mirror of
https://github.com/lowRISC/ibex.git
synced 2025-04-24 22:07:43 -04:00
230 lines
No EOL
7.6 KiB
Systemverilog
230 lines
No EOL
7.6 KiB
Systemverilog
// Copyright 2018 ETH Zurich and University of Bologna.
|
|
// Copyright and related rights are licensed under the Solderpad Hardware
|
|
// License, Version 0.51 (the "License"); you may not use this file except in
|
|
// compliance with the License. You may obtain a copy of the License at
|
|
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
|
|
// or agreed to in writing, software, hardware and materials distributed under
|
|
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations under the License.
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Engineer: Andreas Traber - atraber@iis.ee.ethz.ch //
|
|
// //
|
|
// Design Name: Fetch Fifo for 32 bit memory interface //
|
|
// Project Name: zero-riscy //
|
|
// Language: SystemVerilog //
|
|
// //
|
|
// Description: Fetch fifo //
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
`include "zeroriscy_config.sv"
|
|
|
|
// input port: send address one cycle before the data
|
|
// clear_i clears the FIFO for the following cycle. in_addr_i can be sent in
|
|
// this cycle already
|
|
module zeroriscy_fetch_fifo
|
|
(
|
|
input logic clk,
|
|
input logic rst_n,
|
|
|
|
// control signals
|
|
input logic clear_i, // clears the contents of the fifo
|
|
|
|
// input port
|
|
input logic [31:0] in_addr_i,
|
|
input logic [31:0] in_rdata_i,
|
|
input logic in_valid_i,
|
|
output logic in_ready_o,
|
|
|
|
|
|
// output port
|
|
output logic out_valid_o,
|
|
input logic out_ready_i,
|
|
output logic [31:0] out_rdata_o,
|
|
output logic [31:0] out_addr_o,
|
|
|
|
output logic out_valid_stored_o // same as out_valid_o, except that if something is incoming now it is not included. This signal is available immediately as it comes directly out of FFs
|
|
);
|
|
|
|
localparam DEPTH = 3; // must be 3 or greater
|
|
|
|
// index 0 is used for output
|
|
logic [DEPTH-1:0] [31:0] addr_n, addr_int, addr_Q;
|
|
logic [DEPTH-1:0] [31:0] rdata_n, rdata_int, rdata_Q;
|
|
logic [DEPTH-1:0] valid_n, valid_int, valid_Q;
|
|
|
|
logic [31:0] addr_next;
|
|
logic [31:0] rdata, rdata_unaligned;
|
|
logic valid, valid_unaligned;
|
|
|
|
logic aligned_is_compressed, unaligned_is_compressed;
|
|
logic aligned_is_compressed_st, unaligned_is_compressed_st;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// output port
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
assign rdata = (valid_Q[0]) ? rdata_Q[0] : in_rdata_i;
|
|
assign valid = valid_Q[0] || in_valid_i;
|
|
|
|
assign rdata_unaligned = (valid_Q[1]) ? {rdata_Q[1][15:0], rdata[31:16]} : {in_rdata_i[15:0], rdata[31:16]};
|
|
// it is implied that rdata_valid_Q[0] is set
|
|
assign valid_unaligned = (valid_Q[1] || (valid_Q[0] && in_valid_i));
|
|
|
|
assign unaligned_is_compressed = rdata[17:16] != 2'b11;
|
|
assign aligned_is_compressed = rdata[1:0] != 2'b11;
|
|
assign unaligned_is_compressed_st = rdata_Q[0][17:16] != 2'b11;
|
|
assign aligned_is_compressed_st = rdata_Q[0][1:0] != 2'b11;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// instruction aligner (if unaligned)
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
always_comb
|
|
begin
|
|
// serve the aligned case even though the output address is unaligned when
|
|
// the next instruction will be from a hardware loop target
|
|
// in this case the current instruction is already prealigned in element 0
|
|
if (out_addr_o[1]) begin
|
|
// unaligned case
|
|
out_rdata_o = rdata_unaligned;
|
|
|
|
if (unaligned_is_compressed)
|
|
out_valid_o = valid;
|
|
else
|
|
out_valid_o = valid_unaligned;
|
|
end else begin
|
|
// aligned case
|
|
out_rdata_o = rdata;
|
|
out_valid_o = valid;
|
|
end
|
|
end
|
|
|
|
assign out_addr_o = (valid_Q[0]) ? addr_Q[0] : in_addr_i;
|
|
|
|
// this valid signal must not depend on signals from outside!
