added further tests

This commit is contained in:
stnolting 2020-07-10 19:50:33 +02:00
parent a50816b71f
commit 48ae50154a

View file

@ -119,6 +119,12 @@ int main() {
int cnt_ok = 0;
int cnt_test = 0;
union {
uint64_t uint64;
uint32_t uint32[sizeof(uint64_t)/2];
} cpu_systime;
// check if UART unit is implemented at all
if (neorv32_uart_available() == 0) {
return 0;
@ -139,6 +145,7 @@ int main() {
neorv32_uart_setup(BAUD_RATE, 0, 0);
neorv32_mtime_set_time(0);
// set CMP of machine system timer MTIME to max to prevent an IRQ
uint64_t mtime_cmp_max = 0xFFFFFFFFFFFFFFFFL;
neorv32_mtime_set_timecmp(mtime_cmp_max);
@ -153,7 +160,7 @@ int main() {
neorv32_rte_print_hw_config();
// intro2
neorv32_uart_printf("\n\nNEORV32 exceptions and interrupts test program\n\n");
neorv32_uart_printf("\n\nStarting tests...\n\n");
// install exception handler functions
int install_err = 0;
@ -200,8 +207,72 @@ int main() {
// ----------------------------------------------------------
// Test fence instructions - make sure CPU does not crash here and throws no exception
// Test counter CSR access for mcycle[h]
// ----------------------------------------------------------
neorv32_uart_printf("MCYCLE[H]: ");
cnt_test++;
neorv32_cpu_csr_write(CSR_MCYCLE, 0x1BCD1234);
neorv32_cpu_csr_write(CSR_MCYCLEH, 0x22334455);
if (((neorv32_cpu_csr_read(CSR_MCYCLE) & 0xffff0000L) == 0x1BCD0000) &&
(neorv32_cpu_csr_read(CSR_MCYCLEH) == 0x22334455)) {
neorv32_uart_printf("ok\n");
cnt_ok++;
}
else {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
// ----------------------------------------------------------
// Test counter CSR access for minstret[h]
// ----------------------------------------------------------
neorv32_uart_printf("MINSTRET[H]: ");
cnt_test++;
neorv32_cpu_csr_write(CSR_MINSTRET, 0x11224499);
neorv32_cpu_csr_write(CSR_MINSTRETH, 0x00110011);
if (((neorv32_cpu_csr_read(CSR_MINSTRET) & 0xffff0000L) == 0x11220000) &&
(neorv32_cpu_csr_read(CSR_MINSTRETH) == 0x00110011)) {
neorv32_uart_printf("ok\n");
cnt_ok++;
}
else {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
// ----------------------------------------------------------
// Test time[h] (must be == MTIME)
// ----------------------------------------------------------
neorv32_uart_printf("TIME[H]: ");
cnt_test++;
cpu_systime.uint32[0] = neorv32_cpu_csr_read(CSR_TIME);
cpu_systime.uint32[1] = neorv32_cpu_csr_read(CSR_TIMEH);
cpu_systime.uint64 &= 0xFFFFFFFFFFFF0000LL;
uint64_t mtime_systime = neorv32_mtime_get_time() & 0xFFFFFFFFFFFF0000LL;
if (cpu_systime.uint64 == mtime_systime) {
neorv32_uart_printf("ok\n");
cnt_ok++;
}
else {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
// ----------------------------------------------------------
// Test fence instructions - make sure CPU does not crash here and throws no exception
// a more complex test is provided by the RISC-V compliance test
// ----------------------------------------------------------
exception_handler_answer = 0;
neorv32_uart_printf("FENCE(.I): ");
cnt_test++;
asm volatile ("fence");
@ -215,12 +286,12 @@ int main() {
neorv32_uart_printf("ok\n");
cnt_ok++;
}
exception_handler_answer = 0;
// ----------------------------------------------------------
// Unaligned instruction address
// ----------------------------------------------------------
exception_handler_answer = 0;
neorv32_uart_printf("EXC I_ALIGN: ");
// skip if C-mode is not implemented
@ -240,7 +311,6 @@ int main() {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
exception_handler_answer = 0;
#endif
}
else {
@ -251,6 +321,7 @@ int main() {
// ----------------------------------------------------------
// Instruction access fault
// ----------------------------------------------------------
exception_handler_answer = 0;
neorv32_uart_printf("EXC I_ACC: ");
cnt_test++;
@ -266,13 +337,13 @@ int main() {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
exception_handler_answer = 0;
#endif
// ----------------------------------------------------------
// Illegal instruction
// ----------------------------------------------------------
exception_handler_answer = 0;
neorv32_uart_printf("EXC I_ILLEG: ");
cnt_test++;
@ -294,13 +365,13 @@ int main() {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
exception_handler_answer = 0;
#endif
// ----------------------------------------------------------
// Breakpoint instruction
// ----------------------------------------------------------
exception_handler_answer = 0;
neorv32_uart_printf("EXC BREAK: ");
cnt_test++;
@ -315,13 +386,13 @@ int main() {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
exception_handler_answer = 0;
#endif
// ----------------------------------------------------------
// Unaligned load address
// ----------------------------------------------------------
exception_handler_answer = 0;
neorv32_uart_printf("EXC L_ALIGN: ");
cnt_test++;
@ -337,13 +408,13 @@ int main() {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
exception_handler_answer = 0;
#endif
// ----------------------------------------------------------
// Load access fault
// ----------------------------------------------------------
exception_handler_answer = 0;
neorv32_uart_printf("EXC L_ACC: ");
cnt_test++;
@ -359,13 +430,13 @@ int main() {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
exception_handler_answer = 0;
#endif
// ----------------------------------------------------------
// Unaligned store address
// ----------------------------------------------------------
exception_handler_answer = 0;
neorv32_uart_printf("EXC S_ALIGN: ");
cnt_test++;
@ -381,13 +452,13 @@ int main() {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
exception_handler_answer = 0;
#endif
// ----------------------------------------------------------
// Store access fault
// ----------------------------------------------------------
exception_handler_answer = 0;
neorv32_uart_printf("EXC S_ACC: ");
cnt_test++;
@ -403,13 +474,13 @@ int main() {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
exception_handler_answer = 0;
#endif
// ----------------------------------------------------------
// Environment call
// ----------------------------------------------------------
exception_handler_answer = 0;
neorv32_uart_printf("EXC ENVCALL: ");
cnt_test++;
@ -424,13 +495,13 @@ int main() {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
exception_handler_answer = 0;
#endif
// ----------------------------------------------------------
// Machine software interrupt
// ----------------------------------------------------------
exception_handler_answer = 0;
neorv32_uart_printf("IRQ MSI: ");
cnt_test++;
@ -446,13 +517,13 @@ int main() {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
exception_handler_answer = 0;
#endif
// ----------------------------------------------------------
// Machine timer interrupt (MTIME)
// ----------------------------------------------------------
exception_handler_answer = 0;
neorv32_uart_printf("IRQ MTI: ");
cnt_test++;
@ -474,13 +545,16 @@ int main() {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
exception_handler_answer = 0;
#endif
// no more mtime interrupts
neorv32_mtime_set_timecmp(-1);
// ----------------------------------------------------------
// Machine external interrupt (via CLIC)
// ----------------------------------------------------------
exception_handler_answer = 0;
neorv32_uart_printf("IRQ MEI: ");
cnt_test++;
@ -502,10 +576,36 @@ int main() {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
exception_handler_answer = 0;
#endif
// ----------------------------------------------------------
// Test WFI ("sleep") instructions
// ----------------------------------------------------------
exception_handler_answer = 0;
neorv32_uart_printf("WFI: ");
cnt_test++;
// program timer to wake up
neorv32_mtime_set_timecmp(neorv32_mtime_get_time() + 1000);
// put CPU into sleep mode
asm volatile ("wfi");
if (exception_handler_answer != ANSWER_MTI) {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
else {
neorv32_uart_printf("ok\n");
cnt_ok++;
}
// error report
neorv32_uart_printf("\n\nTests: %i\nOK: %i\nFAIL: %i\n\n", cnt_test, cnt_ok, cnt_fail);