
alu_op_a_mux_sel_o = OP_A_REGA_OR_FWD;
alu_op_b_mux_sel_o = OP_B_REGB_OR_FWD;
imm_a_mux_sel_o = IMMA_ZERO;
imm_b_mux_sel_o = IMMB_I;
mult_int_en = 1'b0;
div_int_en = 1'b0;
multdiv_operator_o = MD_OP_MULL;
multdiv_signed_mode_o = 2'b00;
regfile_we = 1'b0;
csr_access_o = 1'b0;
csr_status_o = 1'b0;
csr_illegal = 1'b0;
csr_op = CSR_OP_NONE;
data_we_o = 1'b0;
data_type_o = 2'b00;
data_sign_extension_o = 1'b0;
data_reg_offset_o = 2'b00;
data_req = 1'b0;
illegal_insn_o = 1'b0;
ebrk_insn_o = 1'b0;
mret_insn_o = 1'b0;
ecall_insn_o = 1'b0;
pipe_flush_o = 1'b0;
unique case (instr_rdata_i[6:0])
//////////////////////////////////////
// _ _ _ __ __ ____ ____ //
// | | | | | \/ | _ \/ ___| //
// _ | | | | | |\/| | |_) \___ \ //
// | |_| | |_| | | | | __/ ___) | //
// \___/ \___/|_| |_|_| |____/ //
// //
//////////////////////////////////////
OPCODE_JAL: begin // Jump and Link
jump_in_id = 1'b1;
if(jump_mux_i) begin
// Calculate jump target
alu_op_a_mux_sel_o = OP_A_CURRPC;
alu_op_b_mux_sel_o = OP_B_IMM;
imm_b_mux_sel_o = IMMB_UJ;
alu_operator_o = ALU_ADD;
regfile_we = 1'b0;
end else begin
// Calculate and store PC+4
alu_op_a_mux_sel_o = OP_A_CURRPC;
alu_op_b_mux_sel_o = OP_B_IMM;
imm_b_mux_sel_o = IMMB_PCINCR;
alu_operator_o = ALU_ADD;
regfile_we = 1'b1;
end
end
OPCODE_JALR: begin // Jump and Link Register
jump_in_id = 1'b1;
if(jump_mux_i) begin
// Calculate jump target
alu_op_a_mux_sel_o = OP_A_REGA_OR_FWD;
alu_op_b_mux_sel_o = OP_B_IMM;
imm_b_mux_sel_o = IMMB_I;
alu_operator_o = ALU_ADD;
regfile_we = 1'b0;
end else begin
// Calculate and store PC+4
alu_op_a_mux_sel_o = OP_A_CURRPC;
alu_op_b_mux_sel_o = OP_B_IMM;
imm_b_mux_sel_o = IMMB_PCINCR;
alu_operator_o = ALU_ADD;
regfile_we = 1'b1;
end
if (instr_rdata_i[14:12] != 3'b0) begin
jump_in_id = 1'b0;
regfile_we = 1'b0;
illegal_insn_o = 1'b1;
end
end
OPCODE_BRANCH: begin // Branch
branch_in_id = 1'b1;
if (branch_mux_i)
begin
unique case (instr_rdata_i[14:12])
3'b000: alu_operator_o = ALU_EQ;
3'b001: alu_operator_o = ALU_NE;
3'b100: alu_operator_o = ALU_LTS;
3'b101: alu_operator_o = ALU_GES;
3'b110: alu_operator_o = ALU_LTU;
3'b111: alu_operator_o = ALU_GEU;
default: begin
illegal_insn_o = 1'b1;
end
endcase
end
else begin
// Calculate jump target in EX
alu_op_a_mux_sel_o = OP_A_CURRPC;
alu_op_b_mux_sel_o = OP_B_IMM;
imm_b_mux_sel_o = IMMB_SB;
alu_operator_o = ALU_ADD;
regfile_we = 1'b0;
end
end
//////////////////////////////////
// _ ____ ______ _____ //
// | | | _ \ / / ___|_ _| //
// | | | | | |/ /\___ \ | | //
// | |___| |_| / / ___) || | //
// |_____|____/_/ |____/ |_| //
// //
//////////////////////////////////
OPCODE_STORE: begin
data_req = 1'b1;
data_we_o = 1'b1;
alu_operator_o = ALU_ADD;
if (instr_rdata_i[14] == 1'b0) begin
// offset from immediate
imm_b_mux_sel_o = IMMB_S;
alu_op_b_mux_sel_o = OP_B_IMM;
end
// Register offset is illegal since no register c available
else begin
data_req = 1'b0;
data_we_o = 1'b0;
illegal_insn_o = 1'b1;
end
// store size
unique case (instr_rdata_i[13:12])
2'b00: data_type_o = 2'b10; // SB
2'b01: data_type_o = 2'b01; // SH
2'b10: data_type_o = 2'b00; // SW
default: begin
data_req = 1'b0;
data_we_o = 1'b0;
illegal_insn_o = 1'b1;
end
endcase
end
OPCODE_LOAD: begin
data_req = 1'b1;
regfile_we = 1'b1;
data_type_o = 2'b00;
// offset from immediate
alu_operator_o = ALU_ADD;
alu_op_b_mux_sel_o = OP_B_IMM;
imm_b_mux_sel_o = IMMB_I;
// sign/zero extension
data_sign_extension_o = ~instr_rdata_i[14];
// load size
unique case (instr_rdata_i[13:12])
2'b00: data_type_o = 2'b10; // LB
2'b01: data_type_o = 2'b01; // LH
2'b10: data_type_o = 2'b00; // LW
default: data_type_o = 2'b00; // illegal or reg-reg
endcase
// reg-reg load (different encoding)
if (instr_rdata_i[14:12] == 3'b111) begin
// offset from RS2
alu_op_b_mux_sel_o = OP_B_REGB_OR_FWD;
// sign/zero extension
data_sign_extension_o = ~instr_rdata_i[30];
// load size
unique case (instr_rdata_i[31:25])
7'b0000_000,
7'b0100_000: data_type_o = 2'b10; // LB, LBU
7'b0001_000,
7'b0101_000: data_type_o = 2'b01; // LH, LHU
7'b0010_000: data_type_o = 2'b00; // LW
default: begin
illegal_insn_o = 1'b1;
end
endcase
end
if (instr_rdata_i[14:12] == 3'b011) begin
// LD -> RV64 only
illegal_insn_o = 1'b1;
end
end
//////////////////////////
// _ _ _ _ //
// / \ | | | | | | //
// / _ \ | | | | | | //
// / ___ \| |__| |_| | //
// /_/ \_\_____\___/ //
// //
//////////////////////////
OPCODE_LUI: begin // Load Upper Immediate
alu_op_a_mux_sel_o = OP_A_IMM;
alu_op_b_mux_sel_o = OP_B_IMM;
imm_a_mux_sel_o = IMMA_ZERO;
imm_b_mux_sel_o = IMMB_U;
alu_operator_o = ALU_ADD;
regfile_we = 1'b1;
end
OPCODE_AUIPC: begin // Add Upper Immediate to PC
alu_op_a_mux_sel_o = OP_A_CURRPC;
alu_op_b_mux_sel_o = OP_B_IMM;
imm_b_mux_sel_o = IMMB_U;
alu_operator_o = ALU_ADD;
regfile_we = 1'b1;
end
OPCODE_OPIMM: begin // Register-Immediate ALU Operations
alu_op_b_mux_sel_o = OP_B_IMM;
imm_b_mux_sel_o = IMMB_I;
regfile_we = 1'b1;
unique case (instr_rdata_i[14:12])
3'b000: alu_operator_o = ALU_ADD; // Add Immediate
3'b010: alu_operator_o = ALU_SLTS; // Set to one if Lower Than Immediate
3'b011: alu_operator_o = ALU_SLTU; // Set to one if Lower Than Immediate Unsigned
3'b100: alu_operator_o = ALU_XOR; // Exclusive Or with Immediate
3'b110: alu_operator_o = ALU_OR; // Or with Immediate
3'b111: alu_operator_o = ALU_AND; // And with Immediate
3'b001: begin
alu_operator_o = ALU_SLL; // Shift Left Logical by Immediate
if (instr_rdata_i[31:25] != 7'b0)
illegal_insn_o = 1'b1;
end
3'b101: begin
if (instr_rdata_i[31:25] == 7'b0)
alu_operator_o = ALU_SRL; // Shift Right Logical by Immediate
else if (instr_rdata_i[31:25] == 7'b010_0000)
alu_operator_o = ALU_SRA; // Shift Right Arithmetically by Immediate
else
illegal_insn_o = 1'b1;
end
default: illegal_insn_o = 1'b1;
endcase
end
OPCODE_OP: begin // Register-Register ALU operation
regfile_we = 1'b1;
if (instr_rdata_i[31]) begin
illegal_insn_o = 1'b1;
end
else
begin // non bit-manipulation instructions
if (~instr_rdata_i[28])
unique case ({instr_rdata_i[30:25], instr_rdata_i[14:12]})
// RV32I ALU operations
{6'b00_0000, 3'b000}: alu_operator_o = ALU_ADD; // Add
{6'b10_0000, 3'b000}: alu_operator_o = ALU_SUB; // Sub
{6'b00_0000, 3'b010}: alu_operator_o = ALU_SLTS; // Set Lower Than
{6'b00_0000, 3'b011}: alu_operator_o = ALU_SLTU; // Set Lower Than Unsigned
{6'b00_0000, 3'b100}: alu_operator_o = ALU_XOR; // Xor
{6'b00_0000, 3'b110}: alu_operator_o = ALU_OR; // Or
{6'b00_0000, 3'b111}: alu_operator_o = ALU_AND; // And
{6'b00_0000, 3'b001}: alu_operator_o = ALU_SLL; // Shift Left Logical
{6'b00_0000, 3'b101}: alu_operator_o = ALU_SRL; // Shift Right Logical
{6'b10_0000, 3'b101}: alu_operator_o = ALU_SRA; // Shift Right Arithmetic
// supported RV32M instructions
{6'b00_0001, 3'b000}: begin // mul
alu_operator_o = ALU_ADD;
multdiv_operator_o = MD_OP_MULL;
mult_int_en = 1'b1;
multdiv_signed_mode_o = 2'b00;
illegal_insn_o = RV32M ? 1'b0 : 1'b1;
end
{6'b00_0001, 3'b001}: begin // mulh
alu_operator_o = ALU_ADD;
multdiv_operator_o = MD_OP_MULH;
mult_int_en = 1'b1;
multdiv_signed_mode_o = 2'b11;
illegal_insn_o = RV32M ? 1'b0 : 1'b1;
end
{6'b00_0001, 3'b010}: begin // mulhsu
alu_operator_o = ALU_ADD;
multdiv_operator_o = MD_OP_MULH;
mult_int_en = 1'b1;
multdiv_signed_mode_o = 2'b01;
illegal_insn_o = RV32M ? 1'b0 : 1'b1;
end
{6'b00_0001, 3'b011}: begin // mulhu
alu_operator_o = ALU_ADD;
multdiv_operator_o = MD_OP_MULH;
mult_int_en = 1'b1;
multdiv_signed_mode_o = 2'b00;
illegal_insn_o = RV32M ? 1'b0 : 1'b1;
end
{6'b00_0001, 3'b100}: begin // div
alu_operator_o = ALU_ADD;
multdiv_operator_o = MD_OP_DIV;
div_int_en = 1'b1;
multdiv_signed_mode_o = 2'b11;
illegal_insn_o = RV32M ? 1'b0 : 1'b1;
end
{6'b00_0001, 3'b101}: begin // divu
alu_operator_o = ALU_ADD;
multdiv_operator_o = MD_OP_DIV;
div_int_en = 1'b1;
multdiv_signed_mode_o = 2'b00;
illegal_insn_o = RV32M ? 1'b0 : 1'b1;
end
{6'b00_0001, 3'b110}: begin // rem
alu_operator_o = ALU_ADD;
multdiv_operator_o = MD_OP_REM;
div_int_en = 1'b1;
multdiv_signed_mode_o = 2'b11;
illegal_insn_o = RV32M ? 1'b0 : 1'b1;
end
{6'b00_0001, 3'b111}: begin // remu
alu_operator_o = ALU_ADD;
multdiv_operator_o = MD_OP_REM;
div_int_en = 1'b1;
multdiv_signed_mode_o = 2'b00;
illegal_insn_o = RV32M ? 1'b0 : 1'b1;
end
default: begin
illegal_insn_o = 1'b1;
end
endcase
end
end
////////////////////////////////////////////////
// ____ ____ _____ ____ ___ _ _ //
// / ___|| _ \| ____/ ___|_ _| / \ | | //
// \___ \| |_) | _|| | | | / _ \ | | //
// ___) | __/| |__| |___ | | / ___ \| |___ //
// |____/|_| |_____\____|___/_/ \_\_____| //
// //
////////////////////////////////////////////////
OPCODE_SYSTEM: begin
if (instr_rdata_i[14:12] == 3'b000)
begin
// non CSR related SYSTEM instructions
unique case (instr_rdata_i[31:20])
12'h000: // ECALL
begin
// environment (system) call
ecall_insn_o = 1'b1;
end
12'h001: // ebreak
begin
// debugger trap
ebrk_insn_o = 1'b1;
end
12'h302: // mret
begin
mret_insn_o = 1'b1;
end
12'h105: // wfi
begin
// flush pipeline
pipe_flush_o = 1'b1;
end
default:
begin
illegal_insn_o = 1'b1;
end
endcase
end
else
begin
// instruction to read/modify CSR
csr_access_o = 1'b1;
regfile_we = 1'b1;
alu_op_b_mux_sel_o = OP_B_IMM;
imm_a_mux_sel_o = IMMA_Z;
imm_b_mux_sel_o = IMMB_I; // CSR address is encoded in I imm
if (instr_rdata_i[14] == 1'b1) begin
// rs1 field is used as immediate
alu_op_a_mux_sel_o = OP_A_IMM;
end else begin
alu_op_a_mux_sel_o = OP_A_REGA_OR_FWD;
end
unique case (instr_rdata_i[13:12])
2'b01: csr_op = CSR_OP_WRITE;
2'b10: csr_op = CSR_OP_SET;
2'b11: csr_op = CSR_OP_CLEAR;
default: csr_illegal = 1'b1;
endcase
if(~csr_illegal)
if (instr_rdata_i[31:20] == 12'h300)
//access to mstatus
csr_status_o = 1'b1;
illegal_insn_o = csr_illegal;
end
end
default: begin
illegal_insn_o = 1'b1;
end
endcase
// make sure invalid compressed instruction causes an exception
if (illegal_c_insn_i) begin
illegal_insn_o = 1'b1;
end
// misaligned access was detected by the LSU
// TODO: this section should eventually be moved out of the decoder
if (data_misaligned_i == 1'b1)
begin
// only part of the pipeline is unstalled, make sure that the
// correct operands are sent to the AGU
alu_op_a_mux_sel_o = OP_A_REGA_OR_FWD;
alu_op_b_mux_sel_o = OP_B_IMM;
imm_b_mux_sel_o = IMMB_PCINCR;
// if prepost increments are used, we do not write back the
// second address since the first calculated address was
// the correct one
regfile_we = 1'b0;
end
end
// deassert we signals (in case of stalls)
assign regfile_we_o = (deassert_we_i) ? 1'b0 : regfile_we;
assign mult_int_en_o = RV32M ? ((deassert_we_i) ? 1'b0 : mult_int_en) : 1'b0;
assign div_int_en_o = RV32M ? ((deassert_we_i) ? 1'b0 : div_int_en ) : 1'b0;
assign data_req_o = (deassert_we_i) ? 1'b0 : data_req;
assign csr_op_o = (deassert_we_i) ? CSR_OP_NONE : csr_op;
assign jump_in_id_o = (deassert_we_i) ? 1'b0 : jump_in_id;
assign branch_in_id_o = (deassert_we_i) ? 1'b0 : branch_in_id;
endmodule // controller