|
|
always_comb
|
|
begin
|
|
out_valid_stored_o = 1'b1;
|
|
|
|
if (out_addr_o[1]) begin
|
|
if (unaligned_is_compressed_st)
|
|
out_valid_stored_o = 1'b1;
|
|
else
|
|
out_valid_stored_o = valid_Q[1];
|
|
end else begin
|
|
out_valid_stored_o = valid_Q[0];
|
|
end
|
|
end
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// input port
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// we accept data as long as our fifo is not full
|
|
// we don't care about clear here as the data will be received one cycle
|
|
// later anyway
|
|
assign in_ready_o = ~valid_Q[DEPTH-2];
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// FIFO management
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
always_comb
|
|
begin
|
|
int j;
|
|
|
|
addr_int = addr_Q;
|
|
rdata_int = rdata_Q;
|
|
valid_int = valid_Q;
|
|
|
|
|
|
if (in_valid_i) begin
|
|
for(j = 0; j < DEPTH; j++) begin
|
|
if (~valid_Q[j]) begin
|
|
addr_int[j] = in_addr_i;
|
|
rdata_int[j] = in_rdata_i;
|
|
valid_int[j] = 1'b1;
|
|
|
|
break;
|
|
end
|
|
end
|
|
|
|
end
|
|
end
|
|
|
|
assign addr_next = {addr_int[0][31:2], 2'b00} + 32'h4;
|
|
|
|
// move everything by one step
|
|
always_comb
|
|
begin
|
|
addr_n = addr_int;
|
|
rdata_n = rdata_int;
|
|
valid_n = valid_int;
|
|
|
|
if (out_ready_i && out_valid_o) begin
|
|
begin
|
|
if (addr_int[0][1]) begin
|
|
// unaligned case
|
|
if (unaligned_is_compressed) begin
|
|
addr_n[0] = {addr_next[31:2], 2'b00};
|
|
end else begin
|
|
addr_n[0] = {addr_next[31:2], 2'b10};
|
|
end
|
|
|
|
rdata_n = {32'b0, rdata_int[DEPTH-1:1]};
|
|
valid_n = {1'b0, valid_int[DEPTH-1:1]};
|
|
end else begin
|
|
|
|
if (aligned_is_compressed) begin
|
|
// just increase address, do not move to next entry in FIFO
|
|
addr_n[0] = {addr_int[0][31:2], 2'b10};
|
|
end else begin
|
|
// move to next entry in FIFO
|
|
addr_n[0] = {addr_next[31:2], 2'b00};
|
|
rdata_n = {32'b0, rdata_int[DEPTH-1:1]};
|
|
valid_n = {1'b0, valid_int[DEPTH-1:1]};
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// registers
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
always_ff @(posedge clk, negedge rst_n)
|
|
begin
|
|
if(rst_n == 1'b0)
|
|
begin
|
|
addr_Q <= '{default: '0};
|
|
rdata_Q <= '{default: '0};
|
|
valid_Q <= '0;
|
|
end
|
|
else
|
|
begin
|
|
// on a clear signal from outside we invalidate the content of the FIFO
|
|
// completely and start from an empty state
|
|
if (clear_i) begin
|
|
valid_Q <= '0;
|
|
end else begin
|
|
addr_Q <= addr_n;
|
|
rdata_Q <= rdata_n;
|
|
valid_Q <= valid_n;
|
|
end
|
|
end
|
|
end
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Assertions
|
|
//----------------------------------------------------------------------------
|
|
`ifndef VERILATOR
|
|
assert property (
|
|
@(posedge clk) (in_valid_i) |-> ((valid_Q[DEPTH-1] == 1'b0) || (clear_i == 1'b1)) );
|
|
`endif
|
|
endmodule